1
|
Furtado LMF, Teles LR, Martins da Costa SADA, de Souza Matos VU, Teixeira NM, Gonçalves CA, Filho JADCV. Systematic Review of the Clinical and Experimental Research Assessing the Effects of Craniosynostosis on the Brain. J Craniofac Surg 2023; 34:1160-1164. [PMID: 36184763 DOI: 10.1097/scs.0000000000009060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Although neurocognitive impairment has been considered as the main argument for the surgical treatment of craniosynostosis (CS), recent studies reported subtle deficits in neurological function even in operated patients. However, the cause of these deficits remains poorly understood. This systematic review sought to examine the impact of CS on the brain microstructure, mainly on functional connectivity, and comprehensively summarize the clinical and experimental research available on this topic. A systematic review was performed considering the publications of the last 20 years in PubMed and Web of Science, including relevant human and animal studies of the types of brain-microstructure disturbances in CS. Among the 560 papers identified, 11 were selected for analysis. Seven of those were conducted in humans and 4 in animal models. Resting-state functional magnetic resonance imaging, task-based magnetic resonance imaging, and diffusion tensor imaging were the main instruments used to investigate brain connectivity in humans. The main findings were increased connectivity of the posterior segment of cingulum gyri, reduced interconnectivity of the frontal lobes, and reduced diffusivity on diffusion tensor imaging, which were associated with hyperactivity behaviors and poorer performance on neurocognitive tests. Conversely, despite the lack of evidence of brain dysfunction in animal studies, they reported a tendency toward the development of hyperactive behaviors and impairment of neurocognitive function. Skull restriction caused by CS apparently chronically increases the intracranial pressure and produces white matter injuries. The current evidence supports the contention that an early surgical approach could minimize brain-connectivity impairment in this context.
Collapse
Affiliation(s)
| | - Lucas R Teles
- Institute of Biological Sciences, Federal University of Minas Gerais
| | | | | | | | - Carlos A Gonçalves
- Neuroscience and Management Science, Federal University of Minas Gerais, Brazil
| | | |
Collapse
|
2
|
Aldawood ZA, Mancinelli L, Geng X, Yeh SCA, Di Carlo R, C. Leite T, Gustafson J, Wilk K, Yozgatian J, Garakani S, Bassir SH, Cunningham ML, Lin CP, Intini G. Expansion of the sagittal suture induces proliferation of skeletal stem cells and sustains endogenous calvarial bone regeneration. Proc Natl Acad Sci U S A 2023; 120:e2120826120. [PMID: 37040407 PMCID: PMC10120053 DOI: 10.1073/pnas.2120826120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2023] [Indexed: 04/12/2023] Open
Abstract
In newborn humans, and up to approximately 2 y of age, calvarial bone defects can naturally regenerate. This remarkable regeneration potential is also found in newborn mice and is absent in adult mice. Since previous studies showed that the mouse calvarial sutures are reservoirs of calvarial skeletal stem cells (cSSCs), which are the cells responsible for calvarial bone regeneration, here we hypothesized that the regenerative potential of the newborn mouse calvaria is due to a significant amount of cSSCs present in the newborn expanding sutures. Thus, we tested whether such regenerative potential can be reverse engineered in adult mice by artificially inducing an increase of the cSSCs resident within the adult calvarial sutures. First, we analyzed the cellular composition of the calvarial sutures in newborn and in older mice, up to 14-mo-old mice, showing that the sutures of the younger mice are enriched in cSSCs. Then, we demonstrated that a controlled mechanical expansion of the functionally closed sagittal sutures of adult mice induces a significant increase of the cSSCs. Finally, we showed that if a calvarial critical size bone defect is created simultaneously to the mechanical expansion of the sagittal suture, it fully regenerates without the need for additional therapeutic aids. Using a genetic blockade system, we further demonstrate that this endogenous regeneration is mediated by the canonical Wnt signaling. This study shows that controlled mechanical forces can harness the cSSCs and induce calvarial bone regeneration. Similar harnessing strategies may be used to develop novel and more effective bone regeneration autotherapies.
Collapse
Affiliation(s)
- Zahra A. Aldawood
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA02115
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam34212, Saudi Arabia
| | - Luigi Mancinelli
- Department of Periodontics and Preventive Dentistry, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
- Center for Craniofacial Regeneration, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
| | - Xuehui Geng
- Department of Periodontics and Preventive Dentistry, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
- Center for Craniofacial Regeneration, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
| | - Shu-Chi A. Yeh
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA02114
| | - Roberta Di Carlo
- Department of Periodontics and Preventive Dentistry, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
- Center for Craniofacial Regeneration, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
| | - Taiana C. Leite
- Department of Periodontics and Preventive Dentistry, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
- Center for Craniofacial Regeneration, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
| | - Jonas Gustafson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA98101
| | - Katarzyna Wilk
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Joseph Yozgatian
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Sasan Garakani
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Seyed Hossein Bassir
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Michael L. Cunningham
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA98101
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA98195
| | - Charles P. Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA02114
| | - Giuseppe Intini
- Department of Periodontics and Preventive Dentistry, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
- Center for Craniofacial Regeneration, University of PittsburghSchool of Dental Medicine, Pittsburgh, PA15261
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
- University of Pittsburgh UPMC Hillman Cancer Center, Pittsburgh, PA15232
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA15219
| |
Collapse
|
3
|
Ang PS, Matrongolo MJ, Zietowski ML, Nathan SL, Reid RR, Tischfield MA. Cranium growth, patterning and homeostasis. Development 2022; 149:dev201017. [PMID: 36408946 PMCID: PMC9793421 DOI: 10.1242/dev.201017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Craniofacial development requires precise spatiotemporal regulation of multiple signaling pathways that crosstalk to coordinate the growth and patterning of the skull with surrounding tissues. Recent insights into these signaling pathways and previously uncharacterized progenitor cell populations have refined our understanding of skull patterning, bone mineralization and tissue homeostasis. Here, we touch upon classical studies and recent advances with an emphasis on developmental and signaling mechanisms that regulate the osteoblast lineage for the calvaria, which forms the roof of the skull. We highlight studies that illustrate the roles of osteoprogenitor cells and cranial suture-derived stem cells for proper calvarial growth and homeostasis. We also discuss genes and signaling pathways that control suture patency and highlight how perturbing the molecular regulation of these pathways leads to craniosynostosis. Finally, we discuss the recently discovered tissue and signaling interactions that integrate skull and cerebrovascular development, and the potential implications for both cerebrospinal fluid hydrodynamics and brain waste clearance in craniosynostosis.
Collapse
Affiliation(s)
- Phillip S. Ang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Matt J. Matrongolo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - Shelby L. Nathan
- Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Max A. Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
4
|
Stanton E, Urata M, Chen JF, Chai Y. The clinical manifestations, molecular mechanisms and treatment of craniosynostosis. Dis Model Mech 2022; 15:dmm049390. [PMID: 35451466 PMCID: PMC9044212 DOI: 10.1242/dmm.049390] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Craniosynostosis is a major congenital craniofacial disorder characterized by the premature fusion of cranial suture(s). Patients with severe craniosynostosis often have impairments in hearing, vision, intracranial pressure and/or neurocognitive functions. Craniosynostosis can result from mutations, chromosomal abnormalities or adverse environmental effects, and can occur in isolation or in association with numerous syndromes. To date, surgical correction remains the primary treatment for craniosynostosis, but it is associated with complications and with the potential for re-synostosis. There is, therefore, a strong unmet need for new therapies. Here, we provide a comprehensive review of our current understanding of craniosynostosis, including typical craniosynostosis types, their clinical manifestations, cranial suture development, and genetic and environmental causes. Based on studies from animal models, we present a framework for understanding the pathogenesis of craniosynostosis, with an emphasis on the loss of postnatal suture mesenchymal stem cells as an emerging disease-driving mechanism. We evaluate emerging treatment options and highlight the potential of mesenchymal stem cell-based suture regeneration as a therapeutic approach for craniosynostosis.
Collapse
Affiliation(s)
- Eloise Stanton
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark Urata
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Kague E, Medina-Gomez C, Boyadjiev SA, Rivadeneira F. The genetic overlap between osteoporosis and craniosynostosis. Front Endocrinol (Lausanne) 2022; 13:1020821. [PMID: 36225206 PMCID: PMC9548872 DOI: 10.3389/fendo.2022.1020821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is the most prevalent bone condition in the ageing population. This systemic disease is characterized by microarchitectural deterioration of bone, leading to increased fracture risk. In the past 15 years, genome-wide association studies (GWAS), have pinpointed hundreds of loci associated with bone mineral density (BMD), helping elucidate the underlying molecular mechanisms and genetic architecture of fracture risk. However, the challenge remains in pinpointing causative genes driving GWAS signals as a pivotal step to drawing the translational therapeutic roadmap. Recently, a skull BMD-GWAS uncovered an intriguing intersection with craniosynostosis, a congenital anomaly due to premature suture fusion in the skull. Here, we recapitulate the genetic contribution to both osteoporosis and craniosynostosis, describing the biological underpinnings of this overlap and using zebrafish models to leverage the functional investigation of genes associated with skull development and systemic skeletal homeostasis.
Collapse
Affiliation(s)
- Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
- *Correspondence: Erika Kague,
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Simeon A. Boyadjiev
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Fernando Rivadeneira
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
6
|
Holmes G, Gonzalez-Reiche AS, Saturne M, Motch Perrine SM, Zhou X, Borges AC, Shewale B, Richtsmeier JT, Zhang B, van Bakel H, Jabs EW. Single-cell analysis identifies a key role for Hhip in murine coronal suture development. Nat Commun 2021; 12:7132. [PMID: 34880220 PMCID: PMC8655033 DOI: 10.1038/s41467-021-27402-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
Craniofacial development depends on formation and maintenance of sutures between bones of the skull. In sutures, growth occurs at osteogenic fronts along the edge of each bone, and suture mesenchyme separates adjacent bones. Here, we perform single-cell RNA-seq analysis of the embryonic, wild type murine coronal suture to define its population structure. Seven populations at E16.5 and nine at E18.5 comprise the suture mesenchyme, osteogenic cells, and associated populations. Expression of Hhip, an inhibitor of hedgehog signaling, marks a mesenchymal population distinct from those of other neurocranial sutures. Tracing of the neonatal Hhip-expressing population shows that descendant cells persist in the coronal suture and contribute to calvarial bone growth. In Hhip-/- coronal sutures at E18.5, the osteogenic fronts are closely apposed and the suture mesenchyme is depleted with increased hedgehog signaling compared to those of the wild type. Collectively, these data demonstrate that Hhip is required for normal coronal suture development.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Ana S. Gonzalez-Reiche
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Madrikha Saturne
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Susan M. Motch Perrine
- grid.29857.310000 0001 2097 4281Department of Anthropology, Pennsylvania State University, University Park, PA 16802 USA
| | - Xianxiao Zhou
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ana C. Borges
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bhavana Shewale
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Joan T. Richtsmeier
- grid.29857.310000 0001 2097 4281Department of Anthropology, Pennsylvania State University, University Park, PA 16802 USA
| | - Bin Zhang
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Harm van Bakel
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ethylin Wang Jabs
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.21107.350000 0001 2171 9311Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
7
|
Truong BT, Artinger KB. The power of zebrafish models for understanding the co-occurrence of craniofacial and limb disorders. Genesis 2021; 59:e23407. [PMID: 33393730 PMCID: PMC8153179 DOI: 10.1002/dvg.23407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
Craniofacial and limb defects are two of the most common congenital anomalies in the general population. Interestingly, these defects are not mutually exclusive. Many patients with craniofacial phenotypes, such as orofacial clefting and craniosynostosis, also present with limb defects, including polydactyly, syndactyly, brachydactyly, or ectrodactyly. The gene regulatory networks governing craniofacial and limb development initially seem distinct from one another, and yet these birth defects frequently occur together. Both developmental processes are highly conserved among vertebrates, and zebrafish have emerged as an advantageous model due to their high fecundity, relative ease of genetic manipulation, and transparency during development. Here we summarize studies that have used zebrafish models to study human syndromes that present with both craniofacial and limb phenotypes. We discuss the highly conserved processes of craniofacial and limb/fin development and describe recent zebrafish studies that have explored the function of genes associated with human syndromes with phenotypes in both structures. We attempt to identify commonalities between the two to help explain why craniofacial and limb anomalies often occur together.
Collapse
Affiliation(s)
- Brittany T. Truong
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
8
|
Dias MS, Samson T, Rizk EB, Governale LS, Richtsmeier JT. Identifying the Misshapen Head: Craniosynostosis and Related Disorders. Pediatrics 2020; 146:peds.2020-015511. [PMID: 32868470 DOI: 10.1542/peds.2020-015511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pediatric care providers, pediatricians, pediatric subspecialty physicians, and other health care providers should be able to recognize children with abnormal head shapes that occur as a result of both synostotic and deformational processes. The purpose of this clinical report is to review the characteristic head shape changes, as well as secondary craniofacial characteristics, that occur in the setting of the various primary craniosynostoses and deformations. As an introduction, the physiology and genetics of skull growth as well as the pathophysiology underlying craniosynostosis are reviewed. This is followed by a description of each type of primary craniosynostosis (metopic, unicoronal, bicoronal, sagittal, lambdoid, and frontosphenoidal) and their resultant head shape changes, with an emphasis on differentiating conditions that require surgical correction from those (bathrocephaly, deformational plagiocephaly/brachycephaly, and neonatal intensive care unit-associated skill deformation, known as NICUcephaly) that do not. The report ends with a brief discussion of microcephaly as it relates to craniosynostosis as well as fontanelle closure. The intent is to improve pediatric care providers' recognition and timely referral for craniosynostosis and their differentiation of synostotic from deformational and other nonoperative head shape changes.
Collapse
Affiliation(s)
- Mark S Dias
- Section of Pediatric Neurosurgery, Department of Neurosurgery and
| | - Thomas Samson
- Division of Plastic Surgery, Department of Surgery, College of Medicine and
| | - Elias B Rizk
- Section of Pediatric Neurosurgery, Department of Neurosurgery and
| | - Lance S Governale
- Lillian S. Wells Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida
| | - Joan T Richtsmeier
- Department of Anthropology, College of the Liberal Arts and Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania; and
| | | |
Collapse
|
9
|
Holmes G, Gonzalez-Reiche AS, Lu N, Zhou X, Rivera J, Kriti D, Sebra R, Williams AA, Donovan MJ, Potter SS, Pinto D, Zhang B, van Bakel H, Jabs EW. Integrated Transcriptome and Network Analysis Reveals Spatiotemporal Dynamics of Calvarial Suturogenesis. Cell Rep 2020; 32:107871. [PMID: 32640236 PMCID: PMC7379176 DOI: 10.1016/j.celrep.2020.107871] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022] Open
Abstract
Craniofacial abnormalities often involve sutures, the growth centers of the skull. To characterize the organization and processes governing their development, we profile the murine frontal suture, a model for sutural growth and fusion, at the tissue- and single-cell level on embryonic days (E)16.5 and E18.5. For the wild-type suture, bulk RNA sequencing (RNA-seq) analysis identifies mesenchyme-, osteogenic front-, and stage-enriched genes and biological processes, as well as alternative splicing events modifying the extracellular matrix. Single-cell RNA-seq analysis distinguishes multiple subpopulations, of which five define a mesenchyme-osteoblast differentiation trajectory and show variation along the anteroposterior axis. Similar analyses of in vivo mouse models of impaired frontal suturogenesis in Saethre-Chotzen and Apert syndromes, Twist1+/- and Fgfr2+/S252W, demonstrate distinct transcriptional changes involving angiogenesis and ribogenesis, respectively. Co-expression network analysis reveals gene expression modules from which we validate key driver genes regulating osteoblast differentiation. Our study provides a global approach to gain insights into suturogenesis.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Na Lu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua Rivera
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anthony A Williams
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, OH 45229, USA
| | - Dalila Pinto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
10
|
Rachwalski M, Khonsari RH, Paternoster G. Current Approaches in the Development of Molecular and Pharmacological Therapies in Craniosynostosis Utilizing Animal Models. Mol Syndromol 2019; 10:115-123. [PMID: 30976284 DOI: 10.1159/000493535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of the craniofacial skeleton is a spatial and temporal process where cranial sutures play a role in the regulation of morphogenesis and growth. Disruption of these cellular and molecular interactions may lead to craniosynostosis, the premature obliteration of one or more cranial sutures, yielding skull growth restriction and malformation perpendicular to the affected suture. Facial deformity and various functional CNS anomalies are other frequent complications. Cranial vault expansion and reconstructive surgery remain the mainstay of treatment but pose an elevated risk of morbidity for the infant. While the etiology of nonsyndromic craniosynostosis remains to be deciphered, gain-of-function mutations in FGFR1-3 and TWIST1 were found to be responsible for more than 3/4 of the most commonly encountered craniofacial syndromes. Animal models have been invaluable to further dissect the role of genes within the cranial sutures and for the development of alternative nonsurgical treatment strategies. In this review, we will present various molecular and pharmacological approaches for the treatment of craniosynostosis that have been tested using in vitro and in vivo assays as well as discuss their potential application in humans focusing on the case of tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Martin Rachwalski
- Imagine Institute of Genetic Diseases, INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Departments of Malades, Paris, France.,Pediatric Neurosurgery, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Maxillofacial and Plastic Surgery, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,National Reference Center for Craniofacial Anomalies, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Roman H Khonsari
- Imagine Institute of Genetic Diseases, INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Departments of Malades, Paris, France.,Maxillofacial and Plastic Surgery, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,National Reference Center for Craniofacial Anomalies, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Giovanna Paternoster
- Pediatric Neurosurgery, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,National Reference Center for Craniofacial Anomalies, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
11
|
Holmes G, O'Rourke C, Motch Perrine SM, Lu N, van Bakel H, Richtsmeier JT, Jabs EW. Midface and upper airway dysgenesis in FGFR2-related craniosynostosis involves multiple tissue-specific and cell cycle effects. Development 2018; 145:dev.166488. [PMID: 30228104 DOI: 10.1242/dev.166488] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022]
Abstract
Midface dysgenesis is a feature of more than 200 genetic conditions in which upper airway anomalies frequently cause respiratory distress, but its etiology is poorly understood. Mouse models of Apert and Crouzon craniosynostosis syndromes exhibit midface dysgenesis similar to the human conditions. They carry activating mutations of Fgfr2, which is expressed in multiple craniofacial tissues during development. Magnetic resonance microscopy of three mouse models of Apert and Crouzon syndromes revealed decreased nasal passage volume in all models at birth. Histological analysis suggested overgrowth of the nasal cartilage in the two Apert syndrome mouse models. We used tissue-specific gene expression and transcriptome analysis to further dissect the structural, cellular and molecular alterations underlying midface and upper airway dysgenesis in Apert Fgfr2+/S252W mutants. Cartilage thickened progressively during embryogenesis because of increased chondrocyte proliferation in the presence of Fgf2 Oral epithelium expression of mutant Fgfr2, which resulted in a distinctive nasal septal fusion defect, and premature facial suture fusion contributed to the overall dysmorphology. Midface dysgenesis in Fgfr2-related craniosynostosis is a complex phenotype arising from the combined effects of aberrant signaling in multiple craniofacial tissues.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Courtney O'Rourke
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan M Motch Perrine
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Na Lu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Durham EL, Howie RN, Cray JJ. Gene/environment interactions in craniosynostosis: A brief review. Orthod Craniofac Res 2018. [PMID: 28643932 DOI: 10.1111/ocr.12153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is suggested that craniosynostosis is caused by a heterogeneous set of effects including gene mutations, teratogenic exposure during critical periods of development and gene/environment interactions. Distinguishing between sufficient, additive and interactive effects is important to the study of gene/environment interactions and allows for segregation of environmental exposures effecting susceptible populations. Through the identification of sufficient and interactive effects, efforts in prevention of craniosynostosis may be successful. Here, we provide a brief review focusing on defining these categorized exposures and relevant literature that has interrogated gene/environment interactions for craniosynostosis.
Collapse
Affiliation(s)
- E L Durham
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - R N Howie
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J J Cray
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
13
|
Cesario JM, Landin Malt A, Chung JU, Khairallah MP, Dasgupta K, Asam K, Deacon LJ, Choi V, Almaidhan AA, Darwiche NA, Kim J, Johnson RL, Jeong J. Anti-osteogenic function of a LIM-homeodomain transcription factor LMX1B is essential to early patterning of the calvaria. Dev Biol 2018; 443:103-116. [PMID: 29852132 DOI: 10.1016/j.ydbio.2018.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/15/2018] [Accepted: 05/26/2018] [Indexed: 12/22/2022]
Abstract
The calvaria (upper part of the skull) is made of plates of bone and fibrous joints (sutures and fontanelles), and the proper balance and organization of these components are crucial to normal development of the calvaria. In a mouse embryo, the calvaria develops from a layer of head mesenchyme that surrounds the brain from shortly after mid-gestation. The mesenchyme just above the eye (supra-orbital mesenchyme, SOM) generates ossification centers for the bones, which then grow toward the apex gradually. In contrast, the mesenchyme apical to SOM (early migrating mesenchyme, EMM), including the area at the vertex, does not generate an ossification center. As a result, the dorsal midline of the head is occupied by sutures and fontanelles at birth. To date, the molecular basis for this regional difference in developmental programs is unknown. The current study provides vital insights into the genetic regulation of calvarial patterning. First, we showed that osteogenic signals were active in both EMM and SOM during normal development, which suggested the presence of an anti-osteogenic factor in EMM to counter the effect of these signals. Subsequently, we identified Lmx1b as an anti-osteogenic gene that was expressed in EMM but not in SOM. Furthermore, head mesenchyme-specific deletion of Lmx1b resulted in heterotopic ossification from EMM at the vertex, and craniosynostosis affecting multiple sutures. Conversely, forced expression of Lmx1b in SOM was sufficient to inhibit osteogenic specification. Therefore, we conclude that Lmx1b plays a key role as an anti-osteogenic factor in patterning the head mesenchyme into areas with different osteogenic competence. In turn, this patterning event is crucial to generating the proper organization of the bones and soft tissue joints of the calvaria.
Collapse
Affiliation(s)
- Jeffry M Cesario
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - André Landin Malt
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Jong Uk Chung
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Michael P Khairallah
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Krishnakali Dasgupta
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Kesava Asam
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Lindsay J Deacon
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Veronica Choi
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Asma A Almaidhan
- Department of Orthodontics, New York University College of Dentistry, New York, NY, United States
| | - Nadine A Darwiche
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Jimin Kim
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Randy L Johnson
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
14
|
Marghoub A, Libby J, Babbs C, Pauws E, Fagan MJ, Moazen M. Predicting calvarial growth in normal and craniosynostotic mice using a computational approach. J Anat 2018; 232:440-448. [PMID: 29243252 PMCID: PMC5807955 DOI: 10.1111/joa.12764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 11/26/2022] Open
Abstract
During postnatal calvarial growth the brain grows gradually and the overlying bones and sutures accommodate that growth until the later juvenile stages. The whole process is coordinated through a complex series of biological, chemical and perhaps mechanical signals between various elements of the craniofacial system. The aim of this study was to investigate to what extent a computational model can accurately predict the calvarial growth in wild-type (WT) and mutant type (MT) Fgfr2C342Y/+ mice displaying bicoronal suture fusion. A series of morphological studies were carried out to quantify the calvarial growth at P3, P10 and P20 in both mouse types. MicroCT images of a P3 specimen were used to develop a finite element model of skull growth to predict the calvarial shape of WT and MT mice at P10. Sensitivity tests were performed and the results compared with ex vivo P10 data. Although the models were sensitive to the choice of input parameters, they predicted the overall skull growth in the WT and MT mice. The models also captured the difference between the ex vivoWT and MT mice. This modelling approach has the potential to be translated to human skull growth and to enhance our understanding of the different reconstruction methods used to manage clinically the different forms of craniosynostosis, and in the long term possibly reduce the number of re-operations in children displaying this condition and thereby enhance their quality of life.
Collapse
Affiliation(s)
- Arsalan Marghoub
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| | - Joseph Libby
- Medical and Biological EngineeringSchool of Engineering and Computer ScienceUniversity of HullHullUK
| | - Christian Babbs
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Erwin Pauws
- Institute of Child HealthGreat Ormond StreetUniversity College LondonLondonUK
| | - Michael J. Fagan
- Medical and Biological EngineeringSchool of Engineering and Computer ScienceUniversity of HullHullUK
| | - Mehran Moazen
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
15
|
Gilbert JR, Taylor GM, Losee JE, Mooney MP, Cooper GM. Molecular Analysis of Gli3, Ihh, Rab23, and Jag1 in a Rabbit Model of Craniosynostosis: Likely Exclusion as the Loci of Origin. Cleft Palate Craniofac J 2018; 55:375-382. [PMID: 29437519 DOI: 10.1177/1055665617739001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Craniosynostosis (CS) involves the premature fusion of one or more cranial sutures. The etiology of CS is complex and mutations in more than 50 distinct genes have been causally linked to the disorder. Many of the genes that have been associated with CS in humans play an essential role in tissue patterning and early craniofacial development. Among these genes are members of the Hedgehog (HH) and Notch signal transduction pathways, including the GLI family member Gli3, Indian Hedgehog ( Ihh), the RAS oncogene family member Rab23, and the Notch ligand JAGGED1 ( Jag1). We have previously described a colony of rabbits with a heritable pattern of coronal suture synostosis, although the genetic basis for synostosis within this model remains unknown. The present study was performed to determine if coding errors in Gli3, Ihh, Rab23, or Jag1 could be causally linked to craniosynostosis in this unique animal model. DESIGN Sequencing of cDNA templates was performed using samples obtained from wild-type and craniosynostotic rabbits. RESULTS Several nucleotide polymorphisms were identified in Gli3, Ihh, and Rab23, although these variants failed to segregate by phenotype. No nucleotide polymorphisms were identified in Jag1. CONCLUSIONS These data indicate that the causal locus for heritable craniosynostosis in this rabbit model is not located within the protein coding regions of Gli3, Ihh, Rab23, or Jag1.
Collapse
Affiliation(s)
- James R Gilbert
- 1 Department of Plastic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gwen M Taylor
- 2 Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph E Losee
- 1 Department of Plastic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark P Mooney
- 1 Department of Plastic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.,3 Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA.,4 Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA.,5 Department of Orthodontics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory M Cooper
- 1 Department of Plastic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.,3 Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA.,6 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Taylor GM, Cooper GM, Losee JE, Mooney MP, Gilbert J. Molecular Analysis of Ephrin A4 and Ephrin B1 in a Rabbit Model of Craniosynostosis: Likely Exclusion as the Loci of Origin. Cleft Palate Craniofac J 2017; 55:1020-1025. [PMID: 28135115 DOI: 10.1597/16-135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Craniosynostosis (CS) has a prevalence of approximately 1 in every 2000 live births and is characterized by the premature fusion of one or more cranial sutures. Failure to maintain the cell lineage boundary at the coronal suture is thought to be involved in the pathology of some forms of CS. The Ephrin family of receptor tyrosine kinases consists of membrane-bound receptors and ligands that control cell patterning and the formation of developmental boundaries. Mutations in the ephrin A4 (EFNA4) and ephrin B1 (EFNB1) ligands have been linked to nonsyndromic CS and craniofrontonasal syndrome, respectively, in patient samples. We have previously described a colony of rabbits with a heritable pattern of coronal suture synostosis, although the genetic basis for synostosis within this model remains unknown. The present study was performed to determine if EFNA4 or EFNB1 could be the loci of the causal mutation in this unique animal model. Sequencing of EFNA4 and EFNB1 was performed using templates obtained from wild-type (n = 4) and craniosynostotic (n = 4) rabbits. No structural coding errors were identified in either gene. A single-nucleotide transversion was identified in one wild-type rabbit within the third intron of EFNA4. These data indicate that the causal locus for heritable CS in this rabbit model is not located within the structural coding regions of either EFNA4 or EFNB1.
Collapse
|
17
|
Abstract
The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research.
Collapse
|
18
|
The Development of the Calvarial Bones and Sutures and the Pathophysiology of Craniosynostosis. Curr Top Dev Biol 2015; 115:131-56. [PMID: 26589924 DOI: 10.1016/bs.ctdb.2015.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The skull vault is a complex, exquisitely patterned structure that plays a variety of key roles in vertebrate life, ranging from the acquisition of food to the support of the sense organs for hearing, smell, sight, and taste. During its development, it must meet the dual challenges of protecting the brain and accommodating its growth. The bones and sutures of the skull vault are derived from cranial neural crest and head mesoderm. The frontal and parietal bones develop from osteogenic rudiments in the supraorbital ridge. The coronal suture develops from a group of Shh-responsive cells in the head mesoderm that are collocated, with the osteogenic precursors, in the supraorbital ridge. The osteogenic rudiments and the prospective coronal suture expand apically by cell migration. A number of congenital disorders affect the skull vault. Prominent among these is craniosynostosis, the fusion of the bones at the sutures. Analysis of the pathophysiology underling craniosynostosis has identified a variety of cellular mechanisms, mediated by a range of signaling pathways and effector transcription factors. These cellular mechanisms include loss of boundary integrity, altered sutural cell specification in embryos, and loss of a suture stem cell population in adults. Future work making use of genome-wide transcriptomic approaches will address the deep structure of regulatory interactions and cellular processes that unify these seemingly diverse mechanisms.
Collapse
|
19
|
Twigg SRF, Wilkie AOM. A Genetic-Pathophysiological Framework for Craniosynostosis. Am J Hum Genet 2015; 97:359-77. [PMID: 26340332 PMCID: PMC4564941 DOI: 10.1016/j.ajhg.2015.07.006] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/14/2015] [Indexed: 12/24/2022] Open
Abstract
Craniosynostosis, the premature fusion of one or more cranial sutures of the skull, provides a paradigm for investigating the interplay of genetic and environmental factors leading to malformation. Over the past 20 years molecular genetic techniques have provided a new approach to dissect the underlying causes; success has mostly come from investigation of clinical samples, and recent advances in high-throughput DNA sequencing have dramatically enhanced the study of the human as the preferred "model organism." In parallel, however, we need a pathogenetic classification to describe the pathways and processes that lead to cranial suture fusion. Given the prenatal onset of most craniosynostosis, investigation of mechanisms requires more conventional model organisms; principally the mouse, because of similarities in cranial suture development. We present a framework for classifying genetic causes of craniosynostosis based on current understanding of cranial suture biology and molecular and developmental pathogenesis. Of note, few pathologies result from complete loss of gene function. Instead, biochemical mechanisms involving haploinsufficiency, dominant gain-of-function and recessive hypomorphic mutations, and an unusual X-linked cellular interference process have all been implicated. Although few of the genes involved could have been predicted based on expression patterns alone (because the genes play much wider roles in embryonic development or cellular homeostasis), we argue that they fit into a limited number of functional modules active at different stages of cranial suture development. This provides a useful approach both when defining the potential role of new candidate genes in craniosynostosis and, potentially, for devising pharmacological approaches to therapy.
Collapse
Affiliation(s)
- Stephen R F Twigg
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Andrew O M Wilkie
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.
| |
Collapse
|
20
|
Moazen M, Peskett E, Babbs C, Pauws E, Fagan MJ. Mechanical properties of calvarial bones in a mouse model for craniosynostosis. PLoS One 2015; 10:e0125757. [PMID: 25966306 PMCID: PMC4429024 DOI: 10.1371/journal.pone.0125757] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/25/2015] [Indexed: 11/25/2022] Open
Abstract
The mammalian cranial vault largely consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Premature closure of the cranial sutures, craniosynostosis, can lead to serious clinical pathology unless there is surgical intervention. Research into the genetic basis of the disease has led to the development of various animal models that display this condition, e.g. mutant type Fgfr2C342Y/+ mice which display early fusion of the coronal suture (joining the parietal and frontal bones). However, whether the biomechanical properties of the mutant and wild type bones are affected has not been investigated before. Therefore, nanoindentation was used to compare the elastic modulus of cranial bone and sutures in wild type (WT) and Fgfr2C342Y/+mutant type (MT) mice during their postnatal development. Further, the variations in properties with indentation position and plane were assessed. No difference was observed in the elastic modulus of parietal bone between the WT and MT mice at postnatal (P) day 10 and 20. However, the modulus of frontal bone in the MT group was lower than the WT group at both P10 (1.39±0.30 vs. 5.32±0.68 GPa; p<0.05) and P20 (5.57±0.33 vs. 7.14±0.79 GPa; p<0.05). A wide range of values was measured along the coronal sutures for both the WT and MT samples, with no significant difference between the two groups. Findings of this study suggest that the inherent mechanical properties of the frontal bone in the mutant mice were different to the wild type mice from the same genetic background. These differences may reflect variations in the degree of biomechanical adaptation during skull growth, which could have implications for the surgical management of craniosynostosis patients.
Collapse
Affiliation(s)
- Mehran Moazen
- Medical and Biological Engineering, School of Engineering, University of Hull, Hull, United Kingdom
- * E-mail:
| | - Emma Peskett
- UCL Institute of Child Health, London, United Kingdom
| | - Christian Babbs
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Erwin Pauws
- UCL Institute of Child Health, London, United Kingdom
| | - Michael J. Fagan
- Medical and Biological Engineering, School of Engineering, University of Hull, Hull, United Kingdom
| |
Collapse
|
21
|
BCL11B expression in intramembranous osteogenesis during murine craniofacial suture development. Gene Expr Patterns 2014; 17:16-25. [PMID: 25511173 DOI: 10.1016/j.gep.2014.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 11/21/2022]
Abstract
Sutures, where neighboring craniofacial bones are separated by undifferentiated mesenchyme, are major growth sites during craniofacial development. Pathologic fusion of bones within sutures occurs in a wide variety of craniosynostosis conditions and can result in dysmorphic craniofacial growth and secondary neurologic deficits. Our knowledge of the genes involved in suture formation is poor. Here we describe the novel expression pattern of the BCL11B transcription factor protein during murine embryonic craniofacial bone formation. We examined BCL11B protein expression at E14.5, E16.5, and E18.5 in 14 major craniofacial sutures of C57BL/6J mice. We found BCL11B expression to be associated with all intramembranous craniofacial bones examined. The most striking aspects of BCL11B expression were its high levels in suture mesenchyme and increasingly complementary expression with RUNX2 in differentiating osteoblasts during development. BCL11B was also expressed in mesenchyme at the non-sutural edges of intramembranous bones. No expression was seen in osteoblasts involved in endochondral ossification of the cartilaginous cranial base. BCL11B is expressed to potentially regulate the transition of mesenchymal differentiation and suture formation within craniofacial intramembranous bone.
Collapse
|
22
|
Closing the Gap: Genetic and Genomic Continuum from Syndromic to Nonsyndromic Craniosynostoses. CURRENT GENETIC MEDICINE REPORTS 2014; 2:135-145. [PMID: 26146596 DOI: 10.1007/s40142-014-0042-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Craniosynostosis, a condition that includes the premature fusion of one or multiple cranial sutures, is a relatively common birth defect in humans and the second most common craniofacial anomaly after orofacial clefts. There is a significant clinical variation among different sutural synostoses as well as significant variation within any given single-suture synostosis. Craniosynostosis can be isolated (i.e., nonsyndromic) or occurs as part of a genetic syndrome (e.g., Crouzon, Pfeiffer, Apert, Muenke, and Saethre-Chotzen syndromes). Approximately 85 % of all cases of craniosynostosis are nonsyndromic. Several recent genomic discoveries are elucidating the genetic basis for nonsyndromic cases and implicate the newly identified genes in signaling pathways previously found in syndromic craniosynostosis. Published epidemiologic and phenotypic studies clearly demonstrate that nonsyndromic craniosynostosis is a complex and heterogeneous condition supporting a strong genetic component accompanied by environmental factors that contribute to the pathogenetic network of this birth defect. Large population, rather than single-clinic or hospital-based studies is required with phenotypically homogeneous subsets of patients to further understand the complex genetic, maternal, environmental, and stochastic factors contributing to nonsyndromic craniosynostosis. Learning about these variables is a key in formulating the basis of multidisciplinary and lifelong care for patients with these conditions.
Collapse
|
23
|
Bard J. Generating anatomical variation through mutations in networks - implications for evolution. J Anat 2014; 225:123-31. [PMID: 24934180 DOI: 10.1111/joa.12205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2014] [Indexed: 12/01/2022] Open
Abstract
Genetic mutation leads to anatomical variation only indirectly because many proteins involved in generating anatomical structures in embryos operate cooperatively within molecular networks. These include gene-regulatory or control networks (CNs) for timing, signaling and patterning together with the process networks (PNs) for proliferation, apoptosis, differentiation and morphogenesis that they control. This paper argues that anatomical variation is achieved through a two-stage process: mutation alters the outputs of CNs and perhaps the proliferation network, and such changed outputs alter the ways that PNs construct tissues. This systems-biology approach has several implications: first, because networks contain many cooperating proteins, they amplify the effects of genetic variation so enabling mutation to generate a wider range of phenotypes than a single changed protein acting alone could. Second, this amplification helps explain how novel phenotypes can be produced relatively rapidly. Third, because even organisms with novel anatomical phenotypes derive from variants in standard networks, there is no genetic barrier to their producing viable offspring. This approach also clarifies a terminological difficulty: classical evolutionary genetics views genes in terms of phenotype heritability rather than as DNA sequences. This paper suggests that the molecular phenotype of the classical concept of a gene is often a protein network, with a mutation leading to an alteration in that network's dynamics.
Collapse
Affiliation(s)
- Jonathan Bard
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Abstract
Premature closure and subsequent ossification of the metopic suture results in triangular head shape called trigonocephaly and is characterized by a midline metopic ridge, frontotemporal narrowing, and an increased biparietal diameter. Trigonocephaly is the second most frequent type of craniosynostosis. It can be isolated and associated with other congenital anomalies without any known syndrome, or occurs as part of a multiple malformation syndrome. Improvement in treatment is directed by a thorough understanding of the basic pathology of this condition. This review aims to provide an overview of metopic synostosis by correlating what is known about pathogenesis and pathology of this entity.
Collapse
Affiliation(s)
- Pinar Karabagli
- Department of Pathology, Faculty of Medicine, Selcuk University, Candir mah. Candir sok. Hazal sitesi No. 24/C, 42090, Meram, Konya, Turkey,
| |
Collapse
|
25
|
Feng W, Choi I, Clouthier DE, Niswander L, Williams T. The Ptch1(DL) mouse: a new model to study lambdoid craniosynostosis and basal cell nevus syndrome-associated skeletal defects. Genesis 2013; 51:677-89. [PMID: 23897749 DOI: 10.1002/dvg.22416] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/16/2013] [Indexed: 12/19/2022]
Abstract
Mouse models provide valuable opportunities for probing the underlying pathology of human birth defects. By using an N-ethyl-N-nitrosourea-based screen for recessive mutations affecting craniofacial anatomy, we isolated a mouse strain, Dogface-like (DL), with abnormal skull and snout morphology. Examination of the skull indicated that these mice developed craniosynostosis of the lambdoid suture. Further analysis revealed skeletal defects related to the pathology of basal cell nevus syndrome (BCNS) including defects in development of the limbs, scapula, ribcage, secondary palate, cranial base, and cranial vault. In humans, BCNS is often associated with mutations in the Hedgehog receptor PTCH1 and genetic mapping in DL identified a point mutation at a splice donor site in Ptch1. By using genetic complementation analysis we determined that DL is a hypomorphic allele of Ptch1, leading to increased Hedgehog signaling. Two aberrant transcripts are generated by the mutated Ptch1(DL) gene, which would be predicted to reduce significantly the levels of functional Patched1 protein. This new Ptch1 allele broadens the mouse genetic reagents available to study the Hedgehog pathway and provides a valuable means to study the underlying skeletal abnormalities in BCNS. In addition, these results strengthen the connection between elevated Hedgehog signaling and craniosynostosis.
Collapse
Affiliation(s)
- Weiguo Feng
- Department of Craniofacial Biology and Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | | |
Collapse
|