1
|
Cheng L, Wang Q, Li X, Huang X, An F, Luo Z, Wang J, Zeng Q, Shang P, Liu Z, Huang Q. Exploring the influence and mechanism of different frying methods on the flavor quality of low-salt sour meat. Food Chem X 2024; 23:101591. [PMID: 39036485 PMCID: PMC11260038 DOI: 10.1016/j.fochx.2024.101591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
To obtain nutritious, healthy, and flavor-enriched sour meat products, the effects of different frying methods (microwave, air-frying, and traditional frying) on the flavor quality of low-salt sour meat were evaluated using metabolomics and other flavor analysis techniques. The pH value of the sour meat rose dramatically, while the TBARS value dropped significantly after frying. E-nose and E-tongue results showed that air-frying could reduce acidity and improve umami. The comprehensive analysis of all samples revealed the identification of 107 volatile flavor compounds, including 10 unique aroma compounds that were specifically detected in the AF group. Additionally, the air frying process notably increased the free amino acid and nucleotide concentrations in sour meat by 53.58% and 159.29%, respectively, while causing a significant reduction in both fatty acid and lactic acid content by 22.84% and 49.29%, respectively. All three frying methods altered the flavor of the samples, but air frying performed better in terms of flavor and texture.
Collapse
Affiliation(s)
- Lujie Cheng
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qia Wang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xinyuan Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, Autonomous Region, 860000, China
| | - Jingjing Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, 528225, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, 528225, China
| | - Peng Shang
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, Autonomous Region, 860000, China
| | - Zhendong Liu
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, Autonomous Region, 860000, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
2
|
Chiu YW, Lee CH, Lo HC. Oral post-treatment supplementation with a combination of glutamine, citrulline, and antioxidant vitamins additively mitigates jejunal damage, oxidative stress, and inflammation in rats with intestinal ischemia and reperfusion. PLoS One 2024; 19:e0298334. [PMID: 38306371 PMCID: PMC10836685 DOI: 10.1371/journal.pone.0298334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION Intestinal ischemia and reperfusion (IIR) injury is closely associated with oxidative stress. Evidence shows that oral supplementation with glutamine and citrulline alleviates IIR-induced jejunal damage. We investigated the effects of a combination of glutamine, citrulline, and antioxidant vitamins on IIR-induced jejunal damage, oxidative stress, and inflammation. METHOD Male Wistar rats that underwent 60 min of superior mesenteric artery occlusion were orally administered glutamine plus citrulline (GC), vitamin C plus E (CE), or a combination of GC and CE 15 min before and 3, 9, and 21 h after reperfusion. Healthy rats without IIR were used as controls. RESULTS After reperfusion for 24 h, rats with IIR showed lower levels of red blood cells, hemoglobin, serum glucose, and jejunal DNA and increased white blood cell counts compared to controls (1-way ANOVA with the least significant difference, P < 0.05). The IIR-induced decrease in serum albumin and increase in plasma interleukin-6 and jejunal thiobarbituric acid-reactive substances (TBARS) were significantly reversed by GC and/or CE. The results of the 2-way ANOVA indicated that GC was the main factor that increased jejunal villus height and muscularis DNA, and CE was the main factor that increased jejunal muscularis protein and decreased jejunal proinflammatory cytokine levels and myeloperoxidase activity. In addition, GC and CE are the main factors that decrease plasma proinflammatory cytokine levels and the jejunal apoptotic index. CONCLUSION Oral post-treatment supplementation with glutamine and citrulline, combined with vitamins C and E, may alleviate IIR-induced oxidative stress, inflammation, and jejunal damage.
Collapse
Affiliation(s)
- Yu-Wen Chiu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Lee’s Endocrinology Clinic, Pingtung City, Pingtung County, Taiwan
| | - Chien-Hsing Lee
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Surgery, Division of Pediatric Surgery, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Hui-Chen Lo
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
3
|
Bao Y, Guo H, Yang B, Chen F, Zhang Z, Gao J. MicroRNA-1297 participates in the repair of intestinal barrier injury in patients with HIV/AIDS via negative regulation of PLCβ1. Mol Cell Biochem 2022; 477:2133-2147. [PMID: 35608718 DOI: 10.1007/s11010-022-04426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
To explore the role of the miRNA-1297/phospholipase Cβ1 (PLCβ1) axis in intestinal barrier injury. Abnormally expressed miR-1297 and its target gene PLCβ1 as well as their transcriptome sequencing were confirmed by bioinformatics analysis. Next, the intestinal barrier injury was induced by lipopolysaccharide (LPS) in the CCCHIE-2 cells. Subsequently, the impacts of miR-1297 and PLCβ1 on the transcriptome were estimated. QRT-PCR and Western blotting were conducted to detect the relative mRNA and protein expressions, respectively. The cell viability and permeability were analyzed by MTT assay and fluorescent yellow detection. miR-1297 was significantly upregulated in patients with human immunodeficiency virus/acquired immunodeficiency syndrome and targeted PLCβ1. Moreover, overexpressed PLCβ1 was mainly enriched in the transforming growth factor-beta signaling pathway, while the knockdown of miR-1297 was focused on the arginine biosynthesis pathway. The overexpression of miR-1297 could reduce the PLCβ1 expression and inhibit the viability of CCCHIE-2 cells injured by LPS, while the effect of the downregulation of miR-1297 was on the opposite. Western blotting and cell fluorescence localization experiments revealed that the inhibition of miR-1297 increased the expressions of PLCβ1 and ZO-1. In addition, the upregulation of miR-1297 strengthened the permeability in cells injured by LPS, as did the knockdown of PLCβ1. miR-1297 could restrain the repair of intestinal barrier injury via negatively regulating PLCβ1 and its tight junction downstream protein ZO-1 in CCC-HIE-2 cells injured by LPS, which indicated that PLCβ1 and miR-1297 might be important targets for the repair of intestinal barrier injury.
Collapse
Affiliation(s)
- Yuxia Bao
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.,Yunnan Institute of Experimental Diagnosis, Kunming, 650032, Yunnan, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, Yunnan, China
| | - Huiming Guo
- Yunnan Engineering Technology Center of Diagnosis and Treatment of Digestive Diseases, Kunming, 650032, Yunnan, China
| | - Bin Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Fengrong Chen
- Yunnan Engineering Technology Center of Diagnosis and Treatment of Digestive Diseases, Kunming, 650032, Yunnan, China
| | - Zunyue Zhang
- Yunnan Engineering Technology Center of Diagnosis and Treatment of Digestive Diseases, Kunming, 650032, Yunnan, China
| | - Jianyuan Gao
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
4
|
Moreira GA, Dias AIBDS, Cadena SMSC, Corrêa-Ferreira ML, Ioshii SO, Fachin CG. Use of sildenafil and L-arginine in an experimental rat model for the prevention of neonatal necrotizing enterocolitis. Sci Rep 2022; 12:6206. [PMID: 35418668 PMCID: PMC9008060 DOI: 10.1038/s41598-022-10323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
Necrotizing enterocolitis (NEC) has a 45% mortality in neonatal intensive care units. This paper aimed to evaluate the isolated and combined effects of sildenafil and l-arginine in the prevention of necrotizing enterocolitis. Neonatal rats were fed formula milk and submitted to hypoxia under a 100% N2 atmosphere for 70 s. Then, animals were subjected to hypothermia (4 °C for 10 min), twice a day for 3 days. Forty neonatal rats were divided into five groups: negative control—not submitted to the protocol (n = 5), sildenafil group—NEC protocol (n = 9), l-arginine group—NEC protocol (n = 9), l-arginine and sildenafil group—NEC protocol (n = 9) and positive control—NEC protocol and intraperitoneal saline solution (n = 8). Jejunum and terminal ileus were removed for histopathologic and immunohistochemical Ki-67 analysis. Kruskal–Wallis test was used to analyze mortality, survival, body weight, intestinal injury score and Ki-67 proliferation index. All animals submitted to the protocol developed enterocolitis. Mortality rate was higher in group that received only l-arginine (p = 0.0293). The Ki-67 analysis showed a higher proliferative index in groups that received interventional drugs (p = 0.017). In conclusion, sildenafil and l-arginine were not effective to reduce intestinal injury.
Collapse
Affiliation(s)
- Gabriela Araujo Moreira
- Pediatric Surgery Department, Medical School, Federal University of Parana, Curitiba, R. Gen. Carneiro, 181 - Alto da Glória, Curitiba, PR, 80060-900, Brazil.
| | - André Ivan Bradley Dos Santos Dias
- Pediatric Surgery Department, Federal University of Parana, Curitiba, R. Gen. Carneiro, 181 - Alto da Glória, Curitiba, PR, 80060-900, Brazil
| | - Silvia Maria Suter Correia Cadena
- Biochemistry Department, Federal University of Parana Campus Polytechnic Center, Curitiba, Jardim das Américas, Curitiba, PR, 80050-540, Brazil
| | - Marília Locatelli Corrêa-Ferreira
- Biochemistry Department, Federal University of Parana Campus Polytechnic Center, Curitiba, Jardim das Américas, Curitiba, PR, 80050-540, Brazil
| | - Sergio Ossamu Ioshii
- Pathology Department, Federal University of Parana, Curitiba, R. Gen. Carneiro, 181 - Alto da Glória, Curitiba, PR, 80060-900, Brazil
| | - Camila Girardi Fachin
- Pediatric Surgery Department, Federal University of Parana, Curitiba, R. Gen. Carneiro, 181 - Alto da Glória, Curitiba, PR, 80060-900, Brazil
| |
Collapse
|
5
|
Teng PY, Choi J, Yadav S, Tompkins YH, Kim WK. Effects of low-crude protein diets supplemented with arginine, glutamine, threonine, and methionine on regulating nutrient absorption, intestinal health, and growth performance of Eimeria-infected chickens. Poult Sci 2021; 100:101427. [PMID: 34551373 PMCID: PMC8463775 DOI: 10.1016/j.psj.2021.101427] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
The study was conducted to evaluate the effects of low crude protein diets supplemented with arginine, glutamine, methionine, and/or threonine on apparent ileal digestibility of amino acids, intestinal morphology, intestinal permeability, gene expression of nutrient transporters, and tight junction proteins of broiler chickens challenged with mixed Eimeria spp. A total of five hundred seventy-six, 12-day-old male broiler chickens were allocated into 8 treatments, and 6 replicate cages of 12 chickens per cage. This experiment included a nonchallenged control (NC) fed regular corn-soybean meal-based diet (Regular diet, 19% crude protein), an Eimeria-challenged control (CC) fed Regular diet, an Eimeria challenge group fed low-crude protein diet (LCP, 16% crude protein), 4 Eimeria challenge groups fed low-crude protein diet supplemented with 0.75% arginine, glutamine, methionine, and threonine, respectively (ARG, GLN, MET, and THR), and an Eimeria challenge group fed low-crude protein diet with 0.75% supplemented arginine, glutamine, methionine, and threonine collectively as a combination group (COMB). On d 14, birds in the challenge groups were gavaged with a mixed Eimeria spp. solution containing 12,500 oocysts of E. maxima, 12,500 oocysts of E. tenella, and 62,500 oocysts of E. acervulina. The results showed that the Eimeria challenge reduced overall growth performance, but the LCP had no adverse impacts on intestinal health and growth of Eimeria-infected birds compared to the CC. Additionally, supplementation of crystalline arginine, glutamine, methionine, and threonine improved the apparent ileal digestibility of these specific amino acids on 6 dpi. Moreover, the THR treatment increased villus height in the duodenum. The ARG treatment decreased intestinal permeability and gene expression of amino acid transporters, whereas the GLN and THR treatments both reversed adverse effects of coccidiosis on gene expression of tight junction protein (claudin 1). However, the MET and COMB treatments exacerbated infection severity of coccidiosis. In summary, adding 0.75% of arginine, glutamine, or threonine in a low crude protein diet can improve the intestinal health of birds challenged with a mild coccidia infection.
Collapse
Affiliation(s)
- Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Sudhir Yadav
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Y H Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
6
|
Fortea M, Albert-Bayo M, Abril-Gil M, Ganda Mall JP, Serra-Ruiz X, Henao-Paez A, Expósito E, González-Castro AM, Guagnozzi D, Lobo B, Alonso-Cotoner C, Santos J. Present and Future Therapeutic Approaches to Barrier Dysfunction. Front Nutr 2021; 8:718093. [PMID: 34778332 PMCID: PMC8582318 DOI: 10.3389/fnut.2021.718093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
There is converging and increasing evidence, but also uncertainty, for the role of abnormal intestinal epithelial barrier function in the origin and development of a growing number of human gastrointestinal and extraintestinal inflammatory disorders, and their related complaints. Despite a vast literature addressing factors and mechanisms underlying changes in intestinal permeability in humans, and its connection to the appearance and severity of clinical symptoms, the ultimate link remains to be established in many cases. Accordingly, there are no directives or clinical guidelines related to the therapeutic management of intestinal permeability disorders that allow health professionals involved in the management of these patients to carry out a consensus treatment based on clinical evidence. Instead, there are multiple pseudoscientific approaches and commercial propaganda scattered on the internet that confuse those affected and health professionals and that often lack scientific rigor. Therefore, in this review we aim to shed light on the different therapeutic options, which include, among others, dietary management, nutraceuticals and medical devices, microbiota and drugs, and epigenetic and exosomes-manipulation, through an objective evaluation of the scientific publications in this field. Advances in the knowledge and management of intestinal permeability will sure enable better options of dealing with this group of common disorders to enhance quality of life of those affected.
Collapse
Affiliation(s)
- Marina Fortea
- Laboratory for Enteric NeuroScience, Translational Research Center for GastroIntestinal Disorders, University of Leuven, Leuven, Belgium
| | - Mercé Albert-Bayo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Mar Abril-Gil
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - John-Peter Ganda Mall
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xavier Serra-Ruiz
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Alejandro Henao-Paez
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Elba Expósito
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Ana María González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Danila Guagnozzi
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Cantet JM, Yu Z, Ríus AG. Heat Stress-Mediated Activation of Immune-Inflammatory Pathways. Antibiotics (Basel) 2021; 10:antibiotics10111285. [PMID: 34827223 PMCID: PMC8615052 DOI: 10.3390/antibiotics10111285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Physiological changes in animals exposed to elevated ambient temperature are characterized by the redistribution of blood toward the periphery to dissipate heat, with a consequent decline in blood flow and oxygen and nutrient supply to splanchnic tissues. Metabolic adaptations and gut dysfunction lead to oxidative stress, translocation of lumen contents, and release of proinflammatory mediators, activating a systemic inflammatory response. This review discusses the activation and development of the inflammatory response in heat-stressed models.
Collapse
|
8
|
Application of UHPLC-Q-TOF-MS/MS metabolomics approach to investigate the taste and nutrition changes in tilapia fillets treated with different thermal processing methods. Food Chem 2021; 356:129737. [PMID: 33836358 DOI: 10.1016/j.foodchem.2021.129737] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 11/20/2022]
Abstract
Thermal processing is a common processing method for tilapia which has an important impact on the quality and characteristics of fish meat. This study aimed to investigate changes in the metabolites of tilapia fillets after thermal processing. In this work, we used a UHPLC-Q-TOF-MS/MS metabolomics method to identify and screen differential metabolites. A total of 249 metabolites were identified from tilapia fillet samples, 24, 29 and 24 differential metabolites were screened from steaming/raw, boiling/raw and air frying/raw groups, respectively. Thermal processing significantly changed the quality of tilapia fillets, and the contribution of amino acids, phospholipids and nucleotides to different metabolites was large and had important impacts on the taste and nutrition of tilapia fillets. Metabolomics is an effective method for quality detection of thermal processing in aquatic products. This study provides the theoretical basis for the selection of optimized processing methods for tilapia.
Collapse
|
9
|
A novel histidine-tryptophan-ketoglutarate formulation ameliorates intestinal injury in a cold storage and ex vivo warm oxygenated reperfusion model in rats. Biosci Rep 2021; 40:222289. [PMID: 32129456 DOI: 10.1042/bsr20191989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/03/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
AIM The present study aims to evaluate protective effects of a novel histidine-tryptophan-ketoglutarate solution (HTK-N) and to investigate positive impacts of an additional luminal preservation route in cold storage-induced injury on rat small bowels. METHODS Male Lewis rats were utilized as donors of small bowel grafts. Vascular or vascular plus luminal preservation were conducted with HTK or HTK-N and grafts were stored at 4°C for 8 h followed by ex vivo warm oxygenated reperfusion with Krebs-Henseleit buffer for 30 min. Afterwards, intestinal tissue and portal vein effluent samples were collected for evaluation of morphological alterations, mucosal permeability and graft vitality. RESULTS The novel HTK-N decreased ultrastructural alterations but otherwise presented limited effect on protecting small bowel from ischemia-reperfusion injury in vascular route. However, the additional luminal preservation led to positive impacts on the integrity of intestinal mucosa and vitality of goblet cells. In addition, vascular plus luminal preservation route with HTK significantly protected the intestinal tissue from edema. CONCLUSION HTK-N protected the intestinal mucosal structure and graft vitality as a luminal preservation solution. Additional luminal preservation route in cold storage was shown to be promising.
Collapse
|
10
|
Akinrinde AS, Hameed HO. Glycine and L-Arginine supplementation ameliorates gastro-duodenal toxicity in a rat model of NSAID (Diclofenac)-gastroenteropathy via inhibition of oxidative stress. J Basic Clin Physiol Pharmacol 2021; 33:285-295. [PMID: 33559459 DOI: 10.1515/jbcpp-2020-0307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/22/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVES This study examined the possible protective roles of exogenous glycine (Gly) and L-Arginine (l-Arg) against Diclofenac (DIC)-induced gastro-duodenal damage in rats. METHODS Rats were divided into Group A (control), Group B (DIC group) and Groups C-F which were pre-treated for five days with Gly1 (250 mg/kg), Gly2 (500 mg/kg), l-Arg1 (200 mg/kg) and l-Arg2 (400 mg/kg), respectively, before co-treatment with DIC for another three days. Hematological, biochemical and histopathological analyses were then carried out. RESULTS DIC produced significant (p<0.05) reduction in PCV (13.82%), Hb (46.58%), RBC (30.53%), serum total protein (32.72%), albumin (28.44%) and globulin (38.01%) along with significant (p<0.05) elevation of serum MPO activity (83.30%), when compared with control. In addition, DIC increased gastric H2O2 and MDA levels by 33.93 and 48.59%, respectively, while the duodenal levels of the same parameters increased by 19.43 and 85.56%, respectively. Moreover, SOD, GPx and GST activities in the DIC group were significantly (p<0.05) reduced in the stomach (21.12, 24.35 and 51.28%, respectively) and duodenum (30.59, 16.35 and 37.90%, respectively), compared to control. Treatment with Gly and l-Arg resulted in significant amelioration of the DIC-induced alterations although l-Arg produced better amelioration of RBC (29.78%), total protein (10.12%), albumin (9.93%) and MPO (65.01%), compared to the DIC group. The protective effects of both amino acids against oxidative stress parameters and histological lesions were largely similar. CONCLUSIONS The data from this study suggest that Gly or l-Arg prevented DIC-induced gastro-duodenal toxicity and might, therefore be useful in improving the therapeutic index of DIC.
Collapse
Affiliation(s)
- Akinleye Stephen Akinrinde
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Halimot Olawalarami Hameed
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
11
|
Khoshbin K, Camilleri M. Effects of dietary components on intestinal permeability in health and disease. Am J Physiol Gastrointest Liver Physiol 2020; 319:G589-G608. [PMID: 32902315 PMCID: PMC8087346 DOI: 10.1152/ajpgi.00245.2020] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Altered intestinal permeability plays a role in many pathological conditions. Intestinal permeability is a component of the intestinal barrier. This barrier is a dynamic interface between the body and the food and pathogens that enter the gastrointestinal tract. Therefore, dietary components can directly affect this interface, and many metabolites produced by the host enzymes or the gut microbiota can act as signaling molecules or exert direct effects on this barrier. Our aim was to examine the effects of diet components on the intestinal barrier in health and disease states. Herein, we conducted an in-depth PubMed search based on specific key words (diet, permeability, barrier, health, disease, and disorder), as well as cross references from those articles. The normal intestinal barrier consists of multiple components in the lumen, epithelial cell layer and the lamina propria. Diverse methods are available to measure intestinal permeability. We focus predominantly on human in vivo studies, and the literature is reviewed to identify dietary factors that decrease (e.g., emulsifiers, surfactants, and alcohol) or increase (e.g., fiber, short-chain fatty acids, glutamine, and vitamin D) barrier integrity. Effects of these dietary items in disease states, such as metabolic syndrome, liver disease, or colitis are documented as examples of barrier dysfunction in the multifactorial diseases. Effects of diet on intestinal barrier function are associated with precise mechanisms in some instances; further research of those mechanisms has potential to clarify the role of dietary interventions in treating diverse pathologic states.
Collapse
Affiliation(s)
- Katayoun Khoshbin
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Yoon SY, Sa SJ, Cho ES, Ko HS, Choi JW, Kim JS. Effects of Zinc Oxide and Arginine on the Intestinal Microbiota and Immune Status of Weaned Pigs Subjected to High Ambient Temperature. Animals (Basel) 2020; 10:ani10091537. [PMID: 32878254 PMCID: PMC7552118 DOI: 10.3390/ani10091537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
This study aimed to investigate the effect of the l-arginine (Arg) inclusion and different doses of ZnO on the growth performance, intestinal microbiota and integrity, and immune status of weaned pigs. A total of 180 pigs (28-day-old) were randomly allotted to six treatments with six replicate pens in each treatment and five pigs per pen. The dietary treatments were Con (1.1% Arg); P-Zn (1.1% Arg + 2500 mg Zn as ZnO/kg diet); ARG (1.6% Arg); ZnArg1 (500 mg of Zn as ZnO/kg diet + 1.6% Arg); ZnArg2 (1000 mg of Zn as ZnO/kg diet + 1.6% Arg); ZnArg3 (2500 mg of Zn as ZnO/kg diet + 1.6% Arg). The overall result showed that the inclusion of ZnArg3 significantly improved the average daily gain of pigs compared with the Con treatment. There was a reduction in feed intake in pigs fed the Con diet compared with pigs fed the ZnArg3 diet at phase 1 and overall. At phase 1, pigs fed the ZnArg3 diet and P-Zn diet showed a decreased population of Clostridium spp. in the ileum compared with those of the Con treatment. In addition, a lower ileal Clostridium spp. population was detected in pigs fed the ZnArg2 diet compared with pigs fed the Con diet. The pigs fed ZnArg1 and ZnArg3 diets showed a greater villus height of duodenum compared with the Con and P-Zn treatments. The pigs in the Con treatment showed increased mRNA expression of heat shock protein-27 in the liver compared with the P-Zn, ZnArg1, ZnArg2, and ZnArg3 treatments. When fed the basal diet, mRNA expressions of interleukin-6 were increased in the muscle compared with the ZnArg3 treatment. Dietary supplementation with ZnArg2 decreased the mRNA expressions of interferon-γ in the muscle compared with the Con treatment. Supplementation with P-Zn, ZnArg1, ZnArg2, and ZnArg3 decreased mRNA expressions of tumor necrosis factor-α (TNF-α) compared with the Con treatment. The mRNA gene expressions of interleukin-4 were decreased in the jejunum of pigs fed P-Zn, ARG, ZnArg1, ZnArg2, and ZnArg3 diets compared with pigs fed the Con diet. The jejunum gene expression of toll-like receptor-4 was upregulated in the Con and ARG treatments compared with the ZnArg1 and ZnArg3. The ZnArg1, ZnArg2, and ZnArg3 treatments showed lower mRNA expression of TNF-α compared with the Con treatment. In conclusion, there was no difference in growth performance, intestinal microbiota, gene expression of interleukins between ZnArg1 and ZnArg3 treatments. Therefore, the low level of ZnO (500 mg/kg) plus 1.6% dietary Arg may be recommended for pigs during the weaning stress.
Collapse
Affiliation(s)
- Se Young Yoon
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.Y.Y.); (H.S.K.); (J.W.C.)
| | - Soo Jin Sa
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.J.S.); (E.S.C.)
| | - Eun Seok Cho
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.J.S.); (E.S.C.)
| | - Han Seo Ko
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.Y.Y.); (H.S.K.); (J.W.C.)
| | - Jung Woo Choi
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.Y.Y.); (H.S.K.); (J.W.C.)
| | - Jin Soo Kim
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.Y.Y.); (H.S.K.); (J.W.C.)
- Correspondence: ; Tel.: +82-33-250-8614; Fax: +82-33-259-5572
| |
Collapse
|
13
|
Castro FLS, Teng PY, Yadav S, Gould RL, Craig S, Pazdro R, Kim WK. The effects of L-Arginine supplementation on growth performance and intestinal health of broiler chickens challenged with Eimeria spp. Poult Sci 2020; 99:5844-5857. [PMID: 33142502 PMCID: PMC7647855 DOI: 10.1016/j.psj.2020.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/22/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
Abstract
This study evaluated the effects of varying levels of L-arginine (Arg) on performance and intestinal health of broilers challenged with Eimeria. Cobb 500 male chicks (n = 720) were randomly distributed in a 5 × 2 factorial arrangement (6 replicates/12 birds). The main factors were Arg levels (1.04, 1.14, 1.24, 1.34, 1.44%) and challenge or non-challenge with Eimeria. At day 12, in the challenge group, each bird received orally 12,500 Eimeria maxima, 12,500 Eimeria tenella, and 62,500 Eimeria acervulina sporulated oocysts. At 5 d postinfection (dpi), intestinal permeability was measured. At 6 and 14 dpi, performance, intestinal histomorphology, nutrient digestibility, tight junction protein (TJP) gene expression, and antioxidant markers were evaluated. Few interactions were found, and when significant, the supplementation of Arg did not counteract the negative effects of Eimeria challenge. Challenge, regardless of Arg level, increased intestinal permeability, although the expression of Claudin-1, a TJP, was upregulated. At 6 dpi, the antioxidant system was impaired by the challenge. Moreover, growth performance, intestinal histomorphology, and nutrient digestibility were negatively affected by challenge at 6 and 14 dpi. Regardless of challenge, from 0 to 14 dpi, birds fed 1.44% showed higher weight gain than 1.04% of Arg, and birds fed 1.34% showed lower feed conversion than 1.04% of Arg. At 5 dpi, intestinal permeability was improved in birds fed 1.34% than 1.04% of Arg. Moreover, 1.34% of Arg upregulated the expression of the TJP Zonula occludens-1 (ZO-1) as compared with 1.24 and 1.44% of Arg at 6 dpi. At 14 dpi, 1.44% of Arg upregulated the expression of ZO-1 and ZO-2 compared with 1.24 and 1.34% of Arg. The nutrient digestibility was quadratically influenced by Arg, whereas the antioxidant markers were unaffected. Thus, the challenge with Eimeria had a negative impact on growth and intestinal health. The dietary supplementation of levels ranging from 1.24 to 1.44% of Arg showed promising results, improving overall growth, intestinal integrity, and morphology in broilers subjected or not to Eimeria challenge.
Collapse
Affiliation(s)
- Fernanda L S Castro
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Sudhir Yadav
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Rebecca L Gould
- Department of Foods and Nutrition, University of Georgia (UGA), Athens, GA, USA
| | - Steven Craig
- Department of Foods and Nutrition, University of Georgia (UGA), Athens, GA, USA
| | - Robert Pazdro
- Department of Foods and Nutrition, University of Georgia (UGA), Athens, GA, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
Beyond Heat Stress: Intestinal Integrity Disruption and Mechanism-Based Intervention Strategies. Nutrients 2020; 12:nu12030734. [PMID: 32168808 PMCID: PMC7146479 DOI: 10.3390/nu12030734] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
The current climate changes have increased the prevalence and intensity of heat stress (HS) conditions. One of the initial consequences of HS is the impairment of the intestinal epithelial barrier integrity due to hyperthermia and hypoxia following blood repartition, which often results in a leaky gut followed by penetration and transfer of luminal antigens, endotoxins, and pathogenic bacteria. Under extreme conditions, HS may culminate in the onset of “heat stroke”, a potential lethal condition if remaining untreated. HS-induced alterations of the gastrointestinal epithelium, which is associated with a leaky gut, are due to cellular oxidative stress, disruption of intestinal integrity, and increased production of pro-inflammatory cytokines. This review summarizes the possible resilience mechanisms based on in vitro and in vivo data and the potential interventions with a group of nutritional supplements, which may increase the resilience to HS-induced intestinal integrity disruption and maintain intestinal homeostasis.
Collapse
|
15
|
Ogden HB, Child RB, Fallowfield JL, Delves SK, Westwood CS, Layden JD. The Gastrointestinal Exertional Heat Stroke Paradigm: Pathophysiology, Assessment, Severity, Aetiology and Nutritional Countermeasures. Nutrients 2020; 12:E537. [PMID: 32093001 PMCID: PMC7071449 DOI: 10.3390/nu12020537] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022] Open
Abstract
Exertional heat stroke (EHS) is a life-threatening medical condition involving thermoregulatory failure and is the most severe condition along a continuum of heat-related illnesses. Current EHS policy guidance principally advocates a thermoregulatory management approach, despite growing recognition that gastrointestinal (GI) microbial translocation contributes to disease pathophysiology. Contemporary research has focused to understand the relevance of GI barrier integrity and strategies to maintain it during periods of exertional-heat stress. GI barrier integrity can be assessed non-invasively using a variety of in vivo techniques, including active inert mixed-weight molecular probe recovery tests and passive biomarkers indicative of GI structural integrity loss or microbial translocation. Strenuous exercise is strongly characterised to disrupt GI barrier integrity, and aspects of this response correlate with the corresponding magnitude of thermal strain. The aetiology of GI barrier integrity loss following exertional-heat stress is poorly understood, though may directly relate to localised hyperthermia, splanchnic hypoperfusion-mediated ischemic injury, and neuroendocrine-immune alterations. Nutritional countermeasures to maintain GI barrier integrity following exertional-heat stress provide a promising approach to mitigate EHS. The focus of this review is to evaluate: (1) the GI paradigm of exertional heat stroke; (2) techniques to assess GI barrier integrity; (3) typical GI barrier integrity responses to exertional-heat stress; (4) the aetiology of GI barrier integrity loss following exertional-heat stress; and (5) nutritional countermeasures to maintain GI barrier integrity in response to exertional-heat stress.
Collapse
Affiliation(s)
- Henry B. Ogden
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| | - Robert B. Child
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2QU, UK;
| | | | - Simon K. Delves
- Institute of Naval Medicine, Alverstoke PO12 2DW, UK; (J.L.F.); (S.K.D.)
| | - Caroline S. Westwood
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| | - Joseph D. Layden
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| |
Collapse
|
16
|
Chen J, Zhang D, Tan Q, Liu M, Hu P. Arginine affects growth and integrity of grass carp enterocytes by regulating TOR signaling pathway and tight junction proteins. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:539-549. [PMID: 30729411 DOI: 10.1007/s10695-019-00613-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Dietary arginine (Arg) could improve the intestinal structure and absorption of grass carp (Ctenopharyngodon idellus); however, the mechanism of Arg on intestinal morphology improvement was unclear. The present study aimed to explain the possible mechanism of the positive effect of Arg on intestinal epithelial cells of grass carp. An in vitro study was conducted through a primary culture model to assess the growth, cell viability, mRNA expressions of TOR signal pathway, and tight junction proteins of enterocytes after culture in the medium with 6 levels of Arg (0, 0.1, 0.2, 0.5, 1.0, and 2.0 mmol/L). The results showed that 0.5 mmol/L Arg improved the cell number and decreased the lactate dehydrogenase and creatine kinase activities in culture medium (P < 0.05). The alkaline phosphatase activity in cell lysis buffer was depressed by 1 and 2 mmol/L Arg (P < 0.05). The nitric oxide (NO) content showed an increasing trend with the Arg content (P < 0.05), whereas the NO synthase activity showed an opposite trend to NO. TOR expression was higher in 0.2 and 0.5 mmol/L groups, whereas S6K1 expression in 1.0 mmol/L and 2.0 mmol/L groups were lower (P < 0.05). The mRNA expressions of occludin, claudin 3, and claudin c in 0.5 mmol/L group were the highest, while ZO-1 and claudin b expressions were higher in 0.2 and 0.5 mmol/L groups (P < 0.05). This study indicated that Arg enhanced the growth and integrity of intestinal epithelial cells of grass carp through upregulation of mRNA expression of TOR signal pathway and tight junction proteins at an optimal Arg content of 0.2-0.5 mmol/L.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dianfu Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingsong Tan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Mengmei Liu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengcheng Hu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
17
|
Yang Z, Liao SF. Physiological Effects of Dietary Amino Acids on Gut Health and Functions of Swine. Front Vet Sci 2019; 6:169. [PMID: 31245390 PMCID: PMC6579841 DOI: 10.3389/fvets.2019.00169] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
Gut health has significant implications for swine overall health status and nutrient utilization, due to its various functions including digestion and absorption of nutrients, secretion of mucins and immunoglobulins, and selective barrier protection against harmful antigens and pathogens. Both the basic anatomical structure of the gut (such as epithelial cells) and its luminal microbiota play important roles for maintaining gut health and functions. The interactions between epithelial cells and luminal microbiota have significant impact on host nutrition and health through the metabolism of dietary components. Amino acids, which are major nutrients for pigs, are not only obligatory for maintaining the intestinal mucosal mass and integrity, but also for supporting the growth of microorganisms in the gut. Dietary amino acids are the major fuel of the small intestinal mucosa. Particularly, glutamate, glutamine, and aspartate are the major oxidative fuel of the intestine. Emerging evidence shows that arginine activates the mTOR signaling pathway in the small intestine. Utilization of glycine by the small intestinal mucosa to synthesize glutathione is a very important physiological pathway, and the role of glycine as a powerful cytoprotectant has also been recognized. The major end products of methionine and cysteine metabolism are glutathione, homocysteine and taurine, which play important roles in the intestinal immune and anti-oxidative responses. Threonine is highly utilized by the gut and is particularly important for mucin synthesis and maintenance of gut barrier integrity. Moreover, either a deficiency or an excess of dietary threonine can reduce the synthesis of intestinal mucosal proteins and mucins in young pigs. Various new functions of amino acids on gut health and functions have been discovered in recent years. Thus, this review is to provide some up-to-date knowledge for industry application of dietary amino acids in order to enhance swine gut health and functions, and also it is to provide a comprehensive reference for further scientific research in this regard.
Collapse
|
18
|
Yang D, Wu W, Wang S. Biocompatibility and degradability of alginate-poly- L-arginine microcapsules prepared by high-voltage electrostatic process. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1417291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dayun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
| | - Wenguo Wu
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Shibin Wang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
19
|
Varasteh S, Braber S, Kraneveld AD, Garssen J, Fink-Gremmels J. l-Arginine supplementation prevents intestinal epithelial barrier breakdown under heat stress conditions by promoting nitric oxide synthesis. Nutr Res 2018; 57:45-55. [DOI: 10.1016/j.nutres.2018.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/03/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023]
|
20
|
Wan J, Zhang J, Chen D, Yu B, Mao X, Zheng P, Yu J, Huang Z, Luo J, Luo Y, He J. Alginate oligosaccharide alleviates enterotoxigenicEscherichia coli-induced intestinal mucosal disruption in weaned pigs. Food Funct 2018; 9:6401-6413. [DOI: 10.1039/c8fo01551a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alginate oligosaccharide (AOS) is a non-toxic, non-immunogenic, non-carcinogenic and biodegradable product generated by depolymerisation of alginate, and exhibits various salutary properties.
Collapse
Affiliation(s)
- Jin Wan
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Jiao Zhang
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| | - Jun He
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- People's Republic of China
| |
Collapse
|
21
|
Lai CH, Lee CH, Hung CY, Lo HC. Oral Citrulline Mitigates Inflammation and Jejunal Damage via the Inactivation of Neuronal Nitric Oxide Synthase and Nuclear Factor-κB in Intestinal Ischemia and Reperfusion. JPEN J Parenter Enteral Nutr 2016; 41:422-435. [PMID: 26129897 DOI: 10.1177/0148607115590661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Intestinal ischemia and reperfusion (I/R) is a life-threatening emergency accompanied by inflammation and organ damage. We compared the mechanisms and the effects of arginine, citrulline, and glutamine on inflammation and intestinal damage. MATERIALS AND METHODS Male Wistar rats underwent 60 minutes of superior mesenteric artery occlusion and either 3 (I/R3) or 24 (I/R24) hours of reperfusion and were orally administered vehicle, arginine, citrulline, or glutamine 15 minutes before reperfusion and at 3, 9, and 21 hours of reperfusion. RESULTS I/R3 rats experienced jejunal damage and apoptosis, and I/R24 rats had liver dysfunction compared with normal rats (one-way ANOVA, P < .05). Arginine and citrulline administrations improved jejunal morphology, and citrulline and glutamine administrations alleviated the loss of jejunal mass in I/R3 rats. I/R3-increased circulating nitrate/nitrite (NOx), tumor necrosis factor-α, and interleukin-6 were significantly decreased by citrulline, glutamine and citrulline, and arginine, glutamine, and citrulline, respectively. These amino acids decreased plasma NOx and interferon-γ in I/R24, decreased jejunal neuronal nitric oxide synthase (NOS) protein in I/R3 rats, and alleviated jejunal apoptosis in I/R3 and I/R24 rats. In addition, the jejunal phosphorylated to total nuclear factor-κB (NF-κB) ratio was decreased by arginine and citrulline in I/R24 rats. CONCLUSION Oral administration of arginine, citrulline, and glutamine may alleviate systemic inflammation, jejunal apoptosis, and neuronal NOS in intestinal I/R. Citrulline may further attenuate jejunal damage by preserving jejunal mass, partially via the inactivation of NOS and the NF-κB pathway. In conclusion, oral citrulline may have more benefits than arginine and glutamine in mitigating intestinal ischemia and reperfusion-induced adverse effects.
Collapse
Affiliation(s)
- Chun-Hong Lai
- 1 Department of Nutrition, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chien-Hsing Lee
- 2 Division of Pediatric Surgery, Department of Surgery, Children's Hospital of China Medical University, Taichung, Taiwan.,3 Graduate Institute of Medical Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Ching-Yi Hung
- 2 Division of Pediatric Surgery, Department of Surgery, Children's Hospital of China Medical University, Taichung, Taiwan
| | - Hui-Chen Lo
- 4 Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
22
|
Wang H, Liu Y, Shi H, Wang X, Zhu H, Pi D, Leng W, Li S. Aspartate attenuates intestinal injury and inhibits TLR4 and NODs/NF-κB and p38 signaling in weaned pigs after LPS challenge. Eur J Nutr 2016; 56:1433-1443. [PMID: 26907088 DOI: 10.1007/s00394-016-1189-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/09/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE This study was conducted to investigate whether aspartate (Asp) could alleviate Escherichia coli lipopolysaccharide (LPS)-induced intestinal injury by modulating intestine inflammatory response. METHODS Twenty-four weaned piglets were divided into four treatments: (1) non-challenged control; (2) LPS-challenged control; (3) LPS + 0.5 % Asp; and (4) LPS + 1.0 % Asp. After feeding with control, 0.5 or 1.0 % Asp-supplemented diets for 21 days, pigs were injected intraperitoneally with saline or LPS. At 4 h postinjection, blood and intestine samples were obtained. RESULTS Asp supplementation to LPS-challenged pigs improved intestinal morphology, indicated by higher jejunal and ileal villus height/crypt depth ratio and lower ileal crypt depth linearly or quadratically. Asp also improved intestinal barrier function, indicated by increased jejunal and ileal diamine oxidase activities as well as enhanced protein expression of jejunal claudin-1 linearly or quadratically. In addition, Asp decreased plasma, jejunal and ileal tumor necrosis factor-α concentration and ileal caspase-3 protein expression linearly and quadratically. Moreover, Asp down-regulated the mRNA expression of toll-like receptor 4 (TLR4) and nucleotide-binding oligomerization domain protein (NOD) signaling-related genes, nuclear factor-κB (NF-κB) p65 and p38, decreased phosphorylation of jejunal p38, and increased phosphorylation of ileal extracellular signal-related kinase 1/2 linearly or quadratically. Finally, Asp increased mRNA expressions of TLR4 and NOD signaling negative regulators including radioprotective 105, suppressor of cytokine signaling 1, toll-interacting protein, Erbb2 interacting protein and centaurin β1 linearly or quadratically. CONCLUSIONS These results indicate that Asp supplementation is associated with inhibition of TLR4 and NODs/NF-κB and p38 signaling pathways and concomitant improvement of intestinal integrity under an inflammatory condition.
Collapse
Affiliation(s)
- Haibo Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yulan Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Haifeng Shi
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiuying Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huiling Zhu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dingan Pi
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Weibo Leng
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuang Li
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
23
|
Zhu LH, Xu JX, Zhu SW, Cai X, Yang SF, Chen XL, Guo Q. Gene expression profiling analysis reveals weaning-induced cell cycle arrest and apoptosis in the small intestine of pigs. J Anim Sci 2014; 92:996-1006. [PMID: 24496830 DOI: 10.2527/jas.2013-7551] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In swine production, weaning is a critical event for porcine weaning-associated disease, such as postweaning stress syndrome, which involves intestinal dysfunction. However, little is known about the molecular mechanisms of intestinal dysfunction in pigs during weaning. To gain new insight into the interaction between weaning stress and intestinal function, 4 pigs at 25 d of age for each of the weaning and the suckling groups for a total of 40 pigs were used to analyze changes in the genomic expression in the intestines of weaned pigs by microarray analysis. Four hundred forty-five genes showed altered expression after weaning treatment (286 upregulated and 159 downregulated) at the cutoff criteria of the fold change ≥1.5 or <0.67 and P < 0.05. Most of these altered genes are cellular process related and regulators that may be involved in biological regulation, developmental processes, and metabolic processes. A keen interest was paid in deciphering expression changes in apoptosis or cell cycle control genes. The altered genomic expression of 8 selected genes related to the cell cycle process was confirmed by quantitative real-time PCR. Of the 8 genes tested, increased (P < 0.05) expression of genes involved in apoptosis (cytochrome c, somatic, and ataxia telangiectasia mutated), pro-inflammatory signals (tumor necrosis factor and NO synthases 2), and a transcription factor (nuclear factor of activated T cells, cytoplasmic, and calcineurin-dependent 2) were detected in weaned pigs compared with suckling pigs, but the expression of cell cycle control-related genes, such as E2F transcription factor 5-like, was lower (P < 0.05) in weaned pigs than suckling pigs. Weaned pigs also showed increased interleukin 8 expression and decreased SMAD family member 4 expression although no significant differences (P > 0.05) were observed when compared with the suckling pigs. These selected genes likely indicate that weaning induced cell cycle arrest, enhanced apoptosis, and inhibited cell proliferation. The results of this study provide a basis for understanding the molecular pathogenesis of weaning treatment.
Collapse
Affiliation(s)
- L H Zhu
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Costa KA, Soares ADN, Wanner SP, Santos RDGCD, Fernandes SOA, Martins FDS, Nicoli JR, Coimbra CC, Cardoso VN. L-arginine supplementation prevents increases in intestinal permeability and bacterial translocation in male Swiss mice subjected to physical exercise under environmental heat stress. J Nutr 2014; 144:218-23. [PMID: 24259555 DOI: 10.3945/jn.113.183186] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dietary supplementation with l-arginine has been shown to improve the intestinal barrier in many experimental models. This study investigated the effects of arginine supplementation on the intestinal permeability and bacterial translocation (BT) induced by prolonged physical exercise under heat stress. Under anesthesia, male Swiss mice (5-wk-old) were implanted with an abdominal sensor to record their core body temperature (T(core)). After recovering from surgery, the mice were divided into 3 groups: a non-supplemented group that was fed the standard diet formulated by the American Institute of Nutrition (AIN-93G; control), a non-supplemented group that was fed the AIN-93G diet and subjected to exertional hyperthermia (H-NS), and a group supplemented with l-arginine at 2% and subjected to exertional hyperthermia (H-Arg). After 7 d of treatment, the H-NS and H-Arg mice were forced to run on a treadmill (60 min, 8 m/min) in a warm environment (34°C). The control mice remained at 24°C. Thirty min before the exercise or control trials, the mice received a diethylenetriamine pentaacetic acid (DTPA) solution labeled with technetium-99m ((99m)Tc-DTPA) or (99m)Tc-Escherichia coli by gavage to assess intestinal permeability and BT, respectively. The H-NS mice terminated the exercise with T(core) values of ∼40°C, and, 4 h later, presented a 12-fold increase in the blood uptake of (99m)Tc-DTPA and higher bacterial contents in the blood and liver than the control mice. Although supplementation with arginine did not change the exercise-induced increase in T(core), it prevented the increases in intestinal permeability and BT caused by exertional hyperthermia. Our results indicate that dietary l-arginine supplementation preserves the integrity of the intestinal epithelium during exercise under heat stress, acting through mechanisms that are independent of T(core) regulation.
Collapse
|
25
|
Swaid F, Sukhotnik I, Matter I, Berkowitz D, Hadjittofi C, Pollak Y, Lavy A. Dietary glutamine supplementation prevents mucosal injury and modulates intestinal epithelial restitution following acetic acid induced intestinal injury in rats. Nutr Metab (Lond) 2013; 10:53. [PMID: 23919638 PMCID: PMC3750704 DOI: 10.1186/1743-7075-10-53] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 07/23/2013] [Indexed: 12/27/2022] Open
Abstract
Beneficial effects of glutamine (GLN) have been described in many gastrointestinal disorders. The aim of the present study was to evaluate the preventative effect of oral GLN supplementation against acetic acid (AA) induced intestinal injury in a rat. Male Sprague-Dawley rats were divided into four experimental groups: control (CONTR) rats underwent laparotomy, control-glutamine (CONTR-GLN) rats were treated with enteral glutamine given in drinking water (2%) 48 hours before and five days following laparotomy, AA rats underwent laparotomy and injection of AA into an isolated jejunal loop, and acetic acid-glutamine (AA-GLN) rats underwent AA-induced injury and were treated with enteral GLN 48 hours before and 5 days following laparotomy. Intestinal mucosal damage (Park's injury score), mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined five days following intestinal injury. Western blotting was used to determine p-ERK and bax protein levels. AA-induced intestinal injury resulted in a significantly increased intestinal injury score with concomitant inhibition of cell turnover (reduced proliferation and enhanced apoptosis). Treatment with dietary GLN supplementation resulted in a decreased intestinal injury score with concomitant stimulation of cell turnover (enhanced proliferation and reduced apoptosis). In conclusion, pre-treatment with oral GLN prevents mucosal injury and improves intestinal recovery following AA-induced intestinal injury in rats.
Collapse
Affiliation(s)
- Forat Swaid
- Department of Surgery, Bnai Zion Medical Center, Haifa, Israel
| | - Igor Sukhotnik
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department Pediatric Surgery, Bnai Zion Medical Center, 47 Golomb St., POB 4940, Haifa 31048, Israel
| | - Ibrahim Matter
- Department of Surgery, Bnai Zion Medical Center, Haifa, Israel
| | - Drora Berkowitz
- Department of Gastroenterology, Bnai Zion Medical Center, Haifa, Israel
| | - Christopher Hadjittofi
- Elderly Care Department, Queen Elizabeth II Hospital, Welwyn Garden City, United Kingdom
| | - Yulia Pollak
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alexandra Lavy
- Department of Gastroenterology, Bnai Zion Medical Center, Haifa, Israel
| |
Collapse
|
26
|
Montanhini Neto R, Ceccantini ML, Fernandes JIM. Effects of methionine source, arginine: lysine ratio and sodium chloride level in the diets of grower broilers reared under high-temperature conditions. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2013. [DOI: 10.1590/s1516-635x2013000200012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Effects of dietary l-lysine intake on the intestinal mucosa and expression of CAT genes in weaned piglets. Amino Acids 2013; 45:383-91. [DOI: 10.1007/s00726-013-1514-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/14/2013] [Indexed: 12/15/2022]
|
28
|
Koppelmann T, Pollak Y, Mogilner J, Bejar J, Coran AG, Sukhotnik I. Dietary L-arginine supplementation reduces Methotrexate-induced intestinal mucosal injury in rat. BMC Gastroenterol 2012; 12:41. [PMID: 22545735 PMCID: PMC3355056 DOI: 10.1186/1471-230x-12-41] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 04/30/2012] [Indexed: 01/20/2023] Open
Abstract
Background Arginine (ARG) and nitric oxide maintain the mucosal integrity of the intestine in various intestinal disorders. In the present study, we evaluated the effects of oral ARG supplementation on intestinal structural changes, enterocyte proliferation and apoptosis following methotrexate (MTX)-induced intestinal damage in a rat. Methods Male rats were divided into four experimental groups: Control rats, CONTR-ARG rats, were treated with oral ARG given in drinking water 72 hours before and 72 hours following vehicle injection, MTX rats were treated with a single dose of methotrexate, and MTX-ARG rats were treated with oral ARG following injection of MTX. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined 72 hours following MTX injection. RT-PCR was used to determine bax and bcl-2 mRNA expression. Results MTX-ARG rats demonstrated greater jejunal and ileal bowel weight, greater ileal mucosal weight, greater ileal mucosal DNA and protein levels, greater villus height in jejunum and ileum and crypt depth in ileum, compared to MTX animals. A significant decrease in enterocyte apoptosis in the ileum of MTX-ARG rats (vs MTX) was accompanied by decreased bax mRNA and protein expression and increased bcl-2 protein levels. Conclusions Treatment with oral ARG prevents mucosal injury and improves intestinal recovery following MTX- injury in the rat.
Collapse
Affiliation(s)
- Tal Koppelmann
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Laboratory of intestinal adaptation and recovery, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
29
|
Intestinal gene expression in pigs: effects of reduced feed intake during weaning and potential impact of dietary components. Nutr Res Rev 2011; 24:155-75. [DOI: 10.1017/s0954422411000047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The weaning transition is characterised by morphological, histological and microbial changes, often leading to weaning-associated disorders. These intestinal changes can partly be ascribed to the lack of luminal nutrition arising from the reduced feed intake common in pigs after weaning. It is increasingly becoming clear that changes in the supply with enteral nutrients may have major impacts on intestinal gene expression. Furthermore, the major dietary constituents, i.e. carbohydrates, fatty acids and amino acids, participate in the regulation of intestinal gene expression. However, nutrients may also escape digestion by mammalian enzymes in the upper gastrointestinal tract. These nutrients can be used by the microflora, resulting in the production of bacterial metabolites, for example, SCFA, which may affect intestinal gene expression indirectly. The present review provides an insight on possible effects of reduced feed intake on intestinal gene expression, as it may occur post-weaning. Detailed knowledge on effects of reduced feed intake on intestinal gene expression may help to understand weaning-associated intestinal dysfunctions and diseases. Examples are given of intestinal genes which may be altered in their expression due to supply with specific nutrients. In that way, gene expression could be modulated by dietary means, thereby acting as a potential therapeutic tool. This could be achieved, for example, by influencing genes coding for digestive or absorptive proteins, thus optimising digestive function and metabolism, but also with regard to immune response, or by influencing proliferative processes, thereby enhancing mucosal repair. This would be of special interest when designing a diet to overcome weaning-associated problems.
Collapse
|
30
|
Intrarectal administration of oxygenated perfluorodecalin promotes healing of murine colitis by targeting inflammatory hypoxia. J Transl Med 2011; 91:1266-76. [PMID: 21709670 DOI: 10.1038/labinvest.2011.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal inflammation is associated with enhanced mucosal hypoxia, which contributes to the ongoing inflammatory process and hampers appropriate mucosal healing. We questioned whether local treatment with an oxygen (O(2))-carrying and -releasing molecule (oxygenated perfluorodecalin, O(2)-PFD) could positively influence the course of experimental colitis. The impact of intrarectal (IR) treatment with O(2)-PFD was tested using the murine dextran sodium sulfate (DSS)-induced model of distal colitis, both in preventive and therapeutic settings. Colonic mucosal hypoxia was visualized by pimonidazole staining. Colonic permeability was evaluated with FITC-dextran. In the preventive study, mice treated with O(2)-PFD were protected against DSS colitis compared with saline-treated mice, as demonstrated by reduced shortening of colon length, reduced colonic tumor necrosis factor-alpha levels and a lower histological inflammation score (P<0.05 for all parameters). In the therapeutic study, administration of O(2)-PFD resulted in accelerated recovery of colitis compared with saline-treated littermates, and this was reflected by a better weight evolution, lower myeloperoxidase activity and a lower histological inflammation score (P<0.05 for all parameters). It was found that O(2)-PFD established its therapeutic effects through (1) intrinsic anti-inflammatory effects of the PFD molecule and (2) O(2)-induced preservation and healing of the intestinal epithelial surface. Further in vitro and in vivo studies showed that the barrier-protective activity of O(2)-PFD was obtained through prevention of colonocyte apoptosis and stimulation of colonocyte proliferation during inflammatory hypoxia. These data show that IR treatment with O(2)-PFD promotes colitis healing by the combined actions of direct anti-inflammatory effects and O(2)-induced restitution of the epithelial barrier. As such, O(2)-PFD enemas could be an attractive treatment option for patients with distal inflammatory bowel disease.
Collapse
|
31
|
Wang B, Song HY, Yang JR. Progress in the treatment of intestinal barrier dysfunction. Shijie Huaren Xiaohua Zazhi 2011; 19:2251-2256. [DOI: 10.11569/wcjd.v19.i21.2251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intestinal barrier function plays a pivotal role in the development and progression of some severe diseases such as severe burn, severe acute pancreatitis, tumors, and severe liver disease. With a gradual understanding of the role of intestinal barrier dysfunction in the pathophysiology of various severe diseases, scholars have paid more attention to the basic and clinical research of the treatment of intestinal barrier function. This paper will review the latest advance in the treatment of intestinal barrier dysfunction.
Collapse
|
32
|
Wu T, Wang ZZ. Nitric oxide protects against pancreatic and renal injury in rats with acute necrotizing pancreatitis and hyperlipidemia. Shijie Huaren Xiaohua Zazhi 2011; 19:1022-1027. [DOI: 10.11569/wcjd.v19.i10.1022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether nitric oxide (NO) protects against pancreatic and renal injury in rats with acute necrotizing pancreatitis (ANP) and hyperlipidemia.
METHODS: Forty male Sprague-Dawley rats were fed a high-fat diet for 4 weeks to induce hyperlipidemia. The rats were randomly divided into three groups: group A (hyperlipidemia + ANP + normal saline), group B ( hyperlipidemia + ANP + L-arg), and group C (hyperlipidemia + ANP + L-Name). ANP was induced by retrograde injection of 3.5% sodium taurocholate into the biliopancreatic duct. Each group was treated 30 min before and 2 h after ANP induction. At 6 h after ANP induction, serum amylase (Amyl), creatinine (Cr), urea nitrogen (BUN), NO, and pancreatic NO and endothelial nitric oxide synthetase (eNOS) were measured; pancreatic histopathology was detected by light microscopy; ultrastructure of glomerular podocytes was observed by election microscopy; and expression of nephrin in glomerular podocytes was examined by immunohistochemistry.
RESULTS: Serum Amyl, Cr and BUN in group B were significantly lower than those in groups A and C (Amyl: 4 219.8 ± 900.0, 6 643.2 ± 1 135.4 vs 2 434.4 ± 831.6; Cr: 15.8 ± 1.6, 22.4 ± 3.3 vs 9.9 ± 0.8; BUN: 135.9 ± 23.6, 206.4 ± 23.4 vs 103.2 ± 13.2; all P < 0.01). Pancreatic injury and changes in glomerular podocytes were milder in group B than in groups A and C. The levels of serum and pancreatic NO (59.46 ± 11.21, 44.84 ± 10.72 vs 78.88 ± 9.76; 5.23 ± 0.48, 4.39 ± 0.45 vs 6.18 ± 0.57; all P < 0.01) and pancreatic eNOS, and expression of nephrin in glomerular podocytes were significantly higher in group B than in groups A and C.
CONCLUSION: NO produced by eNOS can protect against pancreatic and renal injury in rats with ANP and hyperlipidemia.
Collapse
|
33
|
Long-term enteral arginine supplementation in rats with intestinal ischemia and reperfusion. J Surg Res 2011; 175:67-75. [PMID: 21470625 DOI: 10.1016/j.jss.2011.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/23/2010] [Accepted: 02/03/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND The effects of short-term enteral arginine supplementation on intestinal ischemia-reperfusion (IR) injury have been widely studied, especially the ischemic preconditioning supplementation. The aim of this study was to investigate the effects of long-term intra-duodenal supplementation of arginine on intestinal morphology, arginine-associated amino acid metabolism, and inflammatory responses in rats with intestinal IR. MATERIALS AND METHODS Male Wistar rats with or without three hours of ileal ischemia underwent duodenal cannulation for continuous infusion of formula with 2% arginine or commercial protein powder for 7 d. The serological examinations, plasma amino acid and cytokine profiles, and intestinal morphology were assessed. RESULTS Intestinal IR injury had significant impacts on the decreases in circulating red blood cells, hemoglobin, ileum mass, and villus height and crypt depth of the distal jejunum. In addition, arginine supplementation decreased serum cholesterol and increased plasma arginine concentrations. In rats with intestinal IR injury, arginine supplementation significantly decreased serum nitric oxide, plasma citrulline and ornithine, and the mucosal protein content of the ileum. CONCLUSIONS These results suggest that long-term intra-duodenal arginine administration may not have observable benefits on intestinal morphology or inflammatory response in rats with intestinal ischemia and reperfusion injury. Therefore, the necessity of long-term arginine supplementation for patients with intestinal ischemia and reperfusion injury remains questionable and requires further investigation.
Collapse
|
34
|
Puiman PJ, Stoll B, van Goudoever JB, Burrin DG. Enteral arginine does not increase superior mesenteric arterial blood flow but induces mucosal growth in neonatal pigs. J Nutr 2011; 141:63-70. [PMID: 21106927 PMCID: PMC3001236 DOI: 10.3945/jn.110.131888] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Arginine is an essential amino acid in neonates synthesized by gut epithelial cells and a precursor for NO that regulates vasodilatation and blood flow. Arginine supplementation has been shown to improve intestinal integrity in ischemia-reperfusion models and low plasma levels are associated with necrotizing enterocolitis. We hypothesized that enteral arginine is a specific stimulus for neonatal intestinal blood flow and mucosal growth under conditions of total parenteral nutrition (TPN) or partial enteral nutrition (PEN). We first tested the dose dependence and specificity of acute (3 h) enteral arginine infusion on superior mesenteric artery (SMA) blood flow in pigs fed TPN or PEN. We then determined whether chronic (4 d) arginine supplementation of PEN increases mucosal growth and if this was affected by treatment with the NO synthase inhibitor, N(G)-nitro-l-arginine methyl ester (L-NAME). Acute enteral arginine infusion increased plasma arginine dose dependently in both TPN and PEN groups, but the plasma response was markedly higher (100-250%) in the PEN group than in the TPN group at the 2 highest arginine doses. Baseline SMA blood flow was 90% higher in the PEN (2.37 ± 0.32 L⋅kg(-1)⋅h(-1)) pigs than in the TPN pigs (1.23 ± 0.17 L⋅kg(-1)⋅h(-1)), but was not affected by acute infusion individually of arginine, citrulline, or other major gut fuels. Chronic dietary arginine supplementation in PEN pigs induced mucosal growth in the intestine, but this effect was not prevented by treatment with L-NAME. Intestinal crypt cell proliferation, protein synthesis, and phosphorylation of mammalian target of rapamycin and p70S6 kinase were not affected by dietary arginine. We conclude that partial enteral feeding, but not acute enteral arginine, increases SMA blood flow in the neonatal pig. Furthermore, supplementing arginine in partial enteral feeding modestly increases intestinal mucosal growth and was NO independent.
Collapse
Affiliation(s)
- Patrycja J. Puiman
- Department of Pediatrics, Neonatology, Erasmus MC–Sophia Children’s Hospital, Rotterdam 3015 GJ, The Netherlands
| | - Barbara Stoll
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030
| | - Johannes B. van Goudoever
- Department of Pediatrics, Neonatology, Erasmus MC–Sophia Children’s Hospital, Rotterdam 3015 GJ, The Netherlands
| | - Douglas G. Burrin
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030,Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Tan B, Yin Y, Kong X, Li P, Li X, Gao H, Li X, Huang R, Wu G. L-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 2010; 38:1227-35. [PMID: 19669080 PMCID: PMC2850530 DOI: 10.1007/s00726-009-0334-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/22/2009] [Indexed: 12/18/2022]
Abstract
This study tested the hypothesis that L-arginine (Arg) may stimulate cell proliferation and prevent lipopolysaccharide (LPS)-induced death of intestinal cells. Intestinal porcine epithelial cells (IPEC-1) were cultured for 4 days in Arg-free Dulbecco's modified Eagle's-F12 Ham medium (DMEM-F12) containing 10, 100 or 350 microM Arg and 0 or 20 ng/ml LPS. Cell numbers, protein concentrations, protein synthesis and degradation, as well as mammalian target of rapamycin (mTOR) and Toll-like receptor 4 (TLR4) signaling pathways were determined. Without LPS, IPEC-1 cells exhibited time- and Arg-dependent growth curves. LPS treatment increased cell death and reduced protein concentrations in IPEC-1 cells. Addition of 100 and 350 microM Arg to culture medium dose-dependently attenuated LPS-induced cell death and reduction of protein concentrations, in comparison with the basal medium containing 10 microM Arg. Furthermore, supplementation of 100 and 350 microM Arg increased protein synthesis and reduced protein degradation in both control and LPS-treated IPEC-1 cells. Consistent with the data on cell growth and protein turnover, addition of 100 or 350 microM Arg to culture medium increased relative protein levels for phosphorylated mTOR and phosphorylated ribosomal protein S6 kinase-1, while reducing the relative levels of TLR4 and phosphorylated levels of nuclear factor-kappaB in LPS-treated IPEC-1 cells. These results demonstrate a protective effect of Arg against LPS-induced enterocyte damage through mechanisms involving mTOR and TLR4 signaling pathways, as well as intracellular protein turnover.
Collapse
Affiliation(s)
- Bie Tan
- Hunan Engineering Technology Research Center of Healthy Animal Husbandry and Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125 Hunan, China
- Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
- The Graduate School of the Chinese Academy of Sciences, 100039 Beijing, China
| | - Yulong Yin
- Hunan Engineering Technology Research Center of Healthy Animal Husbandry and Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125 Hunan, China
| | - Xiangfeng Kong
- Hunan Engineering Technology Research Center of Healthy Animal Husbandry and Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125 Hunan, China
- Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Peng Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Xilong Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Haijun Gao
- Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Xinguo Li
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131 Hunan, China
| | - Ruilin Huang
- Hunan Engineering Technology Research Center of Healthy Animal Husbandry and Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125 Hunan, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
36
|
The effect of 100% oxygen on intestinal preservation and recovery following ischemia-reperfusion injury in rats*. Crit Care Med 2009; 37:1054-61. [DOI: 10.1097/ccm.0b013e31819d0f5c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Cintra AESU, Martins JL, Patrício FRS, Higa EMS, Montero EFS. Nitric oxide levels in the intestines of mice submitted to ischemia and reperfusion: L-arginine effects. Transplant Proc 2008; 40:830-5. [PMID: 18455030 DOI: 10.1016/j.transproceed.2008.02.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Usually an experimental necrotizing enterocolitis experimental model, we Investigated nitric oxide levels in intestinal tissues of newborn mice with or without l-arginine therapy during sessions of ischemia and reoxygenation. METHODS Twenty-six newborn mice from the Wistar EPM-1 lineage, weighing from 4.5 to 6.2 g, were randomly assigned to three groups: G-I/R, hypoxia and reoxygenation; G-Arg, l-arginine treatment I/R; and G-CTL, controls. G-I/R and G-Arg mice underwent twice a day during their first 3 days of life exposure to gas chambers with 100% CO(2) for 5 minutes at 22 degrees C before reoxygenation with 100% O(2) for another 5 minutes. After 12 hours, all animals were sedated, laparotomized, and had samples of ileum and colon taken and- either formalin fixed histopathologic examinations or frozen to -80 degrees C for estimation of tissue nitric oxide levels. Intestinal injuries were classified according to the criteria of Chiu et al. RESULTS The G-I/R and G-Arg groups showed injuries characteristic of necrotizing enterocolitis (NEC) with an improved structural preservation rate in G-Arg. The concentration of nitric oxide in the Ileum was much higher with G-Arg (16.5 +/- 4.9; P = 0.0019) G-I/R (7.3 +/- 2.0). This effect was not observed in the colon: G-I/R = 10.7 +/- 4.6 versus G-Arg = 15.5 +/- 8.7 (P = .2480). CONCLUSION Supply of L-arginine increased tissue levels of nitricoxide and reduced morphologic intestinal injury among mice undergoing I/R.
Collapse
Affiliation(s)
- A E S U Cintra
- Surgery and Experimentation Pos-Graduation Program, Pediatric Surgery Division, Universidade Federal de São Paulo, UNIFESP, Brazil.
| | | | | | | | | |
Collapse
|
38
|
Nankervis CA, Giannone PJ, Reber KM. The neonatal intestinal vasculature: contributing factors to necrotizing enterocolitis. Semin Perinatol 2008; 32:83-91. [PMID: 18346531 DOI: 10.1053/j.semperi.2008.01.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Based on the demonstration of coagulation necrosis, it is clear that intestinal ischemia plays a role in the pathogenesis of necrotizing enterocolitis (NEC). Intestinal vascular resistance is determined by a dynamic balance between vasoconstrictive and vasodilatory inputs. In the newborn, this balance heavily favors vasodilation secondary to the copious production of endothelium-derived nitric oxide (NO), a circumstance which serves to ensure adequate blood flow and thus oxygen delivery to the rapidly growing intestine. Endothelial cell injury could shift this balance in favor of endothelin (ET)-1-mediated vasoconstriction, leading to intestinal ischemia and tissue injury. Evidence obtained from animal models and from human tissue collected from infants with NEC implicates NO and ET-1 dysregulation in the pathogenesis of NEC. Strategies focused on maintaining the delicate balance favoring vasodilation in the newborn intestinal circulation may prove to be useful in the prevention and treatment of NEC.
Collapse
Affiliation(s)
- Craig A Nankervis
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | | | | |
Collapse
|
39
|
Basaran UN, Dokmeci D, Yalcin O, Inan M, Kanter M, Aydogdu N, Turan N. Effect of Curcumin on Ipsilateral and Contralateral Testes after Unilateral Testicular Torsion in a Rat Model. Urol Int 2008; 80:201-7. [DOI: 10.1159/000112614] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 01/03/2007] [Indexed: 01/13/2023]
|
40
|
Sukhotnik I, Coran AG, Greenblatt R, Brod V, Mogilner J, Shiloni E, Shaoul R, Bitterman H. Effect of 100% oxygen on E-selectin expression, recruitment of neutrophils and enterocyte apoptosis following intestinal ischemia-reperfusion in a rat. Pediatr Surg Int 2008; 24:29-35. [PMID: 17962962 DOI: 10.1007/s00383-007-2039-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent evidence suggests that neutrophil recruitment may initiate cell apoptosis in ischemic tissues. We have recently shown that enterocyte apoptosis is increased following intestinal ischemia-reperfusion (IR) injury. The purpose of the present study was to examine the effect of hyperoxia on E-selectin expression, neutrophil recruitment and enterocyte apoptosis following intestinal IR in a rat. Male Sprague-Dawley rats were divided into three experimental groups: (1) sham rats underwent laparotomy without vascular occlusion and were ventilated with air (Sham) (2) IR rats underwent occlusion of both the superior mesenteric artery and portal vein for 30 min and were ventilated with air (IR), and (3) IR-O2 rats underwent IR and were ventilated with 100% started 10 min before reperfusion and continued for 6 h (IR-O2). Intestinal structural changes were determined 24 h following IR. Immunohistochemistry for E-selectin (using E-selectin cleaved concentrated polyclonal antibody) was performed to identify E-selectin immunoreactivity localized to the endothelium of venules. The recruitment of neutrophils was calculated per 100 venules. Immunohistochemistry for Caspase-3 was performed for identification of apoptotic cells. Non-parametric one-way ANOVA test was used for statistical analysis with p less than 0.05 considered statistically significant. A significant increase in E-selectin expression in the jejunum (6.1 +/- 2.2 vs. 2.5 +/- 1.0 E-selectin positive vessels/100 vessels, p < 0.05) and ileum (12.1 +/- 2.7 vs. 3.3 +/- 1.2 E-selectin positive vessels/100 vessels, p < 0.05) and a concomitant increase in neutrophil recruitment in the ileum (5.5 +/- 1.6 vs. 1.3 +/- 0.6 adhered PMN's per 100 venules) were observed in IR rats compared to sham animals and were accompanied by increased cell apoptosis (p < 0.05). Treatment with 100% oxygen resulted in a significant attenuation in E-selectin expression in the ileum (2.7 +/- 1.1 vs. 12.1 +/- 2.7 E-selectin positive vessels/100 vessels, p < 0.05), and neutrophil recruitment in the jejunum (2.5 +/- 1.4 vs. 7.7 +/- 1.9 adhered PMN's per 100 venules, p < 0.05) and ileum (1.5 +/- 0.7 vs. 5.5 +/- 1.6 adhered PMN's per 100 venules, p < 0.05) compared to IR animals, and was accompanied by decreased cell apoptosis (p < 0.05). Hyperoxia inhibits enterocyte apoptosis following intestinal ischemia-reperfusion. Down-regulation of E-selectin expression with subsequent decrease in neutrophil recruitment may be responsible for this effect.
Collapse
Affiliation(s)
- Igor Sukhotnik
- Department of Pediatric Surgery, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 47 Golomb St, POB 4940, Haifa, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sukhotnik I, Khateeb K, Mogilner JG, Helou H, Lurie M, Coran AG, Shiloni E. Dietary glutamine supplementation prevents mucosal injury and modulates intestinal epithelial restitution following ischemia-reperfusion injury in the rat. Dig Dis Sci 2007; 52:1497-504. [PMID: 17404857 DOI: 10.1007/s10620-006-9629-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 09/27/2006] [Indexed: 12/09/2022]
Abstract
The aim of the present study was to evaluate the preventive effect of a 2-day oral glutamine supplementation against intestinal ischemia-reperfusion (IR) injury in a rat. Male Sprague-Dawley rats were divided into four experimental groups: sham rats underwent laparotomy, sham-GLU rats underwent laparotomy and were treaded with enteral glutamine (GLU) given in drinking water (2%) 48 hr before and following operation, IR rats underwent occlusion of both the superior mesenteric artery and the portal vein for 30 min followed by 24 hr of reperfusion, and IR-GLU rats were treated with enteral glutamine 48 hr before and following IR. Intestinal mucosal damage (Park's injury score), mucosal structural changes, enterocyte proliferation, and enterocyte apoptosis were determined 24 hr following IR. Sham-GLU rats demonstrated a lower rate of cell apoptosis in jejunum and ileum compared to sham animals. IR-GLU animals demonstrated a greater jejunal and ileal bowel and mucosal weight, mucosal DNA, villous height and crypt depth, and enterocyte proliferation index in ileum and a lower injury score grade in jejunum compared to IR-nontreated rats. In conclusion, pretreatment with oral glutamine prevents mucosal injury and improves intestinal recovery following IR injury in the rat.
Collapse
Affiliation(s)
- Igor Sukhotnik
- Department of Pediatric Surgery B, Bnai Zion Medical Center, Haifa, Israel.
| | | | | | | | | | | | | |
Collapse
|
42
|
Fujise T, Iwakiri R, Wu B, Amemori S, Kakimoto T, Yokoyama F, Sakata Y, Tsunada S, Fujimoto K. Apoptotic pathway in the rat small intestinal mucosa is different between fasting and ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 2006; 291:G110-6. [PMID: 16574989 DOI: 10.1152/ajpgi.00393.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously demonstrated that fasting and ischemia-reperfusion (I/R) induced apoptosis in rat intestinal mucosa. It is widely accepted that apoptosis is induced through two main pathways. This study aimed to compare apoptotic pathways following fasting and I/R. Rats were divided into two groups: the I/R group involved occlusion of the superior mesenteric artery for 60 min, followed by 60-min reperfusion, whereas the fasting group involved fasting for 24 or 48 h. Intestinal apoptosis was assessed as percentage of fragmented DNA, by electrophoresis and by a terminal deoxynucleotidyl transferase mediated dUDP-biotin nick- end labeling (TUNEL) assay. Apoptotic proteins including death ligands/receptors and caspases were evaluated by Western blot analysis. Small intestinal mucosal height and mitochondrial dehydrogenase function were assessed. Fasting and I/R significantly induced intestinal apoptosis. Mucosal height was significantly decreased in fasting rats, and mitochondrial dysfunction was induced only by I/R. Expressions of Fas, Fas ligand, and TNF-alpha type 1 receptor were enhanced in fasting and I/R rats. After I/R, expressions of cytochrome c and cleaved caspase-9 were significantly increased. In contrast, expressions of cleaved caspase-8 and cleaved caspase-3 increased in fasting rats. Fasting promoted mucosal apoptosis via a receptor-mediated type I apoptotic pathway in the rat small intestine, and I/R induced apoptosis via a mitochondria-mediated type II pathway.
Collapse
Affiliation(s)
- Takehiro Fujise
- Department of Intestinal Medicine, Saga Medical School, Saga 849-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|