1
|
Wang T, Wang RX, Colgan SP. Physiologic hypoxia in the intestinal mucosa: a central role for short-chain fatty acids. Am J Physiol Cell Physiol 2024; 327:C1087-C1093. [PMID: 39159391 PMCID: PMC11482044 DOI: 10.1152/ajpcell.00472.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
The intestinal mucosa is a dynamic surface that facilitates interactions between the host and an outside world that includes trillions of microbes, collectively termed the microbiota. This fine balance is regulated by an energetically demanding physical and biochemical barrier that is formed by the intestinal epithelial cells. In addition, this homeostasis exists at an interface between the anaerobic colonic lumen and a highly oxygenated, vascularized lamina propria. The resultant oxygen gradient within the intestine establishes "physiologic hypoxia" as a central metabolic feature of the mucosa. Although oxygen is vital for energy production to meet cellular metabolism needs, the availability of oxygen has far-reaching influences beyond just energy provision. Recent studies have shown that the intestinal mucosa has purposefully adapted to use differential oxygen levels largely through the presence of short-chain fatty acids (SCFAs), particularly butyrate (BA). Intestinal epithelial cells use butyrate for a multitude of functions that promote mucosal homeostasis. In this review, we explore how the physiologic hypoxia profile interfaces with SCFAs to benefit host mucosal tissues.
Collapse
Affiliation(s)
- Timothy Wang
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Healthcare Studies, University of Texas Dallas, Richardson, Texas, United States
| | - Ruth X Wang
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Dermatology, University of California San Diego, San Diego, California, United States
| | - Sean P Colgan
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, United States
| |
Collapse
|
2
|
Eslami Amirabadi H, Donkers JM, Wierenga E, Ingenhut B, Pieters L, Stevens L, Donkers T, Westerhout J, Masereeuw R, Bobeldijk-Pastorova I, Nooijen I, van de Steeg E. Intestinal explant barrier chip: long-term intestinal absorption screening in a novel microphysiological system using tissue explants. LAB ON A CHIP 2022; 22:326-342. [PMID: 34877953 DOI: 10.1039/d1lc00669j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The majority of intestinal in vitro screening models use cell lines that do not reflect the complexity of the human intestinal tract and hence often fail to accurately predict intestinal drug absorption. Tissue explants have intact intestinal architecture and cell type diversity, but show short viability in static conditions. Here, we present a medium throughput microphysiological system, Intestinal Explant Barrier Chip (IEBC), that creates a dynamic microfluidic microenvironment and prolongs tissue viability. Using a snap fit mechanism, we successfully incorporated human and porcine colon tissue explants and studied tissue functionality, integrity and viability for 24 hours. With a proper distinction of transcellular over paracellular transport (ratio >2), tissue functionality was good at early and late timepoints. Low leakage of FITC-dextran and preserved intracellular lactate dehydrogenase levels indicate maintained tissue integrity and viability, respectively. From a selection of low to high permeability drugs, 6 out of 7 properly ranked according to their fraction absorbed. In conclusion, the IEBC is a novel screening platform benefitting from the complexity of tissue explants and the flow in microfluidic chips.
Collapse
Affiliation(s)
- Hossein Eslami Amirabadi
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Joanne M Donkers
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Esmée Wierenga
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Bastiaan Ingenhut
- Materials solution department, TNO, and Brightlands Materials Centre, Geleen, The Netherlands
| | - Lisanne Pieters
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Lianne Stevens
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
- Department of Surgery, Division of Transplantation, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tim Donkers
- Division of Space systems engineering, TNO, Delft, the Netherlands
| | | | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ivana Bobeldijk-Pastorova
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Irene Nooijen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Evita van de Steeg
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| |
Collapse
|
3
|
Dey P, Chaudhuri SR, Efferth T, Pal S. The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist - from fundamentals to future challenges. Free Radic Biol Med 2021; 176:265-285. [PMID: 34610364 DOI: 10.1016/j.freeradbiomed.2021.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
The role of the intestine in human health and disease has historically been neglected and was mostly attributed to digestive and absorptive functions. In the past two decades, however, discoveries related to human nutrition and intestinal host-microbe reciprocal interaction have established the essential role of intestinal health in the pathogenesis of chronic diseases and the overall wellbeing. That transfer of gut microbiota could be a means of disease phenotype transfer has revolutionized our understanding of chronic disease pathogenesis. This narrative review highlights the major concepts related to intestinal microbiota, metabolism, and metabolome (3M) that have facilitated our fundamental understanding of the association between the intestine, and human health and disease. In line with increased interest of microbiota-dependent modulation of human health by dietary phytochemicals, we have also discussed the emerging concepts beyond the phytochemical bioactivities which emphasizes the integral role of microbial metabolites of parent phytochemicals at extraintestinal tissues. Finally, this review concludes with challenges and future prospects in defining the 3M interactions and has emphasized the fact that, it takes 'guts' to stay healthy.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Sirshendu Pal
- Mukherjee Hospital, Mitra's Clinic and Nursing Home, Siliguri, West Bengal, India
| |
Collapse
|
4
|
Bossink EGBM, Zakharova M, de Bruijn DS, Odijk M, Segerink LI. Measuring barrier function in organ-on-chips with cleanroom-free integration of multiplexable electrodes. LAB ON A CHIP 2021; 21:2040-2049. [PMID: 33861228 DOI: 10.1016/j.ooc.2021.100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Transepithelial/transendothelial electrical resistance (TEER) measurements can be applied in organ-on-chips (OoCs) to estimate the barrier properties of a tissue or cell layer in a continuous, non-invasive, and label-free manner. Assessing the barrier integrity in in vitro models is valuable for studying and developing barrier targeting drugs. Several systems for measuring the TEER have been shown, but each of them having their own drawbacks. This article presents a cleanroom-free fabrication method for the integration of platinum electrodes in a polydimethylsiloxane OoC, allowing the real-time assessment of the barrier function by employing impedance spectroscopy. The proposed method and electrode arrangement allow visual inspection of the cells cultured in the device at the site of the electrodes, and multiplexing of both the electrodes in one OoC and the number of OoCs in one device. The effectiveness of our system is demonstrated by lining the OoC with intestinal epithelial cells, creating a gut-on-chip, where we monitored the formation, as well as the disruption and recovery of the cell barrier during a 21 day culture period. The application is further expanded by creating a blood-brain-barrier, to show that the proposed fabrication method can be applied to monitor the barrier formation in the OoC for different types of biological barriers.
Collapse
Affiliation(s)
- Elsbeth G B M Bossink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Mariia Zakharova
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Douwe S de Bruijn
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Mathieu Odijk
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Loes I Segerink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| |
Collapse
|
5
|
Butyrate Protects Porcine Colon Epithelium from Hypoxia-Induced Damage on a Functional Level. Nutrients 2021; 13:nu13020305. [PMID: 33498991 PMCID: PMC7911740 DOI: 10.3390/nu13020305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
The large intestinal epithelium is confronted with the necessity to adapt quickly to varying levels of oxygenation. In contrast to other tissues, it meets this requirement successfully and remains unharmed during (limited) hypoxic periods. The large intestine is also the site of bacterial fermentation producing short-chain fatty acids (SCFA). Amongst these SCFA, butyrate has been reported to ameliorate many pathological conditions. Thus, we hypothesized that butyrate protects the colonocytes from hypoxic damage. We used isolated porcine colon epithelium mounted in Ussing chambers, incubated it with or without butyrate and simulated hypoxia by changing the gassing regime to test this hypothesis. We found an increase in transepithelial conductance and a decrease in short-circuit current across the epithelia when simulating hypoxia for more than 30 min. Incubation with 50 mM butyrate significantly ameliorated these changes to the epithelial integrity. In order to characterize the protective mechanism, we compared the effects of butyrate to those of iso-butyrate and propionate. These two SCFAs exerted similar effects to butyrate. Therefore, we propose that the protective effect of butyrate on colon epithelium under hypoxia is not (only) based on its nutritive function, but rather on the intracellular signaling effects of SCFA.
Collapse
|
6
|
Lucu Č. Hypoxia attenuate ionic transport in the isolated gill epithelium of Carcinus maenas. J Comp Physiol B 2020; 190:391-401. [PMID: 32333115 DOI: 10.1007/s00360-020-01277-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
The gills are osmorespiratory organs of aquatic organisms and the prime target of environmentally induced hypoxia. We have studied the impact of severe hypoxia (0.5 mg O2/L) on the ionic transport across posterior gills of Carcinus maenas acclimated to 12 ppt seawater (DSW). The short-circuit current (Isc) across hemilamellae from gills i.e. active ion transport was studied in micro Ussing chambers. Hypoxia induced by deoxygenation of the basolateral side, and not the apical side, resulted in time-dependent inhibition of Isc and full recovery of Isc after reoxygenation. Exposure of the crabs to severe 7 h hypoxia decreased the specific activity of Na+,K+-ATPase in the gills by 36%. Full recovery of enzyme activity occurred in fasted crabs after 3 days of reoxygenation. The intensity of Western blotting bands was not different in the gills of oxygenated, hypoxic and reoxygenated crabs. The reversible, nonspecific blocker of K+ channels Cs and hypoxia inhibited over 90% of Isc which is after reoxygenation fully recovered. The specific blocker of Cl- channels NPPB [5-nitro-2-(3-phenylpropylamino)benzoic acid] blocked Isc by 68.5%. Only the rest of not inhibited Isc in aerated saline was blocked by hypoxia and recovered after reoxygenation. The activity of the antioxidant enzyme catalase was not changed during hypoxia and reoxygenation kept the high enzyme activity in the gills at the level of crabs acclimated to DSW. As a response to hypoxia the presence of 2 mM H2O2 induce an initial slight transient decrease of Isc followed by a rise and after reoxygenation fully recovered Isc. Incubation of hemilamellae with the antioxidant derivative Trolox did not affect the inhibition of Isc by hypoxia.
Collapse
Affiliation(s)
- Čedomil Lucu
- Center for Marine Research, Institute Ruđer Bošković, Rovinj, Zagreb, Croatia.
- Alfred Wegener-Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station List, Sylt, Germany.
| |
Collapse
|
7
|
Kim R, Attayek PJ, Wang Y, Furtado KL, Tamayo R, Sims CE, Allbritton NL. An in vitro intestinal platform with a self-sustaining oxygen gradient to study the human gut/microbiome interface. Biofabrication 2019; 12:015006. [PMID: 31519008 PMCID: PMC6933551 DOI: 10.1088/1758-5090/ab446e] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An oxygen gradient formed along the length of colonic crypts supports stem-cell proliferation at the normoxic crypt base while supporting obligate anaerobe growth in the anoxic colonic lumen. Primary human colonic epithelial cells derived from human gastrointestinal stem cells were cultured within a device possessing materials of tailored oxygen permeability to produce an oxygen-depleted luminal (0.8% ± 0.1% O2) and oxygen-rich basal (11.1% ± 0.5% O2) compartment. This oxygen difference created a stable oxygen gradient across the colonic epithelial cells which remained viable and properly polarized. Facultative and obligate anaerobes Lactobacillus rhamnosus, Bifidobacterium adolescentis, and Clostridium difficile grew readily within the luminal compartment. When formed along the length of an in vitro crypt, the oxygen gradient facilitated cell compartmentalization within the crypt by enhancing confinement of the proliferative cells to the crypt base. This platform provides a simple system to create a physiological oxygen gradient across an intestinal mimic while simultaneously supporting anaerobe co-culture.
Collapse
Affiliation(s)
- Raehyun Kim
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Peter J. Attayek
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Kathleen L. Furtado
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Nancy L. Allbritton
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Saraví FD, Carra GE, Matus DA, Ibáñez JE. Rectification of oxygen transfer through the rat colonic epithelium. World J Gastrointest Pathophysiol 2017; 8:59-66. [PMID: 28573068 PMCID: PMC5437503 DOI: 10.4291/wjgp.v8.i2.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/24/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To assess whether higher sensitivity of colonic epithelium to hypoxia at the serosal side is associated with oxygen transfer asymmetry.
METHODS Rats were fed either with normal chow or a low-sodium diet. Tissues were mounted as flat sheets in a modified, airtight Ussing chamber with oxygen meters in each hemichamber. Mucosal samples from normal diet animals were studied under control conditions, in low-chloride solution and after adding chloride secretion inhibitors and chloride secretagogues. Samples from sodium-deprived rats were studied before and after ouabain addition. In separate experiments, the correlation between short-circuit current and oxygen consumption was analyzed. Finally, hypoxia was induced in one hemichamber to assess the relationship between its oxygen content and the oxygen pressure difference between both hemichambers.
RESULTS In all studied conditions, oxygen consumption was larger in the serosal hemichamber than in the mucosal one (P = 0.0025 to P < 0.0001). Short-circuit current showed significant correlation with both total oxygen consumption (r = 0.765; P = 0.009) in normoxia and oxygen consumption in the serosal hemichamber (r = 0.754; P = 0.011) during mucosal hypoxia, but not with oxygen consumption in the mucosal hemichamber. When hypoxia was induced in the mucosal hemichamber, an oxygen pressure difference of 13 kPa with the serosal hemichamber was enough to keep its oxygen content constant. However, when hypoxia was induced in the serosal hemichamber, the oxygen pressure difference with the mucosal hemichamber necessary to keep its oxygen content constant was 40 kPa (P < 0.0001).
CONCLUSION Serosal oxygen supply is more readily available to support short-circuit current. This may be partly due to a rectifying behavior of transepithelial oxygen transfer.
Collapse
|
9
|
Zheng L, Kelly CJ, Colgan SP. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A Review in the Theme: Cellular Responses to Hypoxia. Am J Physiol Cell Physiol 2015; 309:C350-60. [PMID: 26179603 DOI: 10.1152/ajpcell.00191.2015] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, the intestinal mucosa has proven to be an intriguing organ to study tissue oxygenation. The highly vascularized lamina propria juxtaposed to an anaerobic lumen containing trillions of metabolically active microbes results in one of the most austere tissue microenvironments in the body. Studies to date have determined that a healthy mucosa contains a steep oxygen gradient along the length of the intestine and from the lumen to the serosa. Advances in technology have allowed multiple independent measures and indicate that, in the healthy mucosa of the small and large intestine, the lumen-apposed epithelia experience Po2 conditions of <10 mmHg, so-called physiologic hypoxia. This unique physiology results from a combination of factors, including countercurrent exchange blood flow, fluctuating oxygen demands, epithelial metabolism, and oxygen diffusion into the lumen. Such conditions result in the activation of a number of hypoxia-related signaling processes, including stabilization of the transcription factor hypoxia-inducible factor. Here, we review the principles of mucosal oxygen delivery, metabolism, and end-point functional responses that result from this unique oxygenation profile.
Collapse
Affiliation(s)
- Leon Zheng
- Department of Medicine and Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Caleb J Kelly
- Department of Medicine and Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Sean P Colgan
- Department of Medicine and Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
10
|
Wojtal KA, Cee A, Lang S, Götze O, Frühauf H, Geier A, Pastor-Anglada M, Torres-Torronteras J, Martí R, Fried M, Lutz TA, Maggiorini M, Gassmann M, Rogler G, Vavricka SR. Downregulation of duodenal SLC transporters and activation of proinflammatory signaling constitute the early response to high altitude in humans. Am J Physiol Gastrointest Liver Physiol 2014; 307:G673-88. [PMID: 24970780 DOI: 10.1152/ajpgi.00353.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Solute carrier (SLC) transporters mediate the uptake of biologically active compounds in the intestine. Reduced oxygenation (hypoxia) is an important factor influencing intestinal homeostasis. The aim of this study was to investigate the pathophysiological consequences of hypoxia on the expression and function of SLCs in human intestine. Hypoxia was induced in human intestinal epithelial cells (IECs) in vitro (0.2; 1% O2 or CoCl2). For human in vivo studies, duodenal biopsies and serum samples were obtained from individuals (n = 16) acutely exposed to 4,554 meters above sea levels. Expression of relevant targets was analyzed by quantitative PCR, Western blotting, or immunofluorescence. Serum levels of inflammatory mediators and nucleosides were determined by ELISA and LC/MS-MS, respectively. In the duodenum of volunteers exposed to high altitude we observed decreased mRNA levels of apical sodium-dependent bile acid transporter (ASBT), concentrative nucleoside transporters 1/2 (CNT1/2), organic anion transporting polypeptide 2B1 (OATP2B1), organic cation transporter 2 (OCTN2), peptide transporter 1 (PEPT1), serotonin transporter (SERT), and higher levels of IFN-γ, IL-6, and IL-17A. Serum levels of IL-10, IFN-γ, matrix metalloproteinase-2 (MMP-2), and serotonin were elevated, whereas the levels of uridine decreased upon exposure to hypoxia. Hypoxic IECs showed reduced levels of equilibrative nucleoside transporter 2 (ENT2), OCTN2, and SERT mRNAs in vitro, which was confirmed on the protein level and was accompanied by activation of ERK1/2, increase of hypoxia-inducible factor (HIF) proteins, and production of IL-8 mRNA. Costimulation with IFN-γ and IL-6 during hypoxia further decreased the expression of SERT, ENT2, and CNT2 in vitro. Reduced oxygen supply affects the expression pattern of duodenal SLCs that is accompanied by changes in serum levels of proinflammatory cytokines and biologically active compounds demonstrating that intestinal transport is affected during systemic exposure to hypoxia in humans.
Collapse
Affiliation(s)
- Kacper A Wojtal
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland;
| | - Alexandra Cee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Silvia Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Götze
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Department of Gastroenterology and Hepatology, University Clinic Würzburg, Würzburg, Germany
| | - Heiko Frühauf
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Division of Gastroenterology and Hepatology, Hospital Triemli, Zurich, Switzerland
| | - Andreas Geier
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Department of Gastroenterology and Hepatology, University Clinic Würzburg, Würzburg, Germany
| | - Marçal Pastor-Anglada
- Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine and Oncology Programme, National Biomedical Research Institute of Liver and Gastrointestinal Disease (CIBER EHD), University of Barcelona, Barcelona, Spain
| | - Javier Torres-Torronteras
- Neuromuscular and Mitochondrial Disorders Unit, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Vall d'Hebron Institut de Recerca, Autonomous University of Barcelona, Barcelona, Spain
| | - Ramon Martí
- Neuromuscular and Mitochondrial Disorders Unit, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Vall d'Hebron Institut de Recerca, Autonomous University of Barcelona, Barcelona, Spain
| | - Michael Fried
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Marco Maggiorini
- Intensive Care Unit, Department of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Cayetano Heredia University (UPCH), Lima, Peru; and Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Stephan R Vavricka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Division of Gastroenterology and Hepatology, Hospital Triemli, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| |
Collapse
|
11
|
Ward JBJ, Keely SJ, Keely SJ. Oxygen in the regulation of intestinal epithelial transport. J Physiol 2014; 592:2473-89. [PMID: 24710059 DOI: 10.1113/jphysiol.2013.270249] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transport of fluid, nutrients and electrolytes to and from the intestinal lumen is a primary function of epithelial cells. Normally, the intestine absorbs approximately 9 l of fluid and 1 kg of nutrients daily, driven by epithelial transport processes that consume large amounts of cellular energy and O2. The epithelium exists at the interface of the richly vascularised mucosa, and the anoxic luminal environment and this steep O2 gradient play a key role in determining the expression pattern of proteins involved in fluid, nutrient and electrolyte transport. However, the dynamic nature of the splanchnic circulation necessitates that the epithelium can evoke co-ordinated responses to fluctuations in O2 availability, which occur either as a part of the normal digestive process or as a consequence of several pathophysiological conditions. While it is known that hypoxia-responsive signals, such as reactive oxygen species, AMP-activated kinase, hypoxia-inducible factors, and prolyl hydroxylases are all important in regulating epithelial responses to altered O2 supply, our understanding of the molecular mechanisms involved is still limited. Here, we aim to review the current literature regarding the role that O2 plays in regulating intestinal transport processes and to highlight areas of research that still need to be addressed.
Collapse
Affiliation(s)
- Joseph B J Ward
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Simon J Keely
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle NSW, Australia
| | - Stephen J Keely
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
12
|
Carra GE, Ibáñez JE, Saraví FD. The effect of acute hypoxia on short-circuit current and epithelial resistivity in biopsies from human colon. Dig Dis Sci 2013; 58:2499-506. [PMID: 23695875 DOI: 10.1007/s10620-013-2711-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 05/02/2013] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS In isolated colonic mucosa, decreases in short-circuit current (ISC) and transepithelial resistivity (RTE) occur when hypoxia is either induced at both sides or only at the serosal side of the epithelium. We assessed in human colon biopsies the sensitivity to serosal-only hypoxia and mucosal-only hypoxia and whether Na, K-ATPase blockade with ouabain interacts with hypoxia. MATERIALS AND METHODS Biopsy material from patients undergoing colonoscopy was mounted in an Ussing chamber for small samples (1-mm2 window). In a series of experiments we assessed viability and the electrical response to the mucolytic, dithiothreitol (1 mmol/l). In a second series, we explored the effect of hypoxia without and with ouabain. In a third series, we evaluated the response to a cycle of hypoxia and reoxygenation induced at the serosal or mucosal side while keeping the oxygenation of the opposite side. RESULTS 1st series: Dithiothreitol significantly decreased the unstirred layer and ISC but increased RTE. 2nd series: Both hypoxia and ouabain decreased ISC, but ouabain increased RTE and this effect on RTE prevailed even during hypoxia. 3rd series: Mucosal hypoxia caused lesser decreases of ISC and RTE than serosal hypoxia; in the former, but not in the latter, recovery was complete upon reoxygenation. CONCLUSIONS In mucolytic concentration, dithiothreitol modifies ISC and RTE. Oxygen supply from the serosal side is more important to sustain ISC and RTE in biopsy samples. The different effect of hypoxia and Na, K-ATPase blockade on RTE suggests that their depressing effect on ISC involves different mechanisms.
Collapse
Affiliation(s)
- Graciela E Carra
- Faculty of Medical Sciences, Institute of Physiology, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | | | | |
Collapse
|