1
|
De Man R, McDonough JE, Adams TS, Manning EP, Myers G, Vos R, Ceulemans L, Dupont L, Vanaudenaerde BM, Wuyts WA, Rosas IO, Hagood JS, Ambalavanan N, Niklason L, Hansen KC, Yan X, Kaminski N. A Multi-omic Analysis of the Human Lung Reveals Distinct Cell Specific Aging and Senescence Molecular Programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.536722. [PMID: 37131739 PMCID: PMC10153177 DOI: 10.1101/2023.04.19.536722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Age is a major risk factor for lung disease. To understand the mechanisms underlying this association, we characterized the changing cellular, genomic, transcriptional, and epigenetic landscape of lung aging using bulk and single-cell RNAseq (scRNAseq) data. Our analysis revealed age-associated gene networks that reflected hallmarks of aging, including mitochondrial dysfunction, inflammation, and cellular senescence. Cell type deconvolution revealed age-associated changes in the cellular composition of the lung: decreased alveolar epithelial cells and increased fibroblasts and endothelial cells. In the alveolar microenvironment, aging is characterized by decreased AT2B cells and reduced surfactant production, a finding that was validated by scRNAseq and IHC. We showed that a previously reported senescence signature, SenMayo, captures cells expressing canonical senescence markers. SenMayo signature also identified cell-type specific senescence-associated co-expression modules that have distinct molecular functions, including ECM regulation, cell signaling, and damage response pathways. Analysis of somatic mutations showed that burden was highest in lymphocytes and endothelial cells and was associated with high expression of senescence signature. Finally, aging and senescence gene expression modules were associated with differentially methylated regions, with inflammatory markers such as IL1B, IL6R, and TNF being significantly regulated with age. Our findings provide new insights into the mechanisms underlying lung aging and may have implications for the development of interventions to prevent or treat age-related lung diseases.
Collapse
Affiliation(s)
- Ruben De Man
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John E McDonough
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Taylor S Adams
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Edward P Manning
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Greg Myers
- Department of Pediatrics (Division of Pulmonology) and Marsico Lung Institute, University of North Carolina at Chapel Hill
| | - Robin Vos
- Department of Respiratory Medicine, KU Leuven, Leuven, Belgium
| | | | - Lieven Dupont
- Department of Respiratory Medicine, KU Leuven, Leuven, Belgium
| | | | - Wim A Wuyts
- Department of Respiratory Medicine, KU Leuven, Leuven, Belgium
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - James S. Hagood
- Department of Pediatrics (Division of Pulmonology) and Marsico Lung Institute, University of North Carolina at Chapel Hill
| | | | - Laura Niklason
- Department of Anesthesiology, Yale School of Medicine; and Humacyte Global Inc
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xiting Yan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Budamagunta V, Foster TC, Zhou D. Cellular senescence in lymphoid organs and immunosenescence. Aging (Albany NY) 2021; 13:19920-19941. [PMID: 34382946 PMCID: PMC8386533 DOI: 10.18632/aging.203405] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Immunosenescence is a multi-faceted phenomenon at the root of age-associated immune dysfunction. It can lead to an array of pathological conditions, including but not limited to a decreased capability to surveil and clear senescent cells (SnCs) and cancerous cells, an increased autoimmune responses leading to tissue damage, a reduced ability to tackle pathogens, and a decreased competence to illicit a robust response to vaccination. Cellular senescence is a phenomenon by which oncogene-activated, stressed or damaged cells undergo a stable cell cycle arrest. Failure to efficiently clear SnCs results in their accumulation in an organism as it ages. SnCs actively secrete a myriad of molecules, collectively called senescence-associated secretory phenotype (SASP), which are factors that cause dysfunction in the neighboring tissue. Though both cellular senescence and immunosenescence have been studied extensively and implicated in various pathologies, their relationship has not been greatly explored. In the wake of an ongoing pandemic (COVID-19) that disproportionately affects the elderly, immunosenescence as a function of age has become a topic of great importance. The goal of this review is to explore the role of cellular senescence in age-associated lymphoid organ dysfunction and immunosenescence, and provide a framework to explore therapies to rejuvenate the aged immune system.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Thomas C Foster
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Schiffers C, Lundblad LKA, Hristova M, Habibovic A, Dustin CM, Daphtary N, Aliyeva M, Seward DJ, Janssen-Heininger YMW, Wouters EFM, Reynaert NL, van der Vliet A. Downregulation of DUOX1 function contributes to aging-related impairment of innate airway injury responses and accelerated senile emphysema. Am J Physiol Lung Cell Mol Physiol 2021; 321:L144-L158. [PMID: 33951398 DOI: 10.1152/ajplung.00021.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aging is associated with a gradual loss of lung function due to increased cellular senescence, decreased regenerative capacity, and impaired innate host defense. One important aspect of innate airway epithelial host defense to nonmicrobial triggers is the secretion of alarmins such as IL-33 and activation of type 2 inflammation, which were previously found to depend on activation of the NADPH oxidase (NOX) homolog DUOX1, and redox-dependent signaling pathways that promote alarmin secretion. Here, we demonstrate that normal aging of C57BL/6J mice resulted in markedly decreased lung innate epithelial type 2 responses to exogenous triggers such as the airborne allergen Dermatophagoides pteronyssinus, which was associated with marked downregulation of DUOX1, as well as DUOX1-mediated redox-dependent signaling. DUOX1 deficiency was also found to accelerate age-related airspace enlargement and decline in lung function but did not consistently affect other features of lung aging such as senescence-associated inflammation. Intriguingly, observations of age-related DUOX1 downregulation and enhanced airspace enlargement due to DUOX1 deficiency in C57BL/6J mice, which lack a functional mitochondrial nicotinamide nucleotide transhydrogenase (NNT), were much less dramatic in C57BL/6NJ mice with normal NNT function, although the latter mice also displayed impaired innate epithelial injury responses with advancing age. Overall, our findings indicate a marked aging-dependent decline in (DUOX1-dependent) innate airway injury responses to external nonmicrobial triggers, but the impact of aging on DUOX1 downregulation and its significance for age-related senile emphysema development was variable between different C57BL6 substrains, possibly related to metabolic alterations due to differences in NNT function.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lennart K A Lundblad
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Nirav Daphtary
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Minara Aliyeva
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.,Ludwig Boltzman Institute for Lung Health, Vienna, Austria
| | - Niki L Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
4
|
Koloko Ngassie ML, Brandsma CA, Gosens R, Prakash YS, Burgess JK. The Stress of Lung Aging: Endoplasmic Reticulum and Senescence Tête-à-Tête. Physiology (Bethesda) 2021; 36:150-159. [PMID: 33904785 DOI: 10.1152/physiol.00039.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Beyond the structural changes, features including the dysregulation of endoplasmic reticulum (ER) stress response and increased senescence characterize the lung aging. ER stress response and senescence have been reported to be induced by factors like cigarette smoke. Therefore, deciphering the mechanisms underlying ER and senescent pathways interaction has become a challenge. In this review we highlight the known and unknown regarding ER stress response and senescence and their cross talk in aged lung.
Collapse
Affiliation(s)
- M L Koloko Ngassie
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - C A Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - R Gosens
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD; University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - J K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| |
Collapse
|
5
|
Woldhuis RR, de Vries M, Timens W, van den Berge M, Demaria M, Oliver BGG, Heijink IH, Brandsma CA. Link between increased cellular senescence and extracellular matrix changes in COPD. Am J Physiol Lung Cell Mol Physiol 2020; 319:L48-L60. [PMID: 32460521 DOI: 10.1152/ajplung.00028.2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with features of accelerated aging, including cellular senescence, DNA damage, oxidative stress, and extracellular matrix (ECM) changes. We propose that these features are particularly apparent in patients with severe, early-onset (SEO)-COPD. Whether fibroblasts from COPD patients display features of accelerated aging and whether this is also present in relatively young SEO-COPD patients is unknown. Therefore, we aimed to determine markers of aging in (SEO)-COPD-derived lung fibroblasts and investigate the impact on ECM. Aging hallmarks and ECM markers were analyzed in lung fibroblasts from SEO-COPD and older COPD patients and compared with fibroblasts from matched non-COPD groups (n = 9-11 per group), both at normal culture conditions and upon Paraquat-induced senescence. COPD-related differences in senescence and ECM expression were validated in lung tissue. Higher levels of cellular senescence, including senescence-associated β-galactosidase (SA-β-gal)-positive cells (19% for COPD vs. 13% for control) and p16 expression, DNA damage (γ-H2A.X-positive nuclei), and oxidative stress (MGST1) were detected in COPD compared with control-derived fibroblasts. Most effects were also different in SEO-COPD, with SA-β-gal-positive cells only being significant in SEO-COPD vs. matched controls. Lower decorin expression in COPD-derived fibroblasts correlated with higher p16 expression, and this association was confirmed in lung tissue. Paraquat treatment induced cellular senescence along with clear changes in ECM expression, including decorin. Fibroblasts from COPD patients, including SEO-COPD, display higher levels of cellular senescence, DNA damage, and oxidative stress. The association between cellular senescence and ECM expression changes may suggest a link between accelerated aging and ECM dysregulation in COPD.
Collapse
Affiliation(s)
- Roy R Woldhuis
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.,University of Technology Sydney, Sydney, Australia
| | - Maaike de Vries
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Brian G G Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.,University of Technology Sydney, Sydney, Australia
| | - Irene H Heijink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Serum from patients with chronic obstructive pulmonary disease induces senescence-related phenotype in bronchial epithelial cells. Sci Rep 2018; 8:12940. [PMID: 30154415 PMCID: PMC6113312 DOI: 10.1038/s41598-018-31037-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a risk factor for the development of lung cancer (LC). The mechanism of interplay between both diseases remains poorly recognized. This report examines whether COPD may cause a senescence response in human bronchial epithelial cells (HBECs), leading to the progression of LC in a senescence-dependent manner. The results show that HBECs exposed to serum from COPD patients manifest increased expression of markers of cellular senescence, including senescence-associated β-galactosidase (SA-β-Gal), histone γ-H2A.X, and p21, as compared to the serum of healthy donors. This effect coincides with an increased generation of reactive oxygen species by these cells. The clinical analysis demonstrated that COPD may cause the senescence, independently on smoking status and disease severity. The concentrations of CXCL5, CXCL8/IL-8 and VEGF were higher in conditioned medium (CM) harvested from HBECs after exposure to COPD serum as compared to controls. In addition, CM treated with serum from COPD patients stimulated adhesion of A549 cancer cells to HBECs, as well as accelerating cancer cell proliferation and migration in vitro. Collectively, these findings indicate that COPD may induce senescence-like changes in HBECs and thus enhance some processes associated with the progression of lung cancer.
Collapse
|
7
|
Mikuła-Pietrasik J, Stryczyński Ł, Uruski P, Tykarski A, Książek K. Procancerogenic activity of senescent cells: A case of the peritoneal mesothelium. Ageing Res Rev 2018; 43:1-9. [PMID: 29355719 DOI: 10.1016/j.arr.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 01/18/2023]
Abstract
Human peritoneal mesothelial cells belong to a narrow group of somatic cells in which both the triggers and the mechanisms of senescence have already been well defined. Importantly, senescent mesothelial cells have been found in the peritoneal cavity in vivo. From a clinical point of view, peritoneal mesothelial cells have been recognized as playing a critical role in the intraperitoneal development of tumor metastases. The pro-cancerogenic behavior of mesothelial cells is even more pronounced when the cells exhaust their proliferative capacity and become senescent. In this review, we summarize the current state of art regarding the contribution of peritoneal mesothelial cells in the progression of ovarian, colorectal, and pancreatic carcinomas, with particular attention paid to the cancer-promoting activity of their senescent counterparts. Moreover, we delineate the mechanisms, mediators, and signaling pathways that are engaged by the senescent mesothelial cells to support such vital elements of cancer progression as adhesion, proliferation, migration, invasion, epithelial-mesenchymal transition, and angiogenesis. Finally, we discuss the experimental evidence regarding both natural and synthetic compounds that may either prevent or restrict cancer development by delaying senescence of mesothelial cells.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Łukasz Stryczyński
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| |
Collapse
|
8
|
Reduced proliferation capacity of lung cells in chronic obstructive pulmonary disease. Z Gerontol Geriatr 2018; 52:249-255. [DOI: 10.1007/s00391-018-1377-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
|
9
|
Liu Q, Li H, Wang Q, Zhang Y, Wang W, Dou S, Xiao W. Increased expression of TROP2 in airway basal cells potentially contributes to airway remodeling in chronic obstructive pulmonary disease. Respir Res 2016; 17:159. [PMID: 27887617 PMCID: PMC5124273 DOI: 10.1186/s12931-016-0463-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 11/01/2016] [Indexed: 01/10/2023] Open
Abstract
Background The airway epithelium of chronic obstructive pulmonary disease (COPD) patients undergoes aberrant repair and remodeling after repetitive injury following exposure to environmental factors. Abnormal airway regeneration observed in COPD is thought to originate in the stem/progenitor cells of the airway epithelium, the basal cells (BCs). However, the molecular mechanisms underlying these changes remain unknown. Here, trophoblast cell surface antigen 2 (TROP2), a protein implicated in the regulation of stem cell activity, was examined in lung tissue samples from COPD patients. Methods The expression of TROP2 and hyperplasia index Ki67 was assessed in lung epithelium specimens from non-smokers (n = 24), smokers (n = 24) and smokers with COPD (n = 24). Primary airway BCs were isolated by bronchoscopy from healthy individuals and COPD patients and subsequently transfected with pcDNA3.1-TROP2 or siRNA sequence in vitro. The functional consequences of TROP2 overexpression in BCs were explored. Results Immunohistochemistry and immunofluorescence revealed increased TROP2 expression in airway BCs in smokers with COPD compared to nonsmokers and smokers without COPD, and staining was highly localized to hyperplastic regions containing Ki67 positive cells. TROP2 expression was also inversely correlated with airflow limitation in patients with COPD (r = −0.53, P < 0.01). pcDNA3.1-TROP2-BCs in vitro exhibited improved proliferation with activation of ERK1/2 phosphorylation signaling pathway. In parallel, changes in vimentin and E-cadherin in pcDNA3.1-TROP2-BCs were consistent with an epithelial-mesenchymal transition (EMT)-like change, and secretion of inflammatory factors IL-1β, IL-8 and IL-6 was increased. Moreover, down-regulation of TROP2 by siRNA significantly attenuated the proliferation of BCs derived from COPD patients. EMT-like features and cytokine levels of COPD basal cells were also weakened following the down-regulation of TROP2. Conclusion The results indicate that TROP2 may play a crucial role in COPD by affecting BC function and thus airway remodeling through increased BC hyperplasia, EMT-like change, and introduction of inflammatory molecules into the microenvironment.
Collapse
Affiliation(s)
- Qixiao Liu
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, China
| | - Haijun Li
- Department of Cadre Health Care, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, China
| | - Yuke Zhang
- Department of Cadre Health Care, Qianfoshan Hospital, 16766 Jingshi Road, Jinan, China
| | - Wei Wang
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, China
| | - Shuang Dou
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, China
| | - Wei Xiao
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, China.
| |
Collapse
|
10
|
Cellular senescence: a hitchhiker’s guide. Hum Cell 2015; 28:51-64. [DOI: 10.1007/s13577-015-0110-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/03/2015] [Indexed: 12/21/2022]
|
11
|
Agarwal AR, Yin F, Cadenas E. Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells. Am J Respir Cell Mol Biol 2014; 51:284-93. [PMID: 24625219 DOI: 10.1165/rcmb.2013-0523oc] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoke (CS)-induced alveolar destruction and energy metabolism changes are known contributors to the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examines the effect of CS exposure on metabolism in alveolar type II cells. Male A/J mice (8 wk old) were exposed to CS generated from a smoking machine for 4 or 8 weeks, and a recovery group was exposed to CS for 8 weeks and allowed to recover for 2 weeks. Alveolar type II cells were isolated from air- or CS- exposed mice. Acute CS exposure led to a reversible airspace enlargement in A/J mice as measured by the increase in mean linear intercept, indicative of alveolar destruction. The effect of CS exposure on cellular respiration was studied using the XF Extracellular Flux Analyzer. A decrease in respiration while metabolizing glucose was observed in the CS-exposed group, indicating altered glycolysis that was compensated by an increase in palmitate utilization; palmitate utilization was accompanied by an increase in the expression of CD36 and carnitine-palmitoyl transferase 1 in type II alveolar cells for the transport of palmitate into the cells and into mitochondria, respectively. The increase in palmitate use for energy production likely affects the surfactant biosynthesis pathway, as evidenced by the decrease in phosphatidylcholine levels and the increase in phospholipase A2 activity after CS exposure. These findings help our understanding of the mechanism underlying the surfactant deficiency observed in smokers and provide a target to delay the onset of COPD.
Collapse
Affiliation(s)
- Amit R Agarwal
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | | | | |
Collapse
|
12
|
Stolzing A, Haendeler J. Aging—mechanisms, models, and translation. Z Gerontol Geriatr 2013; 46:612. [DOI: 10.1007/s00391-013-0528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|