1
|
Meng R, Pei X, Yang D, Shang J, Cao Y, Wei S, Zhu Y. Consequences of Exposure to Famine Exposure on the Later Life eGFR Decline Among Survivors of the Great Chinese Famine: A Retrospective Study. J Ren Nutr 2025; 35:35-47. [PMID: 38821451 DOI: 10.1053/j.jrn.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
OBJECTIVES Chronic kidney disease (CKD) significantly contributes to the socio-economic burden both in China and worldwide. Previous research has shown that experiencing childhood famine is linked to various chronic conditions like diabetes, hypertension, and proteinuria. However, the long-term effects of early-life famine exposure on adult kidney function remain unclear. This study investigates whether exposure to the Chinese Great Famine (1959-1962) is associated with a decline in glomerular filtration rate (GFR) later in life. DESIGN AND METHODS China Health and Retirement Longitudinal Study is a population-based observational study. We analyzed data from 8,828 participants in the 2011-2012 baseline survey, updated in 2014. Participants were categorized based on their birth year into fetal-exposed (1959-1962), childhood-exposed (1949-1958), adolescence/adult-exposed (1912-1948), and nonexposed (1963-1989) groups. The estimated GFR (eGFR) was calculated using the CKD-EPI-Cr-Cys equation (2021), with CKD defined as an eGFR below 60 mL/min/1.73 m2. RESULTS Average eGFR values were 103.0, 96.8, 91.2, and 76.3 mL/min/1.73 m2 for the fetal-exposed, childhood-exposed, adolescence/adult-exposed, and nonexposed groups, respectively. The eGFR in the exposed groups was significantly lower compared to the nonexposed group. Specifically, famine exposure correlated with a lower eGFR (coefficient estimates [CE] -9.14, 95% confidence interval [CI] -9.46, -8.82), with the strongest association observed in the adolescence/adult-exposed group (CE -26.74, 95% CI -27.75, -25.74). Adjusting for variables such as demographics, physical and laboratory tests, complications, and personal habits like smoking and drinking did not qualitatively alter this association (CE -1.38, 95% CI -1.72, -1.04). Further stratification by sex, body mass index, alcohol consumption history, hypertension, diabetes, Center for Epidemiologic Studies Depression score, and education level showed that the association remained consistent. CONCLUSIONS Exposure to famine during different life stages can have enduring effects on GFR decline in humans.
Collapse
Affiliation(s)
- Ruichun Meng
- Department of Nephrology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Department of Nephrology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xuefeng Pei
- Department of Intensive Care Unit, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Dongliang Yang
- Department of Mathematics, Cangzhou Medical College, Cangzhou, China
| | - Juanjuan Shang
- Department of Nursing, Cangzhou Medical College, Cangzhou, China
| | - Yangjian Cao
- Department of Nephrology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shengwei Wei
- Department of Urology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| | - Ye Zhu
- Department of Nephrology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
2
|
Nossar LF, Lopes JA, Pereira-Acácio A, Costa-Sarmento G, Rachid R, Wendt CHC, Miranda K, Galina A, Rodrigues-Ferreira C, Muzi-Filho H, Vieyra A. Chronic undernutrition impairs renal mitochondrial respiration accompanied by intense ultrastructural damage in juvenile rats. Biochem Biophys Res Commun 2024; 739:150583. [PMID: 39182354 DOI: 10.1016/j.bbrc.2024.150583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
This study investigated whether chronic undernutrition alters the mitochondrial structure and function in renal proximal tubule cells, thus impairing fluid transport and homeostasis. We previously showed that chronic undernutrition downregulates the renal proximal tubules (Na++K+)ATPase, the main molecular machine responsible for fluid transport and ATP consumption. Male rats received a multifactorial deficient diet, the so-called Regional Basic Diet (RBD), mimicking those used in impoverished regions worldwide, from weaning to a juvenile age (3 months). The diet has a low content (8 %) of poor-quality proteins, low lipids, and no vitamins compared to control (CTR). We investigated citrate synthase activity, mitochondrial respiration (oxygraphy) in phosphorylating and non-phosphorylating conditions with different substrates/inhibitors, potential across the internal membrane (Δψ), and anion superoxide/H2O2 formation. The data were correlated with ultrastructural alterations evaluated using transmission electron microscopy (TEM) and focused ion beam scanning electron microscopy (FIB-SEM). Citrate synthase activity decreased (∼50 %) in RBD rats, accompanied by a similar reduction in respiration in non-phosphorylating conditions, maximum respiratory capacity, and ATP synthesis. The Δψ generation and its dissipation after carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone remained unmodified in the survival mitochondria. H2O2 production increased (∼100 %) after Complex II energization. TEM demonstrated intense matrix vacuolization and disruption of cristae junctions in a subpopulation of RBD mitochondria, which was also demonstrated in the 3D analysis of FIB-SEM tomography. In conclusion, chronic undernutrition impairs mitochondrial functions in renal proximal tubules, with profound alterations in the matrix and internal membrane ultrastructure that culminate with the compromise of ATP supply for transport processes.
Collapse
Affiliation(s)
- Luiz F Nossar
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jarlene A Lopes
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Amaury Pereira-Acácio
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil
| | - Glória Costa-Sarmento
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Rachel Rachid
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Camila H C Wendt
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Kildare Miranda
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Antonio Galina
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Clara Rodrigues-Ferreira
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Humberto Muzi-Filho
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Adalberto Vieyra
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil; National Institute of Science and Technology for Regenerative Medicine/REGENERA, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
3
|
Huang M, Zeng X, Dai Z, Huang Y, Luo C, Tan X, Jiang Z, Fang X, Xu Y. Association between early exposure to famine and risk of renal impairment in adulthood: a systematic review and meta-analysis. Nutr Diabetes 2024; 14:84. [PMID: 39384564 PMCID: PMC11464504 DOI: 10.1038/s41387-024-00342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
Malnutrition early in life increases the later-life risk of noncommunicable diseases, and previous epidemiologic studies have found a link between famine and renal impairment, but no consensus has been reached. This meta-analysis and systematic review were conducted to assess the correlation between early-life famine exposure and the risk of developing renal impairment. Search in Embase, Scopus, Web of Science, PubMed, and Cochrane using keywords that report the correlation between early famine exposure and renal function indicators. RevMan and Stata software were used for data analysis. This meta-analysis contained twelve observational studies. The findings demonstrated a link between prenatal famine exposure and a higher risk of developing chronic kidney disease (CKD) (odds ratio (OR) = 1.73, 95% confidence interval (CI): 1.25, 2.39), a decreased estimated glomerular filtration rate (eGFR) (mean difference (MD) = -10.05, 95% CI: -11.64, -8.46), and increased serum creatinine (Scr) (MD = 0.02, 95% CI: 0.01, 0.03) compared to unexposed individuals. Famine exposure in childhood was associated with decreased eGFR (MD = -9.43, 95% CI: -12.01, -6.84) and increased Scr (MD = 0.03, 95% CI: 0.01, 0.04), but not with CKD (OR = 0.980, 95% CI: 0.53, 1.81). Famine exposure in adolescence and adulthood was associated with decreased eGFR (MD = -20.73, 95% CI: -22.40, -19.06). Evidence certainty was deemed to be of low or extremely low quality. Famine exposure early in life could pose a greater risk of developing renal impairment in adulthood, but this outcome may be driven by uncontrolled age differences between famine-births and post-famine-births (unexposed).
Collapse
Affiliation(s)
- Mengting Huang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, China
| | - Xin Zeng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, China
| | - Zhuojun Dai
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, China
| | - Yuqing Huang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, China
| | - Changfang Luo
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, China
| | - Xiaozhen Tan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, China
| | - Zongzhe Jiang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, China
| | - Xia Fang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China.
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China.
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Simões-Alves AC, Arcoverde-Mello APFC, Campos JDO, Wanderley AG, Leandro CVG, da Costa-Silva JH, de Oliveira Nogueira Souza V. Cardiometabolic Effects of Postnatal High-Fat Diet Consumption in Offspring Exposed to Maternal Protein Restriction In Utero. Front Physiol 2022; 13:829920. [PMID: 35620602 PMCID: PMC9127546 DOI: 10.3389/fphys.2022.829920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/29/2022] [Indexed: 01/01/2023] Open
Abstract
In recent decades, the high incidence of infectious and parasitic diseases has been replaced by a high prevalence of chronic and degenerative diseases. Concomitantly, there have been profound changes in the behavior and eating habits of families around the world, characterizing a "nutritional transition" phenomenon, which refers to a shift in diet in response to modernization, urbanization, or economic development from undernutrition to the excessive consumption of hypercaloric and ultra-processed foods. Protein malnutrition that was a health problem in the first half of the 20th century has now been replaced by high-fat diets, especially diets high in saturated fat, predisposing consumers to overweight and obesity. This panorama points us to the alarming coexistence of both malnutrition and obesity in the same population. In this way, individuals whose mothers were undernourished early in pregnancy and then exposed to postnatal hyperlipidic nutrition have increased risk factors for developing metabolic dysfunction and cardiovascular diseases in adulthood. Thus, our major aim was to review the cardiometabolic effects resulting from postnatal hyperlipidic diets in protein-restricted subjects, as well as to examine the epigenetic repercussions occasioned by the nutritional transition.
Collapse
Affiliation(s)
- Aiany Cibelle Simões-Alves
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | - Ana Paula Fonseca Cabral Arcoverde-Mello
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | - Jéssica de Oliveira Campos
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | | | - Carol Virginia Gois Leandro
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | - João Henrique da Costa-Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| | - Viviane de Oliveira Nogueira Souza
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco UFPE, Vitória de Santo Antão, Brazil
| |
Collapse
|
5
|
Qin Q, Chang K, Wu Q, Fan W, Gu Y, Niu J, Liu X. Undernutrition when young and the risk of poor renal function in adulthood in women with diabetes in Shanghai, China. J Int Med Res 2021; 49:3000605211016671. [PMID: 34057836 PMCID: PMC8170295 DOI: 10.1177/03000605211016671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective To evaluate the effect of undernutrition when young on the risk of poor renal
function in adulthood in women with diabetes mellitus. Methods We studied diabetic women born between 1921 and 1958 who were exposed to the
1959-to-1962 Chinese famine when they were 0 to 37 years old. Exposure age
was classified as young adulthood (18 to 37 years), adolescence (10 to 17
years), or childhood (0 to 9 years). The Adolescence group, which was
provided with the largest amount of food during the famine, was used as the
control group, and variance and binary logistic regression analyses were
performed. Results The prevalences of low estimated glomerular filtration rate (eGFR) in the
Childhood, Adolescence, and Young adulthood groups were 5.26%, 22.39%, and
79.24%, respectively. The risk of low eGFR for the Young adulthood group
(odds ratio [OR] 1.65, 95% confidence interval [CI] 1.10, 2.48), but not for
the Childhood group (OR 1.10, 95% CI 0.68, 1.78), was higher than that for
the Adolescence group after adjustment for potential confounders. Conclusions Undernutrition during young adulthood significantly increases the risk of
renal dysfunction in adult women with diabetes. Therefore, the nutrition of
less affluent young women should be improved.
Collapse
Affiliation(s)
- Qiaojing Qin
- Department of Nephrology, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Kaili Chang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Wu
- Department of Nephrology, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Weifeng Fan
- Department of Nephrology, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yong Gu
- Department of Nephrology, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.,Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianying Niu
- Department of Nephrology, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.,Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Xueguang Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Jannuzzi LB, Pereira-Acacio A, Ferreira BSN, Silva-Pereira D, Veloso-Santos JPM, Alves-Bezerra DS, Lopes JA, Costa-Sarmento G, Lara LS, Vieira LD, Abadie-Guedes R, Guedes RCA, Vieyra A, Muzi-Filho H. Undernutrition - thirty years of the Regional Basic Diet: the legacy of Naíde Teodósio in different fields of knowledge. Nutr Neurosci 2021; 25:1973-1994. [PMID: 33871318 DOI: 10.1080/1028415x.2021.1915631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Undernutrition is characterized by an imbalance of essential nutrients with an insufficient nutritional intake, a disorder in which the clinical manifestations in most cases are the result of the economic and social context in which the individual lives. In 1990, the study by the medical and humanitarian Naíde Teodósio (1915-2005) and coworkers, which formulated the Regional Basic Diet (RBD) model for inducing undernutrition, was published. This diet model took its origin from the observation of the dietary habits of families that inhabited impoverished areas from the Pernambuco State. RBD mimics an undernutrition framework that extends not only to the Brazilian population, but to populations in different regions worldwide. The studies based on RBD-induced deficiencies provide a better understanding of the impact of undernutrition on the pathophysiological mechanisms underlying the most diverse prevalent diseases. Indexed papers that are analyzed in this review focus on the importance of using RBD in different areas of knowledge. These papers reflect a new paradigm in translational medicine: they show how the study of pathology using the RBD model in animals over the past 30 years has and still can help scientists today, shedding light on the mechanisms of prevalent diseases that affect impoverished populations.
Collapse
Affiliation(s)
- Larissa B Jannuzzi
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amaury Pereira-Acacio
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna S N Ferreira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Silva-Pereira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João P M Veloso-Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danilo S Alves-Bezerra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jarlene A Lopes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glória Costa-Sarmento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucienne S Lara
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leucio D Vieira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Ricardo Abadie-Guedes
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Rubem C A Guedes
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology of Regenerative Medicine/REGENERA, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Barbosa SDS, Mello APDFAC, Nogueira VDO, da Silva IF, de Melo PED, dos Santos CR, Costa‐Silva JHD, Araújo AV. Consumption of a high‐fat diet does not potentiate the deleterious effects on lipid and protein levels and body development in rats subjected to maternal protein restriction. Clin Exp Pharmacol Physiol 2019; 47:412-421. [DOI: 10.1111/1440-1681.13210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Sávio dos Santos Barbosa
- Nucleus of Physical Education and Sport Sciences Universidade Federal de Pernambuco (CAV/UFPE) Vitória de Santo Antão Brazil
| | | | - Viviane de Oliveira Nogueira
- Nucleus of Physical Education and Sport Sciences Universidade Federal de Pernambuco (CAV/UFPE) Vitória de Santo Antão Brazil
| | - Ially Fabiane da Silva
- Nucleus of Physical Education and Sport Sciences Universidade Federal de Pernambuco (CAV/UFPE) Vitória de Santo Antão Brazil
| | | | - Carlos Renato dos Santos
- Nucleus of Public Health Centro Acadêmico de Vitória Universidade Federal de Pernambuco (CAV/UFPE) Vitória de Santo Antão Brazil
| | - João Henrique da Costa‐Silva
- Nucleus of Physical Education and Sport Sciences Universidade Federal de Pernambuco (CAV/UFPE) Vitória de Santo Antão Brazil
| | - Alice Valença Araújo
- Nucleus of Public Health Centro Acadêmico de Vitória Universidade Federal de Pernambuco (CAV/UFPE) Vitória de Santo Antão Brazil
| |
Collapse
|
8
|
Nogueira V, Brito-Alves J, Fontes D, Oliveira L, Lucca W, Tourneur Y, Wanderley A, da Silva GSF, Leandro C, Costa-Silva JH. Carotid body removal normalizes arterial blood pressure and respiratory frequency in offspring of protein-restricted mothers. Hypertens Res 2018; 41:1000-1012. [PMID: 30242293 DOI: 10.1038/s41440-018-0104-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/12/2018] [Accepted: 03/26/2018] [Indexed: 12/25/2022]
Abstract
The aim of this study is to evaluate the short-term and long-term effects elicited by carotid body removal (CBR) on ventilatory function and the development of hypertension in the offspring of malnourished rats. Wistar rats were fed a normo-protein (NP, 17% casein) or low-protein (LP, 8% casein) diet during pregnancy and lactation. At 29 days of age, the animals were submitted to CBR or a sham surgery, according to the following groups: NP-cbr, LP-cbr, NP-sham, or LP-sham. In the short-term, at 30 days of age, the respiratory frequency (RF) and immunoreactivity for Fos on the retrotrapezoid nucleus (RTN; brainstem site containing CO2 sensitive neurons) after exposure to CO2 were evaluated. In the long term, at 90 days of age, arterial pressure (AP), heart rate (HR), and cardiovascular variability were evaluated. In the short term, an increase in the baseline RF (~6%), response to CO2 (~8%), and Fos in the RTN (~27%) occurred in the LP-sham group compared with the NP-sham group. Interestingly, the CBR in the LP group normalized the RF in response to CO2 as well as RTN cell activation. In the long term, CBR reduced the mean AP by ~20 mmHg in malnourished rats. The normalization of the arterial pressure was associated with a decrease in the low-frequency (LF) oscillatory component of AP (~58%) and in the sympathetic tonus to the cardiovascular system (~29%). In conclusion, carotid body inputs in malnourished offspring may be responsible for the following: (i) enhanced respiratory frequency and CO2 chemosensitivity in early life and (ii) the production of autonomic imbalance and the development of hypertension.
Collapse
Affiliation(s)
- Viviane Nogueira
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Jose Brito-Alves
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Danilo Fontes
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Larissa Oliveira
- Department of Morphology, Federal University of Sergipe, Aracajú, SE, Brazil
| | - Waldecy Lucca
- Department of Morphology, Federal University of Sergipe, Aracajú, SE, Brazil
| | - Yves Tourneur
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil.,Centre National de la Recherche Scientifique, Université Claude Bernard, Lyon 1, Lyon, France
| | - Almir Wanderley
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Glauber S F da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carol Leandro
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - João Henrique Costa-Silva
- Department of Physical Education and Sports Sciences, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
9
|
de Brito Alves JL, Costa-Silva JH. Maternal protein malnutrition induced-hypertension: New evidence about the autonomic and respiratory dysfunctions and epigenetic mechanisms. Clin Exp Pharmacol Physiol 2017; 45:422-429. [PMID: 29164748 DOI: 10.1111/1440-1681.12892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
Abstract
Maternal protein malnutrition during the critical stages of development (pregnancy, lactation and first infancy) can lead to adult hypertension. Studies have shown that renal and cardiovascular dysfunctions can be associated to the development of hypertension in humans and rats exposed to maternal protein malnutrition. The etiology of hypertension, however, includes a complex network involved in central and peripheral blood pressure control. Recently, the hyperactivity of the sympathetic nervous system in protein-restricted rats has been reported. Studies have shown that protein malnutrition during pregnancy and/or lactation alters blood pressure control through mechanisms that include central sympathetic-respiratory dysfunctions and epigenetic modifications, which may contribute to adult hypertension. Thus, this review will discuss the historical context, new evidences of neurogenic disruption in respiratory-sympathetic activities and possible epigenetic mechanisms involved in maternal protein malnutrition induced- hypertension.
Collapse
Affiliation(s)
- José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, UFPB, João Pessoa, Brazil
| | - João Henrique Costa-Silva
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, UFPE, Vitória de Santo Antão-PE, Brazil
| |
Collapse
|
10
|
Sampaio LS, da Silva PA, Ribeiro VS, Castro-Chaves C, Lara LS, Vieyra A, Einicker-Lamas M. Bioactive lipids are altered in the kidney of chronic undernourished rats: is there any correlation with the progression of prevalent nephropathies? Lipids Health Dis 2017; 16:245. [PMID: 29246161 PMCID: PMC5732436 DOI: 10.1186/s12944-017-0634-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/03/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Undernutrition during childhood leads to chronic diseases in adult life including hypertension, diabetes and chronic kidney disease. Here we explore the hypothesis that physiological alterations in the bioactive lipids pattern within kidney tissue might be involved in the progression of chronic kidney disease. METHODS Membrane fractions from kidney homogenates of undernourished rats (RBD) were submitted to lipid extraction and analysis by thin layer chromatography and cholesterol determination. RESULTS Kidneys from RBD rats had 25% lower cholesterol content, which disturb membrane microdomains, affecting Ca2+ homeostasis and the enzymes responsible for important lipid mediators such as phosphatidylinositol-4 kinase, sphingosine kinase, diacylglicerol kinase and phospholipase A2. We observed a decrease in phosphatidylinositol(4)-phosphate (8.8 ± 0.9 vs. 3.6 ± 0.7 pmol.mg-1.mim-1), and an increase in phosphatidic acid (2.2 ± 0.8 vs. 3.8 ± 1.3 pmol.mg-1.mim-1), being these lipid mediators involved in the regulation of key renal functions. Ceramide levels are augmented in kidney tissue from RBD rats (18.7 ± 1.4 vs. 21.7 ± 1.5 fmol.mg-1.min-1) indicating an ongoing renal lesion. CONCLUSION Results point to an imbalance in the bioactive lipid generation with further consequences to key events related to kidney function, thus contributing to the establishment of chronic kidney disease.
Collapse
Affiliation(s)
- Luzia S Sampaio
- Instituto de Biofísica Carlos Chagas Filho - CCS, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Paulo A da Silva
- Instituto de Biofísica Carlos Chagas Filho - CCS, UFRJ, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Biomedicina Translacional, Universidade do Grande Rio, Duque de Caxias, RJ, Brazil
| | | | | | - Lucienne S Lara
- Instituto de Ciências Biomédicas, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Adalberto Vieyra
- Instituto de Biofísica Carlos Chagas Filho - CCS, UFRJ, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Biomedicina Translacional, Universidade do Grande Rio, Duque de Caxias, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), UFRJ, Rio de Janeiro, Brazil
| | - M Einicker-Lamas
- Instituto de Biofísica Carlos Chagas Filho - CCS, UFRJ, Rio de Janeiro, RJ, Brazil.
- Present Address: Laboratório de Biomembranas, Sala G1-037, Bloco G, Instituto de Biofísica Carlos Chagas Filho - CCS, UFRJ, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
11
|
de Brito Alves JL, de Oliveira JMD, Ferreira DJS, Barros MADV, Nogueira VO, Alves DS, Vidal H, Leandro CG, Lagranha CJ, Pirola L, da Costa-Silva JH. Maternal protein restriction induced-hypertension is associated to oxidative disruption at transcriptional and functional levels in the medulla oblongata. Clin Exp Pharmacol Physiol 2017; 43:1177-1184. [PMID: 27612187 DOI: 10.1111/1440-1681.12667] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 01/11/2023]
Abstract
Maternal protein restriction during pregnancy and lactation predisposes the adult offspring to sympathetic overactivity and arterial hypertension. Although the underlying mechanisms are poorly understood, dysregulation of the oxidative balance has been proposed as a putative trigger of neural-induced hypertension. The aim of the study was to evaluate the association between the oxidative status at transcriptional and functional levels in the medulla oblongata and maternal protein restriction induced-hypertension. Wistar rat dams were fed a control (normal protein; 17% protein) or a low protein ((Lp); 8% protein) diet during pregnancy and lactation, and male offspring was studied at 90 days of age. Direct measurements of baseline arterial blood pressure (ABP) and heart rate (HR) were recorded in awakened offspring. In addition, quantitative RT-PCR was used to assess the mRNA expression of superoxide dismutase 1 (SOD1) and 2 (SOD2), catalase (CAT), glutathione peroxidase (GPx), Glutamatergic receptors (Grin1, Gria1 and Grm1) and GABA(A)-receptor-associated protein like 1 (Gabarapl1). Malondialdehyde (MDA) levels, CAT and SOD activities were examined in ventral and dorsal medulla. Lp rats exhibited higher ABP. The mRNA expression levels of SOD2, GPx and Gabarapl1 were down regulated in medullary tissue of Lp rats (P<.05, t test). In addition, we observed that higher MDA levels were associated to decreased SOD (approximately 45%) and CAT (approximately 50%) activities in ventral medulla. Taken together, our data suggest that maternal protein restriction induced-hypertension is associated with medullary oxidative dysfunction at transcriptional level and with impaired antioxidant capacity in the ventral medulla.
Collapse
Affiliation(s)
- José L de Brito Alves
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil.,Carmen (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, South Lyon Medical Faculty, Lyon-1 University, Oullins, France
| | - Jéssica M D de Oliveira
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Diorginis J S Ferreira
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Monique A de V Barros
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Viviane O Nogueira
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Débora S Alves
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Hubert Vidal
- Carmen (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, South Lyon Medical Faculty, Lyon-1 University, Oullins, France
| | - Carol G Leandro
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Cláudia J Lagranha
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Luciano Pirola
- Carmen (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, South Lyon Medical Faculty, Lyon-1 University, Oullins, France
| | - João H da Costa-Silva
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| |
Collapse
|
12
|
Long-term effect of a chronic low-protein multideficient diet on the heart: Hypertension and heart failure in chronically malnourished young adult rats. Int J Cardiol 2017; 238:43-56. [DOI: 10.1016/j.ijcard.2017.03.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 01/21/2023]
|
13
|
Western diet in the perinatal period promotes dysautonomia in the offspring of adult rats. J Dev Orig Health Dis 2016; 8:216-225. [PMID: 27931267 DOI: 10.1017/s2040174416000623] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The present study investigated the impact of a western diet during gestation and lactation on the anthropometry, serum biochemical, blood pressure and cardiovascular autonomic control on the offspring. Male Wistar rats were divided into two groups according to their mother's diet received: control group (C: 18% calories of lipids) and westernized group (W: 32% calories of lipids). After weaning both groups received standard diet. On the 60th day of life, blood samples were collected for the analysis of fasting glucose and lipidogram. Cardiovascular parameters were measured on the same period. Autonomic nervous system modulation was evaluated by spectrum analysis of heart rate (HR) and systolic arterial pressure (SAP). The W increased glycemia (123±2 v. 155±2 mg/dl), low-density lipoprotein (15±1 v. 31±2 mg/dl), triglycerides (49±1 v. 85±2 mg/dl), total cholesterol (75±2 v. 86±2 mg/dl), and decreased high-density lipoprotein (50±4 v. 38±3 mg/dl), as well as increased body mass (209±4 v. 229±6 g) than C. Furthermore, the W showed higher SAP (130±4 v. 157±2 mmHg), HR (357±10 v. 428±14 bpm), sympathetic modulation to vessels (2.3±0.56 v. 6±0.84 mmHg2) and LF/HF ratio (0.15±0.01 v. 0.7±0.2) than C. These findings suggest that a western diet during pregnancy and lactation leads to overweight associated with autonomic misbalance and hypertension in adulthood.
Collapse
|
14
|
Costa-Silva JH, Simões-Alves AC, Fernandes MP. Developmental Origins of Cardiometabolic Diseases: Role of the Maternal Diet. Front Physiol 2016; 7:504. [PMID: 27899895 PMCID: PMC5110566 DOI: 10.3389/fphys.2016.00504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/14/2016] [Indexed: 01/21/2023] Open
Abstract
Developmental origins of cardiometabolic diseases have been related to maternal nutritional conditions. In this context, the rising incidence of arterial hypertension, diabetes type II, and dyslipidemia has been attributed to genetic programming. Besides, environmental conditions during perinatal development such as maternal undernutrition or overnutrition can program changes in the integration among physiological systems leading to cardiometabolic diseases. This phenomenon can be understood in the context of the phenotypic plasticity and refers to the adjustment of a phenotype in response to environmental input without genetic change, following a novel, or unusual input during development. Experimental studies indicate that fetal exposure to an adverse maternal environment may alter the morphology and physiology that contribute to the development of cardiometabolic diseases. It has been shown that both maternal protein restriction and overnutrition alter the central and peripheral control of arterial pressure and metabolism. This review will address the new concepts on the maternal diet induced-cardiometabolic diseases that include the potential role of the perinatal malnutrition.
Collapse
Affiliation(s)
- João H Costa-Silva
- Departamento de Educação Física e Ciências do Esporte, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco Pernambuco, Brazil
| | - Aiany C Simões-Alves
- Departamento de Educação Física e Ciências do Esporte, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco Pernambuco, Brazil
| | - Mariana P Fernandes
- Departamento de Educação Física e Ciências do Esporte, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco Pernambuco, Brazil
| |
Collapse
|
15
|
Braz GRF, Freitas CM, Nascimento L, Pedroza AA, da Silva AI, Lagranha C. Neonatal SSRI exposure improves mitochondrial function and antioxidant defense in rat heart. Appl Physiol Nutr Metab 2015; 41:362-9. [PMID: 26939042 DOI: 10.1139/apnm-2015-0494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein restriction during prenatal, postnatal, or in both periods has a close relationship with subsequent development of cardiovascular disease in adulthood. Elevated brain levels of serotonin and its metabolites have been found in malnourished states. The aim in the present study was to investigate whether treatment with fluoxetine (Fx), a selective serotonin reuptake inhibitor, mimics the detrimental effect of low-protein diet during the perinatal period on the male rat heart. Our hypothesis is that increased circulating serotonin as a result of pharmacologic treatment with Fx leads to cardiac dysfunction similar to that observed in protein-restricted rats. Male Wistar rat pups received daily subcutaneous injection of Fx or vehicle from postnatal day 1 to postnatal day 21. Male rats were euthanized at 60 days of age and the following parameters were evaluated in the cardiac tissue: mitochondrial respiratory capacity, respiratory control ratio, reactive oxygen species (ROS) production, mitochondrial membrane potential, and biomarkers of oxidative stress and antioxidant defense. We found that Fx treatment increased mitochondrial respiratory capacity (123%) and membrane potential (212%) and decreased ROS production (55%). In addition we observed an increase in the antioxidant capacity (elevation in catalase activity (5-fold) and glutathione peroxidase (4.6-fold)). Taken together, our results suggest that Fx treatment in the developmental period positively affects the mitochondrial bioenergetics and antioxidant defense in the cardiac tissue.
Collapse
Affiliation(s)
- Glauber Ruda F Braz
- a Laboratory of Biochemistry and Exercise Biochemistry, Centro Acadêmico de Vitoria (CAV)-Federal University of Pernambuco, Vitoria de Santo Antão, Brazil.,c Biochemistry and Physiology Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Cristiane M Freitas
- a Laboratory of Biochemistry and Exercise Biochemistry, Centro Acadêmico de Vitoria (CAV)-Federal University of Pernambuco, Vitoria de Santo Antão, Brazil.,c Biochemistry and Physiology Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Luciana Nascimento
- a Laboratory of Biochemistry and Exercise Biochemistry, Centro Acadêmico de Vitoria (CAV)-Federal University of Pernambuco, Vitoria de Santo Antão, Brazil.,c Biochemistry and Physiology Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Anderson A Pedroza
- b Laboratory of Biochemistry and Exercise Biochemistry; CAV-Federal University of Pernambuco, Vitoria de Santo Antão, Brazil
| | - Aline Isabel da Silva
- b Laboratory of Biochemistry and Exercise Biochemistry; CAV-Federal University of Pernambuco, Vitoria de Santo Antão, Brazil.,d Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Claudia Lagranha
- b Laboratory of Biochemistry and Exercise Biochemistry; CAV-Federal University of Pernambuco, Vitoria de Santo Antão, Brazil.,c Biochemistry and Physiology Graduate Program, Federal University of Pernambuco, Recife, Brazil.,d Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
16
|
Costa-Silva JH, de Brito-Alves JL, Barros MADV, Nogueira VO, Paulino-Silva KM, de Oliveira-Lira A, Nobre IG, Fragoso J, Leandro CG. New Insights on the Maternal Diet Induced-Hypertension: Potential Role of the Phenotypic Plasticity and Sympathetic-Respiratory Overactivity. Front Physiol 2015; 6:345. [PMID: 26635631 PMCID: PMC4656835 DOI: 10.3389/fphys.2015.00345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/06/2015] [Indexed: 12/25/2022] Open
Abstract
Systemic arterial hypertension (SAH) is an important risk factor for cardiovascular disease and affects worldwide population. Current environment including life style coupled with genetic programming have been attributed to the rising incidence of hypertension. Besides, environmental conditions during perinatal development such as maternal malnutrition can program changes in the integration among renal, neural, and endocrine system leading to hypertension. This phenomenon is termed phenotypic plasticity and refers to the adjustment of a phenotype in response to environmental stimuli without genetic change, following a novel or unusual input during development. Human and animal studies indicate that fetal exposure to an adverse maternal environment may alter the renal morphology and physiology that contribute to the development of hypertension. Recently, it has been shown that the maternal protein restriction alter the central control of SAH by a mechanism that include respiratory dysfunction and enhanced sympathetic-respiratory coupling at early life, which may contribute to adult hypertension. This review will address the new insights on the maternal diet induced-hypertension that include the potential role of the phenotypic plasticity, specifically the perinatal protein malnutrition, and sympathetic-respiratory overactivity.
Collapse
Affiliation(s)
- João H Costa-Silva
- Department of Physical Education and Sport Science, Academic Center of Vitoria, Federal University of Pernambuco Vitória de Santo Antão, Brazil
| | - José L de Brito-Alves
- Department of Physical Education and Sport Science, Academic Center of Vitoria, Federal University of Pernambuco Vitória de Santo Antão, Brazil
| | - Monique Assis de V Barros
- Department of Physical Education and Sport Science, Academic Center of Vitoria, Federal University of Pernambuco Vitória de Santo Antão, Brazil
| | - Viviane Oliveira Nogueira
- Department of Physical Education and Sport Science, Academic Center of Vitoria, Federal University of Pernambuco Vitória de Santo Antão, Brazil
| | - Kássya M Paulino-Silva
- Department of Physical Education and Sport Science, Academic Center of Vitoria, Federal University of Pernambuco Vitória de Santo Antão, Brazil
| | - Allan de Oliveira-Lira
- Department of Physical Education and Sport Science, Academic Center of Vitoria, Federal University of Pernambuco Vitória de Santo Antão, Brazil
| | - Isabele G Nobre
- Department of Physical Education and Sport Science, Academic Center of Vitoria, Federal University of Pernambuco Vitória de Santo Antão, Brazil
| | - Jéssica Fragoso
- Department of Physical Education and Sport Science, Academic Center of Vitoria, Federal University of Pernambuco Vitória de Santo Antão, Brazil
| | - Carol G Leandro
- Department of Physical Education and Sport Science, Academic Center of Vitoria, Federal University of Pernambuco Vitória de Santo Antão, Brazil
| |
Collapse
|
17
|
Altered signaling pathways linked to angiotensin II underpin the upregulation of renal Na(+)-ATPase in chronically undernourished rats. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2357-66. [PMID: 25283821 DOI: 10.1016/j.bbadis.2014.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/17/2014] [Accepted: 09/30/2014] [Indexed: 01/23/2023]
Abstract
This study has investigated the participation of altered signaling linked to angiotensin II (Ang II) that could be associated with increased Na(+) reabsorption in renal proximal tubules during chronic undernutrition. A multideficient chow for rats (basic regional diet, BRD) was used, which mimics several human diets widely taken in developing countries. The Vmax of the ouabain-resistant Na(+)-ATPase resident in the basolateral membranes increased >3-fold (P<0.001) accompanied by an increase in Na(+) affinity from 4.0 to 0.2mM (P<0.001). BRD rats had a >3-fold acceleration of the formation of phosphorylated intermediates in the early stage of the catalytic cycle (in the E1 conformation) (P<0.001). Immunostaining showed a huge increase in Ang II-positive cells in the cortical tubulointerstitium neighboring the basolateral membranes (>6-fold, P<0.001). PKC isoforms (α, ε, λ, ζ), Ang II type 1 receptors and PP2A were upregulated in BRD rats (in %): 55 (P<0.001); 35 (P<0.01); 125, 55, 11 and 30 (P<0.001). PKA was downregulated by 55% (P<0.001). With NetPhosK 1.0 and NetPhos 2.0, we detected 4 high-score (>0.70) regulatory phosphorylation sites for PKC and 1 for PKA in the primary sequence of the Na(+)-ATPase α-subunit, which are located in domains that are key for Na(+) binding and catalysis. Therefore, chronic undernutrition stimulates tubulointerstitial activity of Ang II and impairs PKC- and PKA-mediated regulatory phosphorylation, which culminates in an exaggerated Na(+) reabsorption across the proximal tubular epithelium.
Collapse
|
18
|
Silva PA, Monnerat-Cahli G, Pereira-Acácio A, Luzardo R, Sampaio LS, Luna-Leite MA, Lara LS, Einicker-Lamas M, Panizzutti R, Madeira C, Vieira-Filho LD, Castro-Chaves C, Ribeiro VS, Paixão ADO, Medei E, Vieyra A. Mechanisms involving Ang II and MAPK/ERK1/2 signaling pathways underlie cardiac and renal alterations during chronic undernutrition. PLoS One 2014; 9:e100410. [PMID: 24983243 PMCID: PMC4077653 DOI: 10.1371/journal.pone.0100410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 05/27/2014] [Indexed: 02/07/2023] Open
Abstract
Background Several studies have correlated protein restriction associated with other nutritional deficiencies with the development of cardiovascular and renal diseases. The driving hypothesis for this study was that Ang II signaling pathways in the heart and kidney are affected by chronic protein, mineral and vitamin restriction. Methodology/Principal Findings Wistar rats aged 90 days were fed from weaning with either a control or a deficient diet that mimics those used in impoverished regions worldwide. Such restriction simultaneously increased ouabain-insensitive Na+-ATPase and decreased (Na++K+)ATPase activity in the same proportion in cardiomyocytes and proximal tubule cells. Type 1 angiotensin II receptor (AT1R) was downregulated by that restriction in both organs, whereas AT2R decreased only in the kidney. The PKC/PKA ratio increased in both tissues and returned to normal values in rats receiving Losartan daily from weaning. Inhibition of the MAPK pathway restored Na+-ATPase activity in both organs. The undernourished rats presented expanded plasma volume, increased heart rate, cardiac hypertrophy, and elevated systolic pressure, which also returned to control levels with Losartan. Such restriction led to electrical cardiac remodeling represented by prolonged ventricular repolarization parameters, induced triggered activity, early after-depolarization and delayed after-depolarization, which were also prevented by Losartan. Conclusion/Significance The mechanisms responsible for these alterations are underpinned by an imbalance in the PKC- and PKA-mediated pathways, with participation of angiotensin receptors and by activation of the MAPK/ERK1/2 pathway. These cellular and molecular alterations culminate in cardiac electric remodeling and in the onset of hypertension in adulthood.
Collapse
Affiliation(s)
- Paulo A. Silva
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Gustavo Monnerat-Cahli
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Amaury Pereira-Acácio
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Ricardo Luzardo
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Luzia S. Sampaio
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Marcia A. Luna-Leite
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucienne S. Lara
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Rogério Panizzutti
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Madeira
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leucio D. Vieira-Filho
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Carmen Castro-Chaves
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Valdilene S. Ribeiro
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Ana D. O. Paixão
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Emiliano Medei
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
19
|
Short- and long-term effects of a maternal low-protein diet on ventilation, O₂/CO₂ chemoreception and arterial blood pressure in male rat offspring. Br J Nutr 2013; 111:606-15. [PMID: 24059468 DOI: 10.1017/s0007114513002833] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maternal undernutrition increases the risk of adult arterial hypertension. The present study investigated the short- and long-term effects of a maternal low-protein diet on respiratory rhythm, O₂/CO₂ chemosensitivity and arterial blood pressure (ABP) of the offspring. Male Wistar rats were divided into two groups according to their mothers' diets during gestation and lactation: control (NP, 17% of casein) and low-protein (LP, 8% of casein) groups. Direct measurements of ABP, respiratory frequency (RF), tidal volume (V T) and ventilation (VE), as well as hypercapnia (7% CO₂) and hypoxia (7% O₂) evoked respiratory responses were recorded from the awake male offspring at the 30th and 90th days of life. Blood samples were collected for the analyses of protein, creatinine and urea concentrations. The LP offspring had impaired body weight and length throughout the experiment. At 30 d of age, the LP rats showed a reduction in the concentrations of total serum protein (approximately 24%). ABP in the LP rats was similar to that in the NP rats at 30 d of age, but it was 20% higher at 90 d of age. With respect to ventilatory parameters, the LP rats showed enhanced RF (approximately 34%) and VE (approximately 34%) at 30 d of age, which was associated with increased ventilatory responses to hypercapnia (approximately 21% in VE) and hypoxia (approximately 82% in VE). At 90 d of age, the VE values and CO₂/O₂ chemosensitivity of the LP rats were restored to the control range, but the RF values remained elevated. The present data show that a perinatal LP diet alters respiratory rhythm and O₂/CO₂ chemosensitivity at early ages, which may be a predisposing factor for increased ABP at adulthood.
Collapse
|
20
|
Oliveira FST, Vieira-Filho LD, Cabral EV, Sampaio LS, Silva PA, Carvalho VCO, Vieyra A, Einicker-Lamas M, Lima VLM, Paixão ADO. Reduced cholesterol levels in renal membranes of undernourished rats may account for urinary Na+ loss. Eur J Nutr 2012; 52:1233-42. [DOI: 10.1007/s00394-012-0434-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/30/2012] [Indexed: 01/11/2023]
|
21
|
Ueno PM, Oriá RB, Maier EA, Guedes M, de Azevedo OG, Wu D, Willson T, Hogan SP, Lima AAM, Guerrant RL, Polk DB, Denson LA, Moore SR. Alanyl-glutamine promotes intestinal epithelial cell homeostasis in vitro and in a murine model of weanling undernutrition. Am J Physiol Gastrointest Liver Physiol 2011; 301:G612-22. [PMID: 21799183 PMCID: PMC3191556 DOI: 10.1152/ajpgi.00531.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alanyl-glutamine (Ala-Gln) has recently been shown to enhance catch-up growth and gut integrity in undernourished children from Northeast Brazil. We hypothesized that the intestinal epithelial effects of Ala-Gln in malnourished weanling mice and mouse small intestinal epithelial (MSIE) cells would include modulation of barrier function, proliferation, and apoptosis. Dams of 10-day-old suckling C57BL/6 pups were randomized to a standard diet or an isocaloric Northeast Brazil "regional basic diet," moderately deficient in protein, fat, and minerals. Upon weaning to their dam's diet on day of life 21, pups were randomized to Ala-Gln solution or water. At 6 wk of age, mice were killed, and jejunal tissue was collected for morphology, immunohistochemistry, and Ussing chamber analysis of transmucosal resistance and permeability. Proliferation of MSIE cells in the presence or absence of Ala-Gln was measured by MTS and bromodeoxyuridine assays. MSIE apoptosis was assessed by annexin and 7-amino-actinomycin D staining. Pups of regional basic diet-fed dams exhibited failure to thrive. Jejunal specimens from undernourished weanlings showed decreased villous height and crypt depth, decreased transmucosal resistance, increased permeability to FITC-dextran, increased claudin-3 expression, and decreased epithelial proliferation and increased epithelial apoptosis (as measured by bromodeoxyuridine and cleaved caspase-3 staining, respectively). Undernourished weanlings supplemented with Ala-Gln showed improvements in weight velocity, villous height, crypt depth, transmucosal resistance, and epithelial proliferation/apoptosis compared with unsupplemented controls. Similarly, Ala-Gln increased proliferation and reduced apoptosis in MSIE cells. In summary, Ala-Gln promotes intestinal epithelial homeostasis in a mouse model of malnutrition-associated enteropathy, mimicking key features of the human disease.
Collapse
Affiliation(s)
- Priscilla M. Ueno
- 1Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | | | - Elizabeth A. Maier
- 1Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Marjorie Guedes
- 3Institute of Biomedicine, Federal University of Ceará, Ceará, Brazil;
| | | | - David Wu
- 4Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Tara Willson
- 1Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Simon P. Hogan
- 4Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Aldo A. M. Lima
- 3Institute of Biomedicine, Federal University of Ceará, Ceará, Brazil;
| | - Richard L. Guerrant
- 5Center for Global Health, University of Virginia, Charlottesville, Virginia; and
| | - D. Brent Polk
- 6Department of Pediatrics, University of Southern California, Los Angeles, California
| | - Lee A. Denson
- 1Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Sean R. Moore
- 1Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| |
Collapse
|
22
|
Miralles-Arnau S, Nácher A, Jiménez Á, Jiménez-Torres NV, Merino-Sanjuán M. Impact of nutritional status on the oral bioavailability of leucine administered to rats as part of a standard enteral diet. Clin Nutr 2011; 30:517-23. [DOI: 10.1016/j.clnu.2011.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 01/03/2011] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
|
23
|
Vieira-Filho LD, Lara LS, Silva PA, Santos FT, Luzardo R, Oliveira FS, Paixão AD, Vieyra A. Placental malnutrition changes the regulatory network of renal Na-ATPase in adult rat progeny: Reprogramming by maternal α-tocopherol during lactation. Arch Biochem Biophys 2011; 505:91-7. [DOI: 10.1016/j.abb.2010.09.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/20/2010] [Accepted: 09/25/2010] [Indexed: 11/27/2022]
|