1
|
Cui W, Jin Z, Han J, Liu W. Structure changes and carotenoids release of tomato during in vitro dynamic digestion: Effect of heating and oil addition. Food Chem 2024; 464:141934. [PMID: 39515153 DOI: 10.1016/j.foodchem.2024.141934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
There is still a gap between the food processing and carotenoids release and structure degradation during digestion. This study investigated the effect of heating and coconut oil addition on the digestion behavior of tomatoes during in vitro dynamic digestion. Coconut oil and heating increased gastric retention, and the value of heat-treated tomatoes with coconut oil maintained at a highest level throughout the gastric digestion. The contents of lycopene and β-carotene increased after heating and coconut oil addition. After stimulated intestinal digestion, coconut oil and heating increased the particle size of tomato slurry. Besides, heat-treated tomatoes released more particles under the light microscopy and SEM observation, while the oil-treated tomatoes showed rougher cell surfaces. Heating and coconut oil also significantly increased the bioaccessibility of lycopene to 70 % ± 5 % and 81 % ± 4 %, respectively. These findings would provide theoretical guidance to develop tomato-derived foods with high bioaccessibility.
Collapse
Affiliation(s)
- Weining Cui
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zixuan Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Zhang J, Wang F, Zhong H, Pi J, Chen G, Chen Z. Oral sericin ameliorates type 2 diabetes through passive intestinal and bypass transport into the systemic circulation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118342. [PMID: 38750984 DOI: 10.1016/j.jep.2024.118342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Accepted: 05/12/2024] [Indexed: 06/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Boiled silkworm cocoons have been used to treat 'Xiaoke disease' (diabetes mellitus) recorded in Chinese medicine for over 800 years. In recent years, it has been found that the active substance silk sericin (SS) has therapeutic benefits in treating type 2 diabetes mellitus (T2DM). SS promotes pancreatic islet signalling, the proliferation of pancreatic islet cells, and insulin secretion. It is inferred that SS enters the bloodstream after oral administration and plays a role in the body's circulation. As a natural protein, SS needs to resist digestion by proteases in the gastrointestinal tract and cross the gastrointestinal barrier after oral administration. It is currently unclear how SS crosses the gastrointestinal barrier and whether it exerts therapeutic effects on T2DM by entering the circulation. AIM OF THE STUDY To study how SS crosses the gastrointestinal barrier and whether it enters the body circulation to exert a therapeutic effect on T2DM. MATERIALS AND METHODS SS was extracted from silkworm cocoons using an alkaline method with sodium carbonate. The antidigestive capacity of SS was detected using SDS-PAGE gel electrophoresis experiments. The mode of uptake and translocation of orally consumed SS in vivo was analysed using the AP-side to BL-side and BL-side-AP-side translocations, apparent Permeability coefficient (Papp), and Exocytosis rates (ER). The study compared the differences between the adSS group and the adSS + EDTA group by using Ethylenediaminetetraacetic acid (EDTA) to separate the tight junctions between Caco-2 cells. The aim was to analyze whether the transport mode of oral filaggrin proteins in vivo could be absorbed by bypass transport. By administering SS through oral and intraperitoneal injection to type 2 diabetic mice, we measured its concentration in the blood, as well as blood glucose and insulin levels, to determine its effectiveness in treating diabetes and its ability to enter the body's circulation for treatment. RESULTS The molecular weight of SS decreased from 10k∼25 kDa to 10k∼15 kDa after in vitro simulated gastrointestinal fluid digestion, indicating its good antidigestive properties. The apparent Papp was greater than 1 × 10-6 cm·s-1, and the ER was between 0.5 and 1.5, indicating that adSS was well-absorbed and mainly passively transported. The Caco-2 cell model showed that the addition of EDTA promoted the transport of adSS, resulting in significantly larger Papp and ER values, indicating that adSS was absorbed by bypass transport. After oral administration of SS, the concentration of SS in the blood was lower than after intraperitoneal injection, which is 60% of intraperitoneal administration. Mice with a T2DM model who were administered SS for 5 weeks showed significant improvement in insulin resistance and glucose tolerance. Additionally, the pancreatic tissue appeared more regular. In the treatment of T2DM, injections of SS have been shown to be more effective than oral administration. Both oral and intraperitoneal injections have been partially involved in the circulation. CONCLUSIONS SS is enzymatically cleaved by proteolytic enzymes in the gastrointestinal tract. The smaller molecules are partially absorbed into the body's circulation through passive and paracrine transport, exerting a therapeutic effect on T2DM.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Avenue, Chongqing, 400054, China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Avenue, Chongqing, 400054, China
| | - Hailing Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Avenue, Chongqing, 400054, China
| | - Jin Pi
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Avenue, Chongqing, 400054, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Avenue, Chongqing, 400054, China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Avenue, Chongqing, 400054, China; The Center Affiliated Hospital of Chongqing University of Technology, Intersection of Lishi Road and Mawangping Main Street, Banan District, Chongqing, 400054, China.
| |
Collapse
|
3
|
Changes of Bioactive Components and Antioxidant Capacity of Pear Ferment in Simulated Gastrointestinal Digestion In Vitro. Foods 2023; 12:foods12061211. [PMID: 36981138 PMCID: PMC10048753 DOI: 10.3390/foods12061211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Fruit ferment is rich in polyphenols, organic acids, enzymes, and other bioactive components, which contribute to their antioxidant ability. In this study, we investigated the effect of the simulated gastric and intestinal digestion in vitro on the total phenolic content (TPC), total flavonoid content (TFC), phenolic components content, organic acid content, protease activity, superoxide dismutase (SOD) activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (DPPH-RSA), hydroxyl (·OH) radical scavenging activity (·OH-RSA), and total reducing capacity in ‘Xuehua’ pear (Pyrus bretschneideri Rehd) ferment. The result showed that the TPC, TFC, protease activity, and phenolic components such as arbutin, protocatechuic acid, malic acid, and acetic acid showed a rising trend during the simulated gastric digestion in ‘Xuehua’ pear ferment, and these components might contribute to the increasing of ·OH-RSA and total reducing capacity. The SOD activity and epicatechin content showed an increasing trend at first and then a decreasing trend, which was likely associated with DPPH-RSA. During in vitro-simulated intestinal digestion, the majority of evaluated items reduced, except for protease activity, quercetin, and tartaric acid. The reason for the decreasing of bio-accessibility resulted from the inhibition of the digestive environment, and the transformation between substances, such as the conversion of hyperoside to quercetin. The correlation analysis indicated that the antioxidant capacity of ‘Xuehua’ pear ferment was mainly affected by its bioactive compounds and enzymes activity as well as the food matrices and digestive environment. The comparison between the digestive group with and without enzymes suggested that the simulated gastrointestinal digestion could boost the release and delay the degradation of phenolic components, flavonoids, and organic acid, protect protease and SOD activity, and stabilize DPPH-RSA, ·OH-RSA, and total reducing capacity in ‘Xuehua’ pear ferment; thus, the ‘Xuehua’ pear ferment could be considered as an easily digestible food.
Collapse
|
4
|
Zhao L, Zhao D, Xiao S, Zhang A, Deng Y, Dai X, Zhou Z, Ji Z, Cao Q. Comparative Metabolomic and Transcriptomic Analyses of Phytochemicals in Two Elite Sweet Potato Cultivars for Table Use. Molecules 2022; 27:molecules27248939. [PMID: 36558068 PMCID: PMC9782294 DOI: 10.3390/molecules27248939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
To elucidate nutritional components in sweet potato cultivars for table use and to compare the phytochemicals of cultivars from different countries, 'Kokei No. 14' and 'Xinxiang' were selected. The physiological parameters and metabolites were determined using the colorimetric method and widely targeted metabolomics, respectively. Transcriptomic analysis was performed to explain the mechanism that resulted in phytochemical differences. 'Xinxiang' showed higher flavonoid and carotenoid contents. Metabolomics showed five upregulated flavonoids. Two essential amino acids (EAAs) and one conditionally essential amino acid (CEAA) were upregulated, whereas four EAAs and two CEAAs were downregulated. Unlike lipids, in which only one of thirty-nine was upregulated, nine of twenty-seven differentially accumulated phenolic acids were upregulated. Three of the eleven different alkaloids were upregulated. Similarly, eight organic acids were downregulated, with two upregulated. In addition, three of the seventeen different saccharides and alcohols were upregulated. In 'other metabolites,' unlike vitamin C, 6'-O-Glucosylaucubin and pantetheine were downregulated. The differentially accumulated metabolites were enriched to pathways of the biosynthesis of secondary metabolites, ABC transporters, and tyrosine metabolism, whereas the differentially expressed genes were mainly concentrated in the metabolic pathway, secondary metabolite biosynthesis, and transmembrane transport functions. These results will optimize the sweet potato market structure and enable a healthier diet for East Asian residents.
Collapse
Affiliation(s)
- Lingxiao Zhao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Donglan Zhao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Shizhuo Xiao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - An Zhang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Yitong Deng
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xibin Dai
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhilin Zhou
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Zhixian Ji
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qinghe Cao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
- Correspondence:
| |
Collapse
|
5
|
Akter S, Addepalli R, Netzel M, Tinggi U, Fletcher M, Sultanbawa Y, Osborne S. In vitro Bioaccessibility and Intestinal Absorption of Selected Bioactive Compounds in Terminalia ferdinandiana. Front Nutr 2022; 8:818195. [PMID: 35155530 PMCID: PMC8828953 DOI: 10.3389/fnut.2021.818195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022] Open
Abstract
Terminalia ferdinandiana (or Kakadu plum), a native Australian fruit with potential health benefits, contains bioactive compounds such as ellagic acid (EA), ascorbic acid (AA) and calcium, and antinutrients such as oxalic acid (OA). However, few is known about the biological fate of these compounds following ingestion; therefore, the aim of this study was to evaluate in vitro bioaccessibility and intestinal absorption of T. ferdinandiana compounds using the INFOGEST static digestion model and Caco-2-HT29-MTX-E12 intestinal absorption model. No significant changes (p > 0.05) were observed in total AA content throughout in vitro digestion, whereas bioaccessibility of EA, OA, and calcium increased significantly from 33, 72, and 67% in the gastric phase to 48, 98, and 90% in the intestinal phase, respectively. The intestinal absorption study revealed variable rates of movement across the cell barrier. Findings reveal novel and important insights for the prediction of in vivo bioavailability of selected T. ferdinandiana compounds.
Collapse
Affiliation(s)
- Saleha Akter
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Center for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Indooroopilly, QLD, Australia
| | - Rama Addepalli
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, St Lucia, QLD, Australia
| | - Michael Netzel
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD, Australia
| | - Ujang Tinggi
- Queensland Health Forensic and Scientific Services, Coopers Plains, QLD, Australia
| | - Mary Fletcher
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD, Australia
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Center for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Indooroopilly, QLD, Australia
| | - Simone Osborne
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, St Lucia, QLD, Australia
| |
Collapse
|
6
|
Chaali M, Lecka J, Suresh G, Salem M, Brar SK, Hernandez-Galan L, Sévigny J, Avalos-Ramirez A. Supplement comprising of laccase and citric acid as an alternative for antibiotics: In vitro triggers of melanin production. Eng Life Sci 2018; 18:359-367. [PMID: 32624916 DOI: 10.1002/elsc.201700160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/29/2017] [Accepted: 02/06/2018] [Indexed: 12/25/2022] Open
Abstract
An indiscriminate use of antibiotics in humans and animals has led to the widespread selection of antibiotic-resistance, thus constricting the use of antibiotics. A possible solution to counter this problem could be to develop alternatives that can boost the host immunity, thus reducing the quantity and frequency of antibiotic use. In this work, for the first time, citric acid and laccase were used as extracellular inducers of melanin production in yeast cells and human cell lines. It is proposed that the formulation of laccase and citric acid together could further promote melatonin-stimulated, melanocyte-derived melanin production. Melanization as a probe of immunity described in this study, is an easy and a rapid test compared to other immunity tests and it allows performing statistical analyses. The results showed the synergistic effect of citric acid and laccase on melanin production by yeast cells, with significant statistical differences compared to all other tested conditions (p: 0.0005-0.005). Laccase and citric acid together boosted melanin production after 8 days of incubation. An increase in melanin production by two human colon cells lines (Cacao-2/15 and HT-29) was observed on supplementation with both laccase and citric acid in the cell growth medium. Produced melanin showed antimicrobial properties similar to antibiotics. Therefore, a formulation with citric acid and laccase may prove to be an excellent alternative to reduce the antibiotic use in human and animal subjects.
Collapse
Affiliation(s)
- Mona Chaali
- Institut National de la Recherche Scientifique Centre - Eau Terre Environnement (INRS ETE) Québec QC Canada
| | - Joanna Lecka
- Institut National de la Recherche Scientifique Centre - Eau Terre Environnement (INRS ETE) Québec QC Canada
| | - Gayatri Suresh
- Institut National de la Recherche Scientifique Centre - Eau Terre Environnement (INRS ETE) Québec QC Canada
| | - Mabrouka Salem
- Département de Microbiologie-Infectiologie et d'Immunologie Faculté de Médecine Université Laval, Pavillon Ferdinand-Vandry Québec QC Canada.,Centre de recherche du CHU de Québec - Université Laval Québec QC Canada
| | - Satinder Kaur Brar
- Institut National de la Recherche Scientifique Centre - Eau Terre Environnement (INRS ETE) Québec QC Canada
| | - Leticia Hernandez-Galan
- Institut National de la Recherche Scientifique Centre - Eau Terre Environnement (INRS ETE) Québec QC Canada
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie Faculté de Médecine Université Laval, Pavillon Ferdinand-Vandry Québec QC Canada.,Centre de recherche du CHU de Québec - Université Laval Québec QC Canada
| | - Antonio Avalos-Ramirez
- Centre National en Électrochimie et en Technologie Environnementales (CNETE) Shawinigan QC Canada
| |
Collapse
|
7
|
Shi YH, Xiao JJ, Feng RP, Liu YY, Liao M, Wu XW, Hua RM, Cao HQ. Factors Affecting the Bioaccessibility and Intestinal Transport of Difenoconazole, Hexaconazole, and Spirodiclofen in Human Caco-2 Cells Following in Vitro Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9139-9146. [PMID: 28915046 DOI: 10.1021/acs.jafc.7b02781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study examined how gastrointestinal conditions affect pesticide bioaccessibility and intestinal transepithelial transport of pesticides (difenoconazole, hexaconazole, and spirodiclofen) in humans. We used an in vitro model combining human gastric and intestinal digestion, followed with Caco-2 cell model for human intestinal absorption. Bioaccessibility of three tested pesticides ranged from 25.2 to 76.3% and 10.6 to 79.63% in the gastric and intestinal phases, respectively. A marked trend similar to the normal distribution was observed between bioaccessibility and pH, with highest values observed at pH 2.12 in gastric juice. No significant differences were observed with increasing digestion time; however, a significant negative correlation was observed with the solid-liquid (S/L) ratio, following a logarithmic equation. R2 ranged from 0.9198 to 0.9848 and 0.9526 to 0.9951 in the simulated gastric and intestinal juices, respectively, suggesting that the S/L ratio is also a major factor affecting bioaccessibility. Moreover, significant dose- and time-response effects were subsequently observed for intestinal membrane permeability of difenoconazole, but not for hexaconazole or spirodiclofen. This is the first study to demonstrate the uptake of pesticides by human intestinal cells, aiding quantification of the likely effects on human health and highlighting the importance of considering bioaccessibility in studies of dietary exposure to pesticide residues.
Collapse
Affiliation(s)
- Yan-Hong Shi
- School of Resource & Environment, Anhui Agricultural University , Hefei, Anhui Province 230036, China
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University , Hefei, Anhui Province 230036, China
| | - Jin-Jing Xiao
- School of Plant Protection, Anhui Agricultural University , Hefei, Anhui Province 230036, China
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University , Hefei, Anhui Province 230036, China
| | - Rong-Peng Feng
- School of Resource & Environment, Anhui Agricultural University , Hefei, Anhui Province 230036, China
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University , Hefei, Anhui Province 230036, China
| | - Yu-Ying Liu
- School of Resource & Environment, Anhui Agricultural University , Hefei, Anhui Province 230036, China
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University , Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University , Hefei, Anhui Province 230036, China
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University , Hefei, Anhui Province 230036, China
| | - Xiang-Wei Wu
- School of Resource & Environment, Anhui Agricultural University , Hefei, Anhui Province 230036, China
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University , Hefei, Anhui Province 230036, China
| | - Ri-Mao Hua
- School of Resource & Environment, Anhui Agricultural University , Hefei, Anhui Province 230036, China
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University , Hefei, Anhui Province 230036, China
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University , Hefei, Anhui Province 230036, China
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University , Hefei, Anhui Province 230036, China
| |
Collapse
|
8
|
Kamiloglu S, Capanoglu E, Grootaert C, Van Camp J. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells--A Review. Int J Mol Sci 2015; 16:21555-74. [PMID: 26370977 PMCID: PMC4613267 DOI: 10.3390/ijms160921555] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells.
Collapse
Affiliation(s)
- Senem Kamiloglu
- Laboratory of Food Chemistry and Human Nutrition (nutriFOODchem), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; E-Mails: (S.K.); (C.G.); (J.V.C.)
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition (nutriFOODchem), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; E-Mails: (S.K.); (C.G.); (J.V.C.)
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition (nutriFOODchem), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; E-Mails: (S.K.); (C.G.); (J.V.C.)
| |
Collapse
|
9
|
Kim EO, Cha KH, Lee EH, Kim SM, Choi SW, Pan CH, Um BH. Bioavailability of ginsenosides from white and red ginsengs in the simulated digestion model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10055-10063. [PMID: 25175701 DOI: 10.1021/jf500477n] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study aims to investigate the bioavailability of ginsenosides during simulated digestion of white (WG) and red (RG) ginseng powders. Stability, bioaccessibility, and permeability of ginsenosides present in WG and RG were studied in a Caco-2 cell culture model coupled with oral, gastric, and small intestinal simulated digestion. Most ginsenosides in WG and RG were stable (>90%) during the simulated digestion. Bioaccessibilities of total ginsenosides during in vitro digestion of WG and RG were similar at approximately 85%. However, the bioaccessibility of protopanaxatriol type ginsenosides in the early food phase was greater than that of the protopanaxadiol type. The less polar RG ginsenosides were released later following the jejunum phase. Ginsenosides had low permeability (<1 × 10(-6) cm/s) through Caco-2 cell monolayers. These findings suggest that the WG and RG ginsenoside compositions affect bioaccessibility during digestion and that ginsenosides are poorly absorbed in humans.
Collapse
Affiliation(s)
- Eun Ok Kim
- Biomodulation Team, Natural Products Research Center, Korea Institute of Science and Technology (KIST) , Gangneung, Ganwon-do 210-340, Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Kopf-Bolanz KA, Schwander F, Gijs M, Vergères G, Portmann R, Egger L. Validation of an in vitro digestive system for studying macronutrient decomposition in humans. J Nutr 2012; 142:245-50. [PMID: 22223575 DOI: 10.3945/jn.111.148635] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The digestive process transforms nutrients and bioactive compounds contained in food to physiologically active compounds. In vitro digestion systems have proven to be powerful tools for understanding and monitoring the complex transformation processes that take place during digestion. Moreover, the investigation of the physiological effects of certain nutrients demands an in vitro digestive process that is close to human physiology. In this study, human digestion was simulated with a 3-step in vitro process that was validated in depth by choosing pasteurized milk as an example of a complex food matrix. The evolution and decomposition of the macronutrients was followed over the entire digestive process to the level of intestinal enterocyte action, using protein and peptide analysis by SDS-PAGE, reversed-phase HPLC, size exclusion HPLC, and liquid chromatography-MS. The mean peptide size after in vitro digestion of pasteurized milk was 5-6 amino acids (AA). Interestingly, mostly essential AA (93.6%) were released during in vitro milk digestion, a significantly different relative distribution compared to the total essential AA concentration of bovine milk (44.5%). All TG were degraded to FFA and monoacylglycerols. Herein, we present a human in vitro digestion model validated for its ability to degrade the macronutrients of dairy products comparable to physiological ranges. It is suited to be used in combination with a human intestinal cell culture system, allowing ex vivo bioavailability measurements and assessment of the bioactive properties of food components.
Collapse
|
11
|
Auclair S, Chironi G, Milenkovic D, Hollman PCH, Renard CMGC, Mégnien JL, Gariepy J, Paul JL, Simon A, Scalbert A. The regular consumption of a polyphenol-rich apple does not influence endothelial function: a randomised double-blind trial in hypercholesterolemic adults. Eur J Clin Nutr 2010; 64:1158-65. [PMID: 20683465 DOI: 10.1038/ejcn.2010.135] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND/OBJECTIVES Epidemiological studies suggest that apple consumption is associated with a reduction in cardiovascular disease risk. Apple polyphenols may contribute to explain these effects. Endothelial dysfunction has been associated with early stage of atherosclerosis and polyphenols from various dietary sources have been shown to reverse it. The aim of the present study was to investigate the effect of the consumption of a polyphenol-rich apple on endothelial function. SUBJECTS/METHODS In all, 30 hypercholesterolemic volunteers were included in a double-blind, randomized crossover trial. They successively consumed 40 g of two lyophilized apples, polyphenol-rich and polyphenol-poor, providing respectively 1.43 and 0.21 g polyphenols per day during two 4-week periods separated by a 4-week washout period. RESULTS Brachial artery flow-mediated vasodilation (FMD) was assessed at the beginning and at the end of each intervention period. FMD did not differ between the polyphenol-rich and the polyphenol-poor apples, neither did the other cardiovascular disease risk factors (plasma lipids, homocysteine, antioxidant capacity). CONCLUSIONS These data suggest that over a 4-week period, the consumption of a polyphenol-rich apple does not improve vascular function in hypercholesterolemic patients.
Collapse
Affiliation(s)
- S Auclair
- Université d'Auvergne, Unité de Nutrition Humaine, Clermont Université, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|