1
|
Rotimi DE, Iyobhebhe M, Oluwayemi ET, Olajide OP, Akinsanola BA, Evbuomwan IO, Asaleye RM, Ojo OA. Energy metabolism and spermatogenesis. Heliyon 2024; 10:e38591. [PMID: 39397940 PMCID: PMC11470522 DOI: 10.1016/j.heliyon.2024.e38591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Infertility has become a significant health burden around the globe as it is believed that 15 % of married couples struggle with infertility, with half of the problem accrued to the male. The issue of male infertility could be traced to insufficient or absence of spermatozoa. Glucose metabolism is essential for continued spermatogenesis and for the reproductive potential of sperm cells. Appropriate nutrition is critical in maintaining reproductive function as caloric restriction along with weight reduction, excessive food consumption and obesity are harmful to reproductive function. The link between metabolism and reproduction is tied to metabolic hormones like insulin, leptin and thyroid, extracellular environment, mitochondria function, nutrient substrate, availability, and environmental stressors. Although matured spermatozoa utilize glucose directly, it is not the preferred energy substrate for germ cells as they rely on Sertoli cells to supply lactate. The reproductive potential of sperm cells depends on certain modifications like hyperactivated motility, which is mainly dependent on glucose metabolism. Without other energy sources, spermatozoa utilize their internal lipid stores. The uptake and metabolism of glucose by sperm are essential endpoints for determining the potential fertility of male individuals. The biological energy in sperm cells fuels all the physiological processes they engage in, from their deposition in the female reproductive tract to the point where they fertilize an egg. This article thus reviews facts pertinent to the energy metabolism of male germ cells and Sertoli cells.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew Iyobhebhe
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
| | - Elizabeth Temidayo Oluwayemi
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
| | | | | | | | - Rotdelmwa Maimako Asaleye
- Department of Life and Consumer Sciences University of South Africa Private Bag X06, Florida, 1710, South Africa
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Group, Biochemistry Programme, Bowen University, Iwo, 232101, Nigeria
- Good Health and Wellbeing Research Clusters (SDG 03), Bowen University, Iwo 232102, Nigeria
| |
Collapse
|
2
|
Guimarães-Ervilha LO, Ladeira LCM, Carvalho RPR, Bento IPDS, Bastos DSS, Souza ACF, Santos EC, de Oliveira LL, Maldonado IRDSC, Machado-Neves M. Green Tea Infusion Ameliorates Histological Damages in Testis and Epididymis of Diabetic Rats. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-13. [PMID: 34184626 DOI: 10.1017/s1431927621012071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Green tea is a popular drink used for therapeutic purposes to mitigate the consequences of diabetes. In this study, we aimed at evaluating the potential of green tea infusion to ameliorate structural and enzymatic damages caused by hyperglycemia in the testis and epididymis of Wistar rats. For that, nondiabetic and streptozotocin-induced diabetic rats (negative control and diabetes control, respectively) received 0.6 mL of water by gavage. Another set of diabetic animals received 100 mg/kg of green tea infusion diluted in 0.6 mL of water/gavage (diabetes + green tea) daily. After 42 days of treatment, the testes and epididymides were removed and processed for histopathological analysis, micromineral determination, and enzymatic assays. The results showed that treatment with green tea infusion preserved the testicular and epididymal histoarchitecture, improving the seminiferous epithelium and the sperm production previously affected by diabetes. Treatment with green tea reduced tissue damages caused by this metabolic condition. Given the severity of hyperglycemia, there was no efficacy of the green tea infusion in maintaining the testosterone levels, antioxidant enzyme activity, and microminerals content. Thus, our findings indicate a protective effect of this infusion on histological parameters, with possible use as a complementary therapy for diabetes.
Collapse
Affiliation(s)
| | - Luiz Carlos Maia Ladeira
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais36570-900, Brazil
| | | | | | - Daniel Silva Sena Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais36570-900, Brazil
| | - Ana Cláudia Ferreira Souza
- Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro23897-000, Brazil
| | - Eliziária Cardoso Santos
- Medicine School, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais39100-000, Brazil
| | | | | | - Mariana Machado-Neves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais36570-900, Brazil
| |
Collapse
|
3
|
Green tea consumption increases sperm concentration and viability in male rats and is safe for reproductive, liver and kidney health. Sci Rep 2020; 10:15269. [PMID: 32943691 PMCID: PMC7498455 DOI: 10.1038/s41598-020-72319-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Green tea is a popularly consumed beverage worldwide and contains polyphenols, whose antioxidant activities could improve sperm parameters and fertility thereof. We investigated the effect of green tea on the male rat reproductive system as well as its safety. Male Wistar rats were administered 2 and 5% aqueous extract of green tea for 52 days’ ad libitum, while the control group received tap water. Total polyphenol, flavanol, flavonol and soluble solids significantly increased in a concentration-dependent manner in vitro (P < 0.01). Weights of body, testis, epididymis, prostate gland, seminal vesicles, and liver, serum levels of testosterone, ferric reducing antioxidant power, creatinine, and sperm motility, remained unchanged (P > 0.05). Kidney weight, sperm concentration and vitality, spontaneous acrosome reaction increased (P < 0.05), while alanine transaminase and aspartate transaminase levels decreased (P < 0.05). Catalase, superoxide dismutase, glutathione and lipid peroxidation remained unchanged in the testes, liver and kidney (P > 0.05). Histological sections of testis, epididymis, kidney and liver showed no conspicuous alteration. Diameter and epithelial height of seminiferous tubule decreased, while caudal epididymis epithelial height increased (P < 0.01). Consumption of green tea in the conditions used in the present study seems to be safe and improved sperm parameters. However, subtle structural changes observed in the decreased diameter and epithelial height of the seminiferous tubule and increased acrosome reaction needs further investigation.
Collapse
|
4
|
Martin-Hidalgo D, Bragado MJ, Batista AR, Oliveira PF, Alves MG. Antioxidants and Male Fertility: from Molecular Studies to Clinical Evidence. Antioxidants (Basel) 2019; 8:antiox8040089. [PMID: 30959797 PMCID: PMC6523199 DOI: 10.3390/antiox8040089] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
Spermatozoa are physiologically exposed to reactive oxygen species (ROS) that play a pivotal role on several sperm functions through activation of different intracellular mechanisms involved in physiological functions such as sperm capacitation associated-events. However, ROS overproduction depletes sperm antioxidant system, which leads to a condition of oxidative stress (OS). Subfertile and infertile men are known to present higher amount of ROS in the reproductive tract which causes sperm DNA damage and results in lower fertility and pregnancy rates. Thus, there is a growing number of couples seeking fertility treatment and assisted reproductive technologies (ART) due to OS-related problems in the male partner. Interestingly, although ART can be successfully used, it is also related with an increase in ROS production. This has led to a debate if antioxidants should be proposed as part of a fertility treatment in an attempt to decrease non-physiological elevated levels of ROS. However, the rationale behind oral antioxidants intake and positive effects on male reproduction outcome is only supported by few studies. In addition, it is unclear whether negative effects may arise from oral antioxidants intake. Although there are some contrasting reports, oral consumption of compounds with antioxidant activity appears to improve sperm parameters, such as motility and concentration, and decrease DNA damage, but there is not sufficient evidence that fertility rates and live birth really improve after antioxidants intake. Moreover, it depends on the type of antioxidants, treatment duration, and even the diagnostics of the man’s fertility, among other factors. Literature also suggests that the main advantage of antioxidant therapy is to extend sperm preservation to be used during ART. Herein, we discuss ROS production and its relevance in male fertility and antioxidant therapy with focus on molecular mechanisms and clinical evidence.
Collapse
Affiliation(s)
- David Martin-Hidalgo
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal.
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10004 Cáceres, Spain.
| | - Maria Julia Bragado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10004 Cáceres, Spain.
| | | | - Pedro F Oliveira
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal.
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
| | - Marco G Alves
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10004 Cáceres, Spain.
| |
Collapse
|
5
|
Silveira AC, Dias JP, Santos VM, Oliveira PF, Alves MG, Rato L, Silva BM. The Action of Polyphenols in Diabetes Mellitus and Alzheimer's Disease: A Common Agent for Overlapping Pathologies. Curr Neuropharmacol 2019; 17:590-613. [PMID: 30081787 PMCID: PMC6712293 DOI: 10.2174/1570159x16666180803162059] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/30/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
Diabetes Mellitus (DM) and Alzheimer's disease (AD) are two prevalent diseases in modern societies, which are caused mainly by current lifestyle, aging and genetic alterations. It has already been demonstrated that these two diseases are associated, since individuals suffering from DM are prone to develop AD. Conversely, it is also known that individuals with AD are more susceptible to DM, namely type 2 diabetes (T2DM). Therefore, these two pathologies, although completely different in terms of symptomatology, end up sharing several mechanisms at the molecular level, with the most obvious being the increase of oxidative stress and inflammation. Polyphenols are natural compounds widely spread in fruits and vegetables whose dietary intake has been considered inversely proportional to the incidence of DM and AD. So, it is believed that this group of phytochemicals may have preventive and therapeutic potential, not only by reducing the risk and delaying the development of these pathologies, but also by improving brain's metabolic profile and cognitive function. The aim of this review is to understand the extent to which DM and AD are related pathologies, the degree of similarity and the relationship between them, to detail the molecular mechanisms by which polyphenols may exert a protective effect, such as antioxidant and anti-inflammatory effects, and highlight possible advantages of their use as common preventive and therapeutic alternatives.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Branca M. Silva
- Address correspondence to this author at the Faculty of Health Sciences, University of Beira Interior, Av. Infante D.Henrique, 6201-506 Covilhã, Portugal; Tel: +351 275319700; Fax: +351 275 329 183; E-mail:
| |
Collapse
|
6
|
Monteiro J, Alves MG, Oliveira PF, Silva BM. Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Crit Rev Food Sci Nutr 2018; 59:2597-2625. [PMID: 29624433 DOI: 10.1080/10408398.2018.1461607] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methylated xanthines (methylxanthines) are available from a significant number of different botanical species. They are ordinarily included in daily diet, in many extremely common beverages and foods. Caffeine, theophylline and theobromine are the main methylxanthines available from natural sources. The supposedly relatively low toxicity of methylxanthines, combined with the many beneficial effects that have been attributed to these compounds through time, generated a justified attention and a very prolific ground for dedicated scientific reports. Methylxanthines have been widely used as therapeutical tools, in an intriguing range of medicinal scopes. In fact, methylxanthines have been/were medically used as Central Nervous System stimulants, bronchodilators, coronary dilators, diuretics and anti-cancer adjuvant treatments. Other than these applications, methylxanthines have also been hinted to hold other beneficial health effects, namely regarding neurodegenerative diseases, cardioprotection, diabetes and fertility. However, it seems now consensual that toxicity concerns related to methylxanthine consumption and/or therapeutic use should not be dismissed. Taking all the knowledge and expectations on the potential of methylxanthines into account, we propose a systematic look at the past and future of methylxanthine pharmacologic applications, discussing all the promise and anticipating possible constraints. Anyways, methylxanthines will still substantiate considerable meaningful research and discussion for years to come.
Collapse
Affiliation(s)
- João Monteiro
- Mass Spectrometry Centre, Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,Institute of Health Research an Innovation (i3S), University of Porto , Porto , Portugal
| | | |
Collapse
|
7
|
Carrageta DF, Dias TR, Alves MG, Oliveira PF, Monteiro MP, Silva BM. Anti-obesity potential of natural methylxanthines. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
8
|
Lin C, Xia G, Liu S. Modeling and comparison of extraction kinetics of 8 catechins, gallic acid and caffeine from representative white teas. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Dias TR, Alves MG, Silva J, Barros A, Sousa M, Casal S, Silva BM, Oliveira PF. Implications of epigallocatechin-3-gallate in cultured human Sertoli cells glycolytic and oxidative profile. Toxicol In Vitro 2017; 41:214-222. [DOI: 10.1016/j.tiv.2017.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 11/26/2022]
|
10
|
Heat stress–induced autophagy promotes lactate secretion in cultured immature boar Sertoli cells by inhibiting apoptosis and driving SLC2A3 , LDHA , and SLC16A1 expression. Theriogenology 2017; 87:339-348. [DOI: 10.1016/j.theriogenology.2016.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023]
|
11
|
Martins AD, Sá R, Monteiro MP, Barros A, Sousa M, Carvalho RA, Silva BM, Oliveira PF, Alves MG. Ghrelin acts as energy status sensor of male reproduction by modulating Sertoli cells glycolytic metabolism and mitochondrial bioenergetics. Mol Cell Endocrinol 2016; 434:199-209. [PMID: 27392494 DOI: 10.1016/j.mce.2016.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023]
Abstract
Ghrelin is a growth hormone-releasing peptide that has been suggested to interfere with spermatogenesis, though the underling mechanisms remain unknown. We studied the effect of ghrelin in human Sertoli cells (hSCs) metabolic phenotype. For that, hSCs were exposed to increasing concentrations of ghrelin (20, 100 and 500 pM) mimicking the levels reported in obese, normal weight, and severely undernourished individuals. The metabolite production/consumption was determined. The protein levels of key glycolysis-related transporters and enzymes were assessed. The lactate dehydrogenase (LDH) activity was measured. Mitochondrial complexes protein levels and mitochondria membrane potential were also measured. We showed that hSCs express the growth hormone secretagogue receptor. At the concentration present in the plasma of normal weight men, ghrelin caused a decrease of glucose consumption and mitochondrial membrane potential in hSCs, though LDH activity and lactate production remained unchanged, illustrating an alteration of glycolytic flux efficiency. Exposure of hSCs to levels of ghrelin found in the plasma of severely undernourished individuals decreased pyruvate consumption and mitochondrial complex III protein expression. All concentrations of ghrelin decreased alanine and acetate production by hSCs. Notably, the effects of ghrelin levels found in severely undernourished individuals were more pronounced in hSCs metabolic phenotype highlighting the importance of a proper eating behavior to maintain male reproductive potential. In conclusion, ghrelin acts as an energy status sensor for hSCs in a dose-dependent manner, showing an inverse association with the production of lactate, thus controlling the nutritional support of spermatogenesis.
Collapse
Affiliation(s)
- A D Martins
- Department of Microscopy, Laboratory of Cell Biology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - R Sá
- Department of Microscopy, Laboratory of Cell Biology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - M P Monteiro
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal; Department of Anatomy, Abel Salazar Institute of Biomedical Sciences, ICBAS, University of Porto, 4050-313, Porto, Portugal
| | - A Barros
- Centre for Reproductive Genetics Professor Alberto Barros, 4100-009, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - M Sousa
- Department of Microscopy, Laboratory of Cell Biology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal; Centre for Reproductive Genetics Professor Alberto Barros, 4100-009, Porto, Portugal
| | - R A Carvalho
- Department of Life Sciences, Faculty of Sciences and Technology and Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
| | - B M Silva
- Health Sciences Research Centre (CICS), University of Beira Interior, 6201-506, Covilhã, Portugal
| | - P F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences (UMIB-ICBAS), University of Porto, 4050-313, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - M G Alves
- Department of Life Sciences, Faculty of Sciences and Technology and Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal; Health Sciences Research Centre (CICS), University of Beira Interior, 6201-506, Covilhã, Portugal.
| |
Collapse
|
12
|
Structure-Bioactivity Relationships of Methylxanthines: Trying to Make Sense of All the Promises and the Drawbacks. Molecules 2016; 21:molecules21080974. [PMID: 27472311 PMCID: PMC6273298 DOI: 10.3390/molecules21080974] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/02/2016] [Accepted: 07/19/2016] [Indexed: 12/05/2022] Open
Abstract
Methylxanthines are a group of phytochemicals derived from the purine base xanthine and obtained from plant secondary metabolism. They are unobtrusively included in daily diet in common products as coffee, tea, energetic drinks, or chocolate. Caffeine is by far the most studied methylxanthine either in animal or epidemiologic studies. Theophylline and theobromine are other relevant methylxanthines also commonly available in the aforementioned sources. There are many disseminated myths about methylxanthines but there is increased scientific knowledge to discuss all the controversy and promise shown by these intriguing phytochemicals. In fact, many beneficial physiologic outcomes have been suggested for methylxanthines in areas as important and diverse as neurodegenerative and respiratory diseases, diabetes or cancer. However, there have always been toxicity concerns with methylxanthine (over)consumption and pharmacologic applications. Herein, we explore the structure-bioactivity relationships to bring light those enumerated effects. The potential shown by methylxanthines in such a wide range of conditions should substantiate many other scientific endeavors that may highlight their adequacy as adjuvant therapy agents and may contribute to the advent of functional foods. Newly designed targeted molecules based on methylxanthine structure may originate more specific and effective outcomes.
Collapse
|
13
|
Alves MG, Martins AD, Jarak I, Barros A, Silva J, Sousa M, Oliveira PF. Testicular lactate content is compromised in men with Klinefelter Syndrome. Mol Reprod Dev 2016; 83:208-16. [PMID: 26676340 DOI: 10.1002/mrd.22608] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/08/2015] [Indexed: 12/31/2022]
Abstract
Klinefelter syndrome (KS) is the most common genetic cause of human infertility, but the mechanism(s) responsible for its phenotype remain largely unknown. KS is associated with alterations in body composition and with a higher risk of developing metabolic diseases. We therefore hypothesized that KS men seeking fertility treatment possess an altered testicular metabolism profile that may hamper the nutritional support of spermatogenesis. Testicular biopsies from control (46, XY) (n = 6) and KS (47, XXY) (n = 6) individuals were collected and analyzed by proton high-resolution magic-angle spinning nuclear magnetic resonance spectroscopy. The mRNA and protein expression of crucial glycolysis-associated enzymes and transporters were evaluated in parallel by quantitative PCR and Western blot, respectively. Our data revealed altered regulation of glucose transporters (GLUT1 and GLUT3); phosphofructokinase 1, liver isoform (PFKL); and lactate dehydrogenase A (LDHA) expression in the testis of KS patients. Moreover, we detected a severe reduction in lactate and creatine accumulation within testicular tissue from KS men. The aberrant levels of the biomarkers detected in testicular biopsies of KS men may therefore be associated with the infertility phenotypes presented by these men. Mol. Reprod. Dev. 83: 208-216, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marco G Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana D Martins
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - Ivana Jarak
- Centre for Research in Ceramics and Composite Materials (CICECO), University of Aveiro, Aveiro, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Professor Alberto Barros, Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal.,I3S - Institute of Health Research and Innovation, University of Porto, Porto, Portugal
| | - Joaquina Silva
- Centre for Reproductive Genetics Professor Alberto Barros, Porto, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,Centre for Reproductive Genetics Professor Alberto Barros, Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,I3S - Institute of Health Research and Innovation, University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Jesus TT, Oliveira PF, Silva J, Barros A, Ferreira R, Sousa M, Cheng CY, Silva BM, Alves MG. Mammalian target of rapamycin controls glucose consumption and redox balance in human Sertoli cells. Fertil Steril 2015; 105:825-833.e3. [PMID: 26698679 DOI: 10.1016/j.fertnstert.2015.11.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/16/2015] [Accepted: 11/18/2015] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To study the role of mammalian target of rapamycin (mTOR) in the regulation of human Sertoli cell (hSC) metabolism, mitochondrial activity, and oxidative stress. DESIGN Experimental study. SETTING University research center and private assisted reproductive technology centers. PATIENT(S) Six men with anejaculation (psychological, vascular, neurologic) and conserved spermatogenesis. INTERVENTION(S) Testicular biopsies were used from patients under treatment for recovery of male gametes. Primary hSCs cultures were established from each biopsy and divided into a control group and one treated with rapamycin, the inhibitor of mTOR, for 24 hours. MAIN OUTCOME MEASURE(S) Cytotoxicity of hSCs to rapamycin was evaluated by sulforhodamine B assay. The glycolytic profile of hSCs was assessed by proton nuclear magnetic resonance and by studying protein expression of key glycolysis-related transporters and enzymes. Expression of mitochondrial complexes and citrate synthase activity were determined. Protein carbonylation, nitration, lipid peroxidation, and sulfhydryl protein group contents were quantified. The mTOR signaling pathway was studied. RESULT(S) Rapamycin increased glucose consumption by hSCs, maintaining lactate production. Alanine production by rapamycin-exposed hSCs was affected, resulting in an unbalanced intracellular redox state. Rapamycin-exposed hSCs had decreased expression of mitochondrial complex III and increased lipid peroxidation, whereas other oxidative stress markers were unaltered. Treatment of hSCs with rapamycin down-regulated phospho-mTOR (Ser-2448) levels, illustrating an effective partial inhibition of mTORC1. Protein levels of downstream signaling molecule p-4E-BP1 were not altered, suggesting that during treatment it became rephosphorylated. CONCLUSION(S) We show that mTOR regulates the nutritional support of spermatogenesis by hSCs and redox balance in these cells.
Collapse
Affiliation(s)
- Tito T Jesus
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Institute of Health Research an Innovation, Portugal
| | - Joaquina Silva
- Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal
| | - Alberto Barros
- Institute of Health Research an Innovation, Portugal; Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- Organic Chemistry, Natural and Agrofood Products Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal
| | - C Yan Cheng
- Center for Biomedical Research, Population Council, New York, New York
| | - Branca M Silva
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã
| | - Marco G Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã.
| |
Collapse
|
15
|
Dias TR, Alves MG, Almeida SP, Silva J, Barros A, Sousa M, Silva BM, Silvestre SM, Oliveira PF. Dehydroepiandrosterone and 7-oxo-dehydroepiandrosterone in male reproductive health: Implications of differential regulation of human Sertoli cells metabolic profile. J Steroid Biochem Mol Biol 2015; 154:1-11. [PMID: 26134425 DOI: 10.1016/j.jsbmb.2015.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/28/2015] [Accepted: 06/22/2015] [Indexed: 11/25/2022]
Abstract
Dehydroepiandrosterone (DHEA) is a precursor of androgen synthesis whose action is partially exerted through its metabolites. 7-Oxo-dehydroepiandrosterone (7-oxo-DHEA) is a common DHEA metabolite, non-convertible to androgens, which constitutes a promising therapeutic strategy for multiple conditions. Sertoli cells (SCs) are responsible for the support of spermatogenesis, having unique metabolic characteristics strongly modulated by androgens. Consequently, disruptions in androgen synthesis compromise SCs function and hence male fertility. We aimed to evaluate the effects of DHEA and 7-oxo-DHEA in human SCs (hSCs) metabolism and oxidative profile. To do so, hSCs were exposed to increasing concentrations of DHEA and 7-oxo-DHEA (0.025, 1 and 50 μM) that revealed to be non-cytotoxic in these experimental conditions. We measured hSCs metabolites consumption/production by (1)H NMR, the protein expression levels of key players of the glycolytic pathway by Western blot as well as the levels of carbonyl groups, nitration and lipid peroxidation by Slot blot. The obtained data demonstrated that 7-oxo-DHEA is a more potent metabolic modulator than DHEA since it increased hSCs glycolytic flux. DHEA seem to redirect hSCs metabolism to the Krebs cycle, while 7-oxo-DHEA has some inhibitory effect in this path. The highest 7-oxo-DHEA concentrations (1 and 50 μM) also increased lactate production, which is of extreme relevance for the successful progression of spermatogenesis in vivo. None of these steroids altered the intracellular oxidative profile of hSCs, illustrating that, at the concentrations used they do not have pro- nor antioxidant actions in hSCs. Our study represents a further step in the establishment of safe doses of DHEA and 7-oxo-DHEA to hSCs, supporting its possible use in hormonal and non-hormonal therapies against male reproductive problems.
Collapse
Affiliation(s)
- Tânia R Dias
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Marco G Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Susana P Almeida
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal
| | - Joaquina Silva
- Centre for Reproductive Genetics Prof. Alberto Barros, 4100-009 Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Prof. Alberto Barros, 4100-009 Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, 4100-009 Porto, Portugal; Institute of Health Research and Innovation, University of Porto, 4100-009 Porto, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal; Centre for Reproductive Genetics Prof. Alberto Barros, 4100-009 Porto, Portugal
| | - Branca M Silva
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Samuel M Silvestre
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Pedro F Oliveira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
16
|
Leptin modulates human Sertoli cells acetate production and glycolytic profile: a novel mechanism of obesity-induced male infertility? Biochim Biophys Acta Mol Basis Dis 2015; 1852:1824-32. [PMID: 26071642 DOI: 10.1016/j.bbadis.2015.06.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/20/2015] [Accepted: 06/08/2015] [Indexed: 12/31/2022]
Abstract
Human feeding behavior and lifestyle are gradually being altered, favoring the development of metabolic diseases, particularly type 2 diabetes and obesity. Leptin is produced by the adipose tissue acting as a satiety signal. Its levels have been positively correlated with fat mass and hyperleptinemia has been proposed to negatively affect male reproductive function. Nevertheless, the molecular mechanisms by which this hormone affects male fertility remain unknown. Herein, we hypothesize that leptin acts on human Sertoli cells (hSCs), the "nurse cells" of spermatogenesis, altering their metabolism. To test our hypothesis, hSCs were cultured without or with leptin (5, 25 and 50ng/mL). Leptin receptor was identified by qPCR and Western blot. Protein levels of glucose transporters (GLUT1, GLUT2 and GLUT3), phosphofructokinase, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 (MCT4) were determined by Western Blot. LDH activity was assessed and metabolite production/consumption determined by proton nuclear magnetic resonance. Oxidative damage was evaluated by assessing lipid peroxidation, protein carbonilation and nitration. Our data shows that leptin receptor is expressed in hSCs. The concentration of leptin found in lean, healthy patients, upregulated GLUT2 protein levels and concentrations of leptin found in lean and obese patients increased LDH activity. Of note, all leptin concentrations decreased hSCs acetate production illustrating a novel mechanism for this hormone action. Moreover, our data shows that leptin does not induce or protect hSCs from oxidative damage. We report that this hormone modulates the nutritional support of spermatogenesis, illustrating a novel mechanism that may be linked to obesity-induced male infertility.
Collapse
|
17
|
Metabolic fingerprints in testicular biopsies from type 1 diabetic patients. Cell Tissue Res 2015; 362:431-40. [PMID: 26051285 DOI: 10.1007/s00441-015-2217-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/12/2015] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease that has grown to pandemic proportions. Recent reports have highlighted the effect of DM on male reproductive function. Here, we hypothesize that testicular metabolism is altered in type 1 diabetic (T1D) men seeking fertility treatment. We propose to determine some metabolic fingerprints in testicular biopsies of diabetic patients. For that, testicular tissue from five normal and five type 1 diabetic men was analyzed by high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. mRNA and protein expression of glucose transporters and glycolysis-related enzymes were also evaluated. Our results show that testes from diabetic men presented decreased levels of lactate, alanine, citrate and creatine. The mRNA levels of glucose transporter 1 (GLUT1) and phosphofructokinase 1 (PFK1) were decreased in testes from diabetic men but only GLUT3 presented decreased mRNA and protein levels. Lactate dehydrogenase (LDH) and glutamate pyruvate transaminase (GPT) protein levels were also found to be decreased in testes from diabetic men. Overall, our results show that T1D alters glycolysis-related transporters and enzymes, compromising lactate content in the testes. Moreover, testicular creatine content was severely depressed in T1D men. Since lactate and creatine are essential for germ cells development and support, the data discussed here open new insights into the molecular mechanism by which DM promotes subfertility/infertility in human males.
Collapse
|
18
|
Alves MG, Martins AD, Teixeira NF, Rato L, Oliveira PF, Silva BM. White tea consumption improves cardiac glycolytic and oxidative profile of prediabetic rats. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Daily consumption of white tea (Camellia sinensis (L.)) improves the cerebral cortex metabolic and oxidative profile in prediabetic Wistar rats. Br J Nutr 2015; 113:832-42. [PMID: 25716141 DOI: 10.1017/s0007114514004395] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diabetes mellitus (DM) is a major public health problem and its incidence is rising dramatically. The brain, particularly the cerebral cortex, is very susceptible to glucose fluctuations and hyperglycaemia-induced oxidative stress. Tea (Camellia sinensis (L.)) is widely consumed; however, the antidiabetic properties of white tea remain largely unexplored. In the present study, we investigated the effects of daily consumption of white tea on the cerebral cortex of prediabetic rats. The cerebral cortex metabolic profile was evaluated, and the expression levels of GLUT, phosphofructokinase-1, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 were assessed. LDH activity was also determined. The cerebral cortex oxidative profile was determined by evaluating its antioxidant power, lipid peroxidation and protein oxidation levels. Catalase, glutathione, glutamate, N-acetylaspartate, aspartate, choline, γ-aminobutyric acid, taurine and valine contents were determined. Daily consumption of white tea ameliorated glucose tolerance and insulin sensitivity. Moreover, white tea altered the cortex glycolytic profile, modulating GLUT expression and lactate and alanine contents. Finally, white tea consumption restored protein oxidation and lipid peroxidation levels and catalase expression, and improved antioxidant capacity. In conclusion, daily consumption of white tea improved the cerebral cortex metabolic and oxidative profile in prediabetic rats, suggesting it as a good, safe and inexpensive strategy to prevent DM-related effects in the cerebral cortex.
Collapse
|
20
|
Reis MMS, Moreira AC, Sousa M, Mathur PP, Oliveira PF, Alves MG. Sertoli cell as a model in male reproductive toxicology: Advantages and disadvantages. J Appl Toxicol 2015; 35:870-83. [DOI: 10.1002/jat.3122] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/21/2014] [Accepted: 12/26/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Mariana M. S. Reis
- Department of Microscopy, Laboratory of Cell Biology, UMIB-FCT, Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - Ana C. Moreira
- Department of Microscopy, Laboratory of Cell Biology, UMIB-FCT, Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, UMIB-FCT, Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - Premendu P. Mathur
- Department of Biochemistry and Molecular Biology, School of Life Sciences; Pondicherry University, Pondicherry, India & KIIT University; Bhubaneswar India
| | - Pedro F. Oliveira
- CICS - UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - Marco G. Alves
- CICS - UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| |
Collapse
|
21
|
Nunes AR, Alves MG, Moreira PI, Oliveira PF, Silva BM. Can Tea Consumption be a Safe and Effective Therapy Against Diabetes Mellitus-Induced Neurodegeneration? Curr Neuropharmacol 2014; 12:475-89. [PMID: 25977676 PMCID: PMC4428023 DOI: 10.2174/1570159x13666141204220539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/10/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that is rapidly increasing and has become a major public health problem. Type 2 DM (T2DM) is the most common type, accounting for up to 90-95% of the new diagnosed DM cases. The brain is very susceptible to glucose fluctuations and hyperglycemia-induced oxidative stress (OS). It is well known that DM and the risk of developing neurodegenerative diseases are associated. Tea, Camellia sinensis L., is one of the most consumed beverages. It contains several phytochemicals, such as polyphenols, methylxanthines (mainly caffeine) and L-theanine that are often reported to be responsible for tea's health benefits, including in brain. Tea phytochemicals have been reported to be responsible for tea's significant antidiabetic and neuroprotective properties and antioxidant potential. Epidemiological studies have shown that regular consumption of tea has positive effects on DM-caused complications and protects the brain against oxidative damage, contributing to an improvement of the cognitive function. Among the several reported benefits of tea consumption, those related with neurodegenerative diseases are of great interest. Herein, we discuss the potential beneficial effects of tea consumption and tea phytochemicals on DM and how their action can counteract the severe brain damage induced by this disease.
Collapse
Affiliation(s)
- Ana R. Nunes
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Marco G. Alves
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Paula I. Moreira
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra and Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Pedro F. Oliveira
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Branca M. Silva
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| |
Collapse
|