1
|
Dos Santos IIP, Silva MDCC, Ferraz CG, Ribeiro PR. Flavonoids, biphenyls and xanthones from the genus Clusia: chemistry, biological activities and chemophenetics relevance. Nat Prod Res 2025; 39:579-592. [PMID: 38498692 DOI: 10.1080/14786419.2024.2330515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Clusia is one of the most important genera of the Clusiaceae family, comprising up to 400 species. This review describes the identification of twenty-two flavonoids from Clusia species, which includes five flavonols (1-4 and 11), six flavones (5-10), one catechin (12), one flavanone (13), and nine biflavonoids (14-22). O- and C-glycosylation are frequently observed amongst these flavonoids. Furthermore, seven biphenyls (23-29) and nine xanthones (30-38) have been isolated from Clusia species. Biphenyls and xanthones show limited occurrence within the genus, but together with biosynthetic insights, they might offer important chemophenetics leads for the consolidation of the genus Clusia within the Clusiaceae family. Altogether, this work provides an overview of the chemistry of the genus Clusia in terms of flavonoids, biphenyls and xanthones, as well as it discusses biological activities and chemophenetics of the isolated compounds, when appropriate.
Collapse
Affiliation(s)
- Ismirna I P Dos Santos
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Química Aplicada, Departamento de Ciências Exatas e da Terra - Campus I da UNEB, Salvador, Brazil
| | - Maria do Carmo C Silva
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | - Caline G Ferraz
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Química Aplicada, Departamento de Ciências Exatas e da Terra - Campus I da UNEB, Salvador, Brazil
| | - Paulo R Ribeiro
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Química Aplicada, Departamento de Ciências Exatas e da Terra - Campus I da UNEB, Salvador, Brazil
| |
Collapse
|
2
|
Scarpa ES, Giordani C, Antonelli A, Petrelli M, Balercia G, Silvetti F, Pieroni A, Sabbatinelli J, Rippo MR, Olivieri F, Matacchione G. The Combination of Natural Molecules Naringenin, Hesperetin, Curcumin, Polydatin and Quercetin Synergistically Decreases SEMA3E Expression Levels and DPPIV Activity in In Vitro Models of Insulin Resistance. Int J Mol Sci 2023; 24:ijms24098071. [PMID: 37175783 PMCID: PMC10178687 DOI: 10.3390/ijms24098071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a disease characterized by a prolonged hyperglycemic condition caused by insulin resistance mechanisms in muscle and liver, reduced insulin production by pancreatic β cells, and a chronic inflammatory state with increased levels of the pro-inflammatory marker semaphorin 3E. Phytochemicals present in several foods have been used to complement oral hypoglycemic drugs for the management of T2DM. Notably, dipeptidyl peptidase IV (DPPIV) inhibitors have demonstrated efficacy in the treatment of T2DM. Our study aimed to investigate, in in vitro models of insulin resistance, the ability of the flavanones naringenin and hesperetin, used alone and in combination with the anti-inflammatory natural molecules curcumin, polydatin, and quercetin, to counteract the insulin resistance and pro-inflammatory molecular mechanisms that are involved in T2DM development. Our results show for the first time that the combination of naringenin, hesperetin, curcumin, polydatin, and quercetin (that mirror the nutraceutical formulation GliceFen®, Mivell, Italy) synergistically decreases expression levels of the pro-inflammatory gene SEMA3E in insulin-resistant HepG2 cells and synergistically decreases DPPIV activity in insulin-resistant Hep3B cells, indicating that the combination of these five phytochemicals is able to inhibit pro-inflammatory and insulin resistance molecular mechanisms and could represent an effective innovative complementary approach to T2DM pharmacological treatment.
Collapse
Affiliation(s)
| | - Chiara Giordani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Massimiliano Petrelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Francesca Silvetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Alessio Pieroni
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Clinic of Laboratory and Precision Medicine, IRCCS Istituto Nazionale di Ricovero e Cura per Anziani, 60121 Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
3
|
Chen N, Jiang D, Shao B, Bai T, Chen J, Liu Y, Zhang Z, Zhou Y, Wang X, Zhu Z. Anti-BVDV Activity of Traditional Chinese Medicine Monomers Targeting NS5B (RNA-Dependent RNA Polymerase) In Vitro and In Vivo. Molecules 2023; 28:3413. [PMID: 37110647 PMCID: PMC10145726 DOI: 10.3390/molecules28083413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Natural products have emerged as "rising stars" for treating viral diseases and useful chemical scaffolds for developing effective therapeutic agents. The nonstructural protein NS5B (RNA-dependent RNA polymerase) of NADL strain BVDV was used as the action target based on a molecular docking technique to screen herbal monomers for anti-BVDV viral activity. The in vivo and in vitro anti-BVDV virus activity studies screened the Chinese herbal monomers with significant anti-BVDV virus effects, and their antiviral mechanisms were initially explored. The molecular docking screening showed that daidzein, curcumin, artemisinine, and apigenin could interact with BVDV-NADL-NS5B with the best binding energy fraction. In vitro and in vivo tests demonstrated that none of the four herbal monomers significantly affected MDBK cell activity. Daidzein and apigenin affected BVDV virus replication mainly in the attachment and internalization phases, artemisinine mainly in the replication phase, and curcumin was active in the attachment, internalization, replication, and release phases. In vivo tests demonstrated that daidzein was the most effective in preventing and protecting BALB/C mice from BVDV infection, and artemisinine was the most effective in treating BVDV infection. This study lays the foundation for developing targeted Chinese pharmaceutical formulations against the BVDV virus.
Collapse
Affiliation(s)
- Nannan Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Dongjun Jiang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining 272067, China;
| | - Baihui Shao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
| | - Tongtong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
| | - Jinwei Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, China
| | - Zecai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, China
| | - Xue Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (N.C.); (B.S.); (T.B.); (J.C.); (Y.L.); (Z.Z.); (Y.Z.); (X.W.)
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, China
| |
Collapse
|
4
|
Li X, Zhou L, Yu Y, Zhang J, Wang J, Sun B. The Potential Functions and Mechanisms of Oat on Cancer Prevention: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14588-14599. [PMID: 36376030 DOI: 10.1021/acs.jafc.2c06518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oat is classified as a whole grain and contains high contents of protein, lipids, carbohydrates, vitamins, minerals, and phytochemicals (such as polyphenols, flavonoids, and saponins). In recent years, studies have focused on the effects of oat consumption on reducing the risk of a variety of diseases. Reports have indicated that an oat diet exerts certain biological functions, such as preventing cardiovascular diseases, reducing blood glucose, and promoting intestinal health, along with antiallergy, antioxidation, and cancer preventive effects. At present, cancer is the second leading cause of death worldwide. The natural products of oat are an important breakthrough for developing new strategies of cancer prevention, and their ability to interact with multiple cellular targets helps to combat the complexity of cancer pathogenesis. In addition, the comprehensive study of the cancer prevention activity and potential mechanism of oat nutrients and phytochemicals has become a research hotspot. In this Review, we focused on the potential functions of peptides, dietary fiber, and phytochemicals in oats on cancer prevention and further revealed novel mechanisms and prospects for clinical application. These findings might provide a novel approach to deeply understand the functions and mechanisms for cancer prevention of oat consumption.
Collapse
Affiliation(s)
- Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Trabalzini L, Ercoli J, Trezza A, Schiavo I, Macrì G, Moglia A, Spiga O, Finetti F. Pharmacological and In Silico Analysis of Oat Avenanthramides as EGFR Inhibitors: Effects on EGF-Induced Lung Cancer Cell Growth and Migration. Int J Mol Sci 2022; 23:ijms23158534. [PMID: 35955669 PMCID: PMC9369115 DOI: 10.3390/ijms23158534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Avena sativa L. is a wholegrain cereal and an important edible crop. Oats possesses high nutritional and health promoting values and contains high levels of bioactive compounds, including a group of phenolic amides, named avenanthramides (Avns), exerting antioxidant, anti-inflammatory, and anticancer activities. Epidermal growth factor receptor (EGFR) represents one of the most known oncogenes and it is frequently up-regulated or mutated in human cancers. The oncogenic effects of EGFR include enhanced cell growth, angiogenesis, and metastasis, and down-regulation or inhibition of EGFR signaling has therapeutic benefit. Front-line EGFR tyrosine kinase inhibitor therapy is the standard therapy for patients with EGFR-mutated lung cancer. However, the clinical effects of EGFR inhibition may be lost after a few months of treatment due to the onset of resistance. Here, we showed the anticancer activity of Avns, focusing on EGFR activation and signaling pathway. Lung cancer cellular models have been used to evaluate the activity of Avns on tumor growth, migration, EMT, and anoikis induced by EGF. In addition, docking and molecular dynamics simulations showed that the Avns bind with high affinity to a region in the vicinity of αC-helix and the DGF motif of EGFR, jeopardizing the target biological function. Altogether, our results reveal a new pharmacological activity of Avns as EGFR tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (J.E.); (A.T.); (I.S.); (G.M.); (O.S.)
- Correspondence: (L.T.); (F.F.)
| | - Jasmine Ercoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (J.E.); (A.T.); (I.S.); (G.M.); (O.S.)
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (J.E.); (A.T.); (I.S.); (G.M.); (O.S.)
| | - Irene Schiavo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (J.E.); (A.T.); (I.S.); (G.M.); (O.S.)
| | - Giulia Macrì
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (J.E.); (A.T.); (I.S.); (G.M.); (O.S.)
| | - Andrea Moglia
- Department of Agriculture, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Torino, Italy;
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (J.E.); (A.T.); (I.S.); (G.M.); (O.S.)
| | - Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (J.E.); (A.T.); (I.S.); (G.M.); (O.S.)
- Correspondence: (L.T.); (F.F.)
| |
Collapse
|
6
|
Tang Y, Li S, Yan J, Peng Y, Weng W, Yao X, Gao A, Cheng J, Ruan J, Xu B. Bioactive Components and Health Functions of Oat. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2029477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yong Tang
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Shijuan Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, P. R. China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing in Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Yan Peng
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Anjing Gao
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, P. R. China
| |
Collapse
|
7
|
Romero SA, Pavan ICB, Morelli AP, Mancini MCS, da Silva LGS, Fagundes I, Silva CHR, Ponte LGS, Rostagno MA, Bezerra RMN, Simabuco FM. Anticancer effects of root and beet leaf extracts (Beta vulgaris L.) in cervical cancer cells (HeLa). Phytother Res 2021; 35:6191-6203. [PMID: 34494317 DOI: 10.1002/ptr.7255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 01/07/2023]
Abstract
Cervical cancer is the fourth leading cause of cancer mortality in women worldwide. Beetroot (Beta vulgaris L.) has bioactive compounds that can inhibit the progression of different types of cancer. To analyze the antiproliferative effects of beet leaf and root extracts, we performed MTT, clonogenic survival, cell cycle analysis, Annexin/PI labeling, and western blotting. Here, we report that 10 and 100 μg/ml of root and leaf extracts decreased cell viability and potentiated rapamycin and cisplatin effects while decreased the number of large colonies, especially at 10 μg/ml (293.6 of control vs. 200.0 of leaf extract, p = .0059; 138.6 of root extract, p = .0002). After 48 hr, 100 μg/ml of both extracts led to increased sub-G1 and G0/G1 populations. In accordance, 100 μg/ml of root extract induced early apoptosis (mean = 0.64 control vs. 1.56 root; p = .048) and decreased cell size (p < .0001). Both extracts decreased phosphorylation and expression of mechanistic Target of Rapamycin (mTOR) signaling, especially by inhibiting ribosomal protein S6 (S6) phosphorylation, increasing cleaved poly(ADP-ribose) polysomerase 1 (PARP1) and Bcl-2-like protein 11 (BIM), and decreasing cyclin D1 expression, which regulates cell cycle progression. Here, we demonstrate that beetroot and leaf extracts could be an efficient strategy against cervical cancer.
Collapse
Affiliation(s)
- Stefhani Andrioli Romero
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Isadora Carolina Betim Pavan
- Laboratory of Signal Mechanisms, School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Isabella Fagundes
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Cayo Henrique Rocha Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Rosângela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
8
|
Al-Harbi LN, Pandurangan SB, Al-Dossari AM, Shamlan G, Salamatullah AM, Alshatwi AA, Alotiby AA. Beta vulgaris rubra L. (Beetroot) Peel Methanol Extract Reduces Oxidative Stress and Stimulates Cell Proliferation via Increasing VEGF Expression in H 2O 2 Induced Oxidative Stressed Human Umbilical Vein Endothelial Cells. Genes (Basel) 2021; 12:genes12091380. [PMID: 34573361 PMCID: PMC8466581 DOI: 10.3390/genes12091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
The antioxidant capacity of polyphenols and flavonoids present in dietary agents aids in arresting the development of reactive oxygen species (ROS) and protecting endothelial smooth muscle cells from oxidative stress/induced necrosis. Beetroot (Beta vulgaris var. rubra L.; BVr) is a commonly consumed vegetable representing a rich source of antioxidants. Beetroot peel’s bioactive compounds and their role in human umbilical vein endothelial cells (HUVECs) are still under-researched. In the present study, beetroot peel methanol extract (BPME) was prepared, and its effect on the bio-efficacy, nuclear integrity, mitochondrial membrane potential and vascular cell growth, and immunoregulation-related gene expression levels in HUVECs with induced oxidative stress were analysed. Gas chromatography–mass spectroscopy (GC-MS) results confirmed that BPME contains 5-hydroxymethylfurfural (32.6%), methyl pyruvate (15.13%), furfural (9.98%), and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-Pyran-4-one (12.4%). BPME extract effectively enhanced cell proliferation and was confirmed by MTT assay; the nuclear integrity was confirmed by propidium iodide (PI) staining assay; the mitochondrial membrane potential (Δψm) was confirmed by JC-1 staining assay. Annexin V assay confirmed that BPME-treated HUVECs showed 99% viable cells, but only 39.8% viability was shown in HUVECs treated with H2O2 alone. In addition, BPME treatment of HUVECs for 48 h reduced mRNA expression of lipid peroxide (LPO) and increased NOS-3, Nrf-2, GSK-3β, GPX, endothelial nitric oxide synthase (eNOS) and vascular cell growth factor (VEGF) mRNA expression levels. We found that BPME treatment decreased proinflammatory (nuclear factor-κβ (F-κβ), tissue necrosis factor-α (TNF-α), toll-like receptor-4 (TLR-4), interleukin-1β (IL-1β)) and vascular inflammation (intracellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), EDN1, IL-1β)-related mRNA expressions. In conclusion, beetroot peel treatment effectively increased vascular smooth cell growth factors and microtubule development, whereas it decreased vascular inflammatory regulators. BPME may be beneficial for vascular smooth cell regeneration, tissue repair and anti-ageing potential.
Collapse
Affiliation(s)
- Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
- Correspondence:
| | - Subash-Babu Pandurangan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Alhanouf Mohammed Al-Dossari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ali A Alshatwi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Amna Abdullah Alotiby
- Department of Haematology and Immunology, Faculty of Medicine, Umm Alqura University, Makkah 24237, Saudi Arabia;
| |
Collapse
|
9
|
Hou Y, Peng S, Song Z, Bai F, Li X, Fang J. Oat polyphenol avenanthramide-2c confers protection from oxidative stress by regulating the Nrf2-ARE signaling pathway in PC12 cells. Arch Biochem Biophys 2021; 706:108857. [PMID: 33781769 DOI: 10.1016/j.abb.2021.108857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Accumulating evidence has demonstrated that cellular antioxidant systems play essential roles in retarding oxidative stress-related diseases, such as Parkinson's disease. Because nuclear factor erythroid 2-related factor 2 (Nrf2) is a chief regulator of cellular antioxidant systems, small molecules with Nrf2-activating ability may be promising neuroprotective agents. Avenanthramide-2c (Aven-2c), avenanthramide-2f (Aven-2f) and avenanthramide-2p (Aven-2p) are the most abundant avenanthramides in oats, and they have been documented to possess multiple pharmacological benefits. In this work, we synthesized these three compounds and evaluated their cytoprotective effect against oxidative stress-induced PC12 cell injuries. Aven-2c displayed the best protective potency among them. Aven-2c conferred protection on PC12 cells by scavenging free radicals and activating the Nrf2-ARE signaling pathway. Pretreatment of PC12 cells with Aven-2c efficiently enhanced Nrf2 nuclear accumulation and evoked the expression of a set of cytoprotective molecules. The mechanistic study also supports that Nrf2 activation is the molecular basis for the cellular action of Aven-2c. Collectively, this study demonstrates that Aven-2c is a potent Nrf2 agonist, shedding light on the potential usage of Aven-2c in the treatment of neuroprotective diseases.
Collapse
Affiliation(s)
- Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shoujiao Peng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zilong Song
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Feifei Bai
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Nieto-Domínguez M, Fernández de Toro B, de Eugenio LI, Santana AG, Bejarano-Muñoz L, Armstrong Z, Méndez-Líter JA, Asensio JL, Prieto A, Withers SG, Cañada FJ, Martínez MJ. Thioglycoligase derived from fungal GH3 β-xylosidase is a multi-glycoligase with broad acceptor tolerance. Nat Commun 2020; 11:4864. [PMID: 32978392 PMCID: PMC7519651 DOI: 10.1038/s41467-020-18667-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022] Open
Abstract
The synthesis of customized glycoconjugates constitutes a major goal for biocatalysis. To this end, engineered glycosidases have received great attention and, among them, thioglycoligases have proved useful to connect carbohydrates to non-sugar acceptors. However, hitherto the scope of these biocatalysts was considered limited to strong nucleophilic acceptors. Based on the particularities of the GH3 glycosidase family active site, we hypothesized that converting a suitable member into a thioglycoligase could boost the acceptor range. Herein we show the engineering of an acidophilic fungal β-xylosidase into a thioglycoligase with broad acceptor promiscuity. The mutant enzyme displays the ability to form O-, N-, S- and Se- glycosides together with sugar esters and phosphoesters with conversion yields from moderate to high. Analyses also indicate that the pKa of the target compound was the main factor to determine its suitability as glycosylation acceptor. These results expand on the glycoconjugate portfolio attainable through biocatalysis.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Beatriz Fernández de Toro
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Andrés G Santana
- Glycochemistry and Molecular recognition group, Instituto de Química Orgánica General (CSIC), C/Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Lara Bejarano-Muñoz
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Zach Armstrong
- Department of Chemistry, Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada
| | - Juan Antonio Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan Luis Asensio
- Glycochemistry and Molecular recognition group, Instituto de Química Orgánica General (CSIC), C/Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Stephen G Withers
- Department of Chemistry, Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada
| | - Francisco Javier Cañada
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
11
|
Zhao S, Guan X, Hou R, Zhang X, Guo F, Zhang Z, Hua C. Vitexin attenuates epithelial ovarian cancer cell viability and motility in vitro and carcinogenesis in vivo via p38 and ERK1/2 pathways related VEGFA. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1139. [PMID: 33240988 PMCID: PMC7576048 DOI: 10.21037/atm-20-5586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is the most common type of ovarian tumor, however, effective treatment does not currently exist for this condition. This study evaluated the role of vitexin in mitigating EOC both in vitro and in vivo. METHOD SKOV-3 cells were used for in vitro experimentation. Xenotransplantation mouse models were set up by subcutaneously injecting mice with SKOV-3 cells. CCK8 was used to screen the optimal dose in vitro. Cell proliferation, invasion, number of microtubule nodules and apoptosis were respectively detected by colony formation assay, transwell assay, microtubule formation assay and flow cytometry. TUNEL and immunohistochemistry were used to detect tissues apoptosis and VEGF content. Western blot assay was used to detect the expression of Ki67, caspase-3, VEGFA, VEGFR2, ERK1/2 and p38. RESULTS In vitro experiment, compared with the control group, 10 µL of vitexin significantly reduced Ki67 levels and enhanced tumor cell apoptosis rate. Additionally, the colony forming rate, invasive cells per field, and number of nodes/HPF in vitexin treated group decreased dramatically. The result of western blot showed that levels of p-p38/p38 and p-ERK1/2/ERK1/2 also noticeably decreased. In vivo experiment, 40 mg/kg of vitexin significantly inhibited tumor growth. In addition, vitexin significantly enhanced the percentage of tissues apoptosis, which was accompanied by a decrease in the percentage of VEGF-positive cells. CONCLUSIONS Vitexin decreased the proliferation and invasion of SKOV-3 cells and noticeably reduced tumor growth. These findings suggest that vitexin could be a promising therapy for EOC.
Collapse
Affiliation(s)
- Shuzhen Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xinlei Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ruijie Hou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xueying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Fang Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Zhifang Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Caihong Hua
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
12
|
Ninfali P, Antonelli A, Magnani M, Scarpa ES. Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients 2020; 12:nu12092534. [PMID: 32825564 PMCID: PMC7551920 DOI: 10.3390/nu12092534] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
This review summarizes the latest advancements in phytochemicals as functional antiviral agents. We focused on flavonoids, like apigenin, vitexin, quercetin, rutin and naringenin, which have shown a wide range of biological effects including antiviral activities. The molecular mechanisms of their antiviral effects mainly consist in the inhibition of viral neuraminidase, proteases and DNA/RNA polymerases, as well as in the modification of various viral proteins. Mixtures of different flavonoids or combination of flavonoids with antiviral synthetic drugs provide an enhancement of their antiviral effects. Recent strategies in drug delivery significantly contribute to overcoming the low bioavailability of flavonoids. Frequent viral infections worldwide have led to the need for new effective antiviral agents, which can be identified among the various phytochemicals. In this light, screening the antiviral activities of a cocktail of flavonoids would be advantageous in order to prevent viral infections and improve current antiviral therapies.
Collapse
Affiliation(s)
| | | | - Mauro Magnani
- Correspondence: (M.M.); (E.S.S.); Tel.: +39-0722-305-211 (M.M.); +39-0722-305-252 (E.S.S.)
| | | |
Collapse
|
13
|
Landberg R, Sunnerheim K, Dimberg LH. Avenanthramides as lipoxygenase inhibitors. Heliyon 2020; 6:e04304. [PMID: 32637696 PMCID: PMC7330496 DOI: 10.1016/j.heliyon.2020.e04304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/21/2020] [Accepted: 06/22/2020] [Indexed: 01/18/2023] Open
Abstract
Avenanthramides (AVAs) present in oats are amides of anthranilic and cinnamic acids. AVAs are potent antioxidants and have anti-inflammatory properties. There are various potential mechanisms for their anti-inflammatory effects, including inhibition of lipoxygenases (LOX), which catalyse oxygenation of polyunsaturated fatty acids into potent signal molecules involved in inflammatory processes. In this study, AVAs were screened for LOX inhibition in vitro and structure-activity relationships were examined. Twelve different AVAs at 0.6 mM were tested as LOX inhibitors. The corresponding free cinnamic acids, the AVA analogue Tranilast® and the known LOX inhibitor trans-resveratrol were included for comparison. It was found that AVAs comprising caffeic or sinapic acid exhibited significant lipoxygenase inhibition (60–90%) (P < 0.05), whereas low or no inhibition was observed with AVAs containing p-coumaric or ferulic acid. No difference in inhibition was seen on comparing AVAs with their free corresponding cinnamic acids, which implies that the anthranilic acid part of the avenanthramide molecule does not affect inhibition. Trans-resveratrol showed inhibition, whereas no inhibition was seen for Tranilast® at the concentrations used in this study. This study suggests that aventahtramides comprising caffeic acid or sinapic acid partly exert their antioxidant and anti-inflammatory effects via lipoxygenase inhibition.
Collapse
Affiliation(s)
- Rikard Landberg
- Department of Food Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kerstin Sunnerheim
- Department of Chemical Engineering, Mid Sweden University, Sundsvall, Sweden
| | - Lena H Dimberg
- Department of Food Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
Absorption, metabolism, and bioactivity of vitexin: recent advances in understanding the efficacy of an important nutraceutical. Crit Rev Food Sci Nutr 2020; 61:1049-1064. [PMID: 32292045 DOI: 10.1080/10408398.2020.1753165] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
vitexin, an apigenin-8-C-glucoside, is widely present in numerous edible and medicinal plants. vitexin possesses a variety of bioactive properties, including antioxidation, anti-inflammation, anti-cancer, neuron-protection, and cardio-protection. Other beneficial health effects, such as fat reduction, glucose metabolism, and hepatoprotection, have also been reported in recent studies. This review briefly discusses the absorption and metabolism of vitexin, as well as its influence on gut microbiota. Recent advances in understanding the pharmacological and biological effects of vitexin are then reviewed. Improved knowledge of the absorption, metabolism, bioactivity, and molecular targets of vitexin is crucial for the better utilization of this emerging nutraceutical as a chemopreventive and chemotherapeutic agent.
Collapse
|
15
|
da Silva LGS, Morelli AP, Pavan ICB, Tavares MR, Pestana NF, Rostagno MA, Simabuco FM, Bezerra RMN. Protective effects of beet (Beta vulgaris) leaves extract against oxidative stress in endothelial cells in vitro. Phytother Res 2020; 34:1385-1396. [PMID: 31989717 DOI: 10.1002/ptr.6612] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/04/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022]
Abstract
Beetroot is an herb used worldwide as a food product, raw material for food industry, ethanol production and source of food coloring. Beet leaves are an unconventional food with antioxidant properties, which might neutralize reactive oxygen species (ROS) induced by oxidized Low-Density Lipoprotein (LDL) present in dyslipidemias. This study aimed to elucidate the effects of beet leaves on the suppression of LDL oxidative processes. Beet leaves extract was produced, characterized, and tested for its antioxidant capacity using endothelial cells in vitro. A model of human umbilical vein endothelial cells was used in various tests, including viability assay, molecular analysis of antioxidant genes, ROS labeling, and macrophage adhesion assay. The extract improved the antioxidative protection of endothelial cells against different agents including oxidized LDL-cholesterol and H2 O2 . It acted on ROS directly due to its high content of natural antioxidants, but also due to the activation and improvement of cellular defenses such as Superoxide dismutase 1, Superoxide dismutase 2, and catalase. The inhibition of LDL-mediated oxidative effects on endothelial cells may turn this unconventional food a functional food with great potential for phytotherapy of atherosclerosis as an adjuvant for medicinal treatments.
Collapse
Affiliation(s)
- Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mariana Rosolen Tavares
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Nathalie Fortes Pestana
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rosângela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
16
|
Deng X, Peng Y, Zhao J, Lei X, Zheng X, Xie Z, Tang G. Anticancer Activity of Natural Flavonoids: Inhibition of HIF-1α Signaling Pathway. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191203122030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rapid tumor growth is dependent on the capability of tumor blood vessels and
glycolysis to provide oxygen and nutrients. Tumor hypoxia is a common characteristic of
many solid tumors, and it essentially happens when the growth of the tumor exceeds the
concomitant angiogenesis. Hypoxia-inducible factor 1 (HIF-1) as the critical transcription
factor in hypoxia regulation is activated to adapt to this hypoxia situation. Flavonoids,
widely distributed in plants, comprise many polyphenolic secondary metabolites, possessing
broadspectrum pharmacological activities, including their potentiality as anticancer
agents. Due to their low toxicity, intense efforts have been made for investigating natural
flavonoids and their derivatives that can be used as HIF-1α inhibitors for cancer therapy
during the past few decades. In this review, we sum up the findings concerning the inhibition
of HIF-1α by natural flavonoids in the last few years and propose the idea of designing tumor vascular and
glycolytic multi-target inhibitors with HIF-1α as one of the targets.
Collapse
Affiliation(s)
- Xiangping Deng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yijiao Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Jingduo Zhao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
17
|
Nieto-Domínguez M, Martínez-Fernández JA, de Toro BF, Méndez-Líter JA, Cañada FJ, Prieto A, de Eugenio LI, Martínez MJ. Exploiting xylan as sugar donor for the synthesis of an antiproliferative xyloside using an enzyme cascade. Microb Cell Fact 2019; 18:174. [PMID: 31601204 PMCID: PMC6788083 DOI: 10.1186/s12934-019-1223-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/29/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Currently, industrial societies are seeking for green alternatives to conventional chemical synthesis. This demand has merged with the efforts to convert lignocellulosic biomass into value-added products. In this context, xylan, as one of main components of lignocellulose, has emerged as a raw material with high potential for advancing towards a sustainable economy. RESULTS In this study, the recombinant endoxylanase rXynM from the ascomycete Talaromyces amestolkiae has been heterologously expressed in Pichia pastoris and used as one of the catalysts of an enzyme cascade developed to synthesize the antiproliferative 2-(6-hydroxynaphthyl) β-D-xylopyranoside, by transglycosylation of 2,6-dihydroxynaphthalene. The approach combines the use of two fungal xylanolytic enzymes, rXynM and the β-xylosidase rBxTW1 from the same fungus, with the cost-effective substrate xylan. The reaction conditions for the cascade were optimized by a Central Composite Design. Maximal productions of 0.59 and 0.38 g/L were reached using beechwood xylan and birchwood xylan, respectively. For comparison, xylans from other sources were tested in the same reaction, suggesting that a specific optimization is required for each xylan variety. The results obtained using this enzyme cascade and xylan were similar or better to those previously reported for a single catalyst and xylobiose, an expensive sugar donor. CONCLUSIONS Beechwood and birchwood xylan, two polysaccharides easily available from biomass, were used in a novel enzyme cascade to synthetize an antiproliferative agent. The approach represents a green alternative to the conventional chemical synthesis of 2-(6-hydroxynaphthyl) β-D-xylopyranoside using a cost-effective substrate. The work highlights the role of xylan as a raw material for producing value-added products and the potential of fungal xylanolytic enzymes in the biomass conversion.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - José Alberto Martínez-Fernández
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Fernández de Toro
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan A Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Francisco Javier Cañada
- NMR and Molecular Recognition Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas (CIB-CSIC), c/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
18
|
Overview of the Anticancer Profile of Avenanthramides from Oat. Int J Mol Sci 2019; 20:ijms20184536. [PMID: 31540249 PMCID: PMC6770293 DOI: 10.3390/ijms20184536] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer represents one of the leading causes of death worldwide. Progresses in treatment of cancer have continued at a rapid pace. However, undesirable side effects and drug resistance remain major challenges for therapeutic success. Natural products represent a valuable starting point to develop new anticancer strategies. Polyphenols, well-known as antioxidant, exert anticancer effects through the modulation of multiple pathways and mechanisms. Oat (Avena sativa L., Poaceae) is a unique source of avenanthramides (AVAs), a group of polyphenolic alkaloids, considered as its signature compounds. The present review aims to offer a comprehensive and critical perspective on the chemopreventive and chemotherapeutic potential of AVAs. AVAs prevent cancer mainly by blocking reactive species. Moreover, they exhibit potential therapeutic activity through the modulation of different pathways including the activation of apoptosis and senescence, the block of cell proliferation, and the inhibition of epithelial mesenchymal transition and metastatization. AVAs are promising chemopreventive and anticancer phytochemicals, which need further clinical trials and toxicological studies to define their efficacy in preventing and reducing the burden of cancer diseases.
Collapse
|
19
|
Fu R, Yang P, Li Z, Liu W, Amin S, Li Z. Avenanthramide A triggers potent ROS-mediated anti-tumor effects in colorectal cancer by directly targeting DDX3. Cell Death Dis 2019; 10:593. [PMID: 31391454 PMCID: PMC6685981 DOI: 10.1038/s41419-019-1825-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is a common malignant gastrointestinal tumor with high mortality worldwide. Drug resistance and cytotoxicity to normal cells are the main causes of chemotherapeutic treatment failure in CRC. Therefore, extracting the bioactive compounds from natural products with anti-carcinogenic activity and minimal side-effects is a promising strategy against CRC. The present study aims to evaluate the anti-carcinogenic properties of avenanthramides (AVNs) extracted from oats bran and clarify the underlying molecular mechanisms. We demonstrated that AVNs treatment suppressed mitochondrial bioenergetic generation, resulting in mitochondrial swelling and increased reactive oxygen species (ROS) production. Further study indicated that AVNs treatment significantly reduced DDX3 expression, an oncogenic RNA helicase highly expressed in human CRC tissues. DDX3 overexpression reversed the ROS-mediated CRC apoptosis induced by AVNs. Of note, we identified Avenanthramide A (AVN A) as the effective ingredient in AVNs extracts. AVN A blocked the ATPase activity of DDX3 and induced its degradation by directly binding to the Arg287 and Arg294 residues in DDX3. In conclusion, these innovative findings highlight that AVNs extracts, in particular its bioactive compound AVN A may crack the current hurdles in the way of CRC treatment.
Collapse
Affiliation(s)
- Rong Fu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, China.,Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, China.,Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Zongwei Li
- Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Wen Liu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Sajid Amin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, China. .,School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
20
|
Rao S, Chinkwo K, Santhakumar A, Johnson S, Blanchard C. Apoptosis Induction Pathway in Human Colorectal Cancer Cell Line SW480 Exposed to Cereal Phenolic Extracts. Molecules 2019; 24:E2465. [PMID: 31277499 PMCID: PMC6651285 DOI: 10.3390/molecules24132465] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 01/29/2023] Open
Abstract
Cereal phenolic extracts have previously been investigated for their potential anticancer properties; however, the exact mechanisms involved in the inhibition of tumour growth are unclear. One possible mechanism is the induction of apoptosis which is characterised by cell shrinkage, protein fragmentation, and DNA degradation followed by rapid engulfment of cell debris by macrophages. This study examines the ability of phenolic extracts from four cereals: rice, barley, oats and sorghum to induce apoptosis on colorectal cancer cells SW480. Wholegrain extracts from pigmented varieties of red rice, purple rice, black sorghum, and brown sorghum showed a significant reduction in cancer cell proliferation. Morphological observation using APOPercentage™ dye indicated positive for apoptosis. Further analyses of Yunlu29 (rice), Shawaya Short Black 1 and IS1136 (sorghum) showed expression of p53 and confirmed activation of multiple caspases, specifically for caspase 3 and 7. Purple rice, on the other hand, did not upregulate caspase 3 and 7, hence, suggestive of cell cycle arrest. Therefore, phenolic compounds present in cereals such as pigmented rice and sorghum may suppress cancer cell proliferation through the activation of the apoptosis.
Collapse
Affiliation(s)
- Shiwangni Rao
- School of Biomedical Sciences, Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Kenneth Chinkwo
- School of Biomedical Sciences, Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Abishek Santhakumar
- School of Biomedical Sciences, Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Stuart Johnson
- Agriculture and Food Discipline, School of Molecular and Life Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia
| | - Christopher Blanchard
- School of Biomedical Sciences, Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
21
|
Rao S, Santhakumar AB, Chinkwo KA, Vanniasinkam T, Luo J, Blanchard CL. Chemopreventive Potential of Cereal Polyphenols. Nutr Cancer 2018; 70:913-927. [PMID: 30273076 DOI: 10.1080/01635581.2018.1491609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been identified that diet is one of the major contributing factors associated with the development of cancer and other chronic pathologies. In the recent years, supplementing regular diet with food and/or its components that contain chemopreventive properties has been considered an effective approach in reducing the incidence of cancer and other lifestyle associated diseases. This systematic review provides an exhaustive summary of the chemopreventive properties exhibited by everyday dietary ingredients such as rice, barley, oats, and sorghum. The studies both in vitro and in vivo reviewed have highlighted the potential role of their polyphenolic content as chemopreventive agents. Polyphenolic compounds including anthocyanins, tricin, protocatechualdehyde, avenanthramide, and 3-deoxyanthocyanins found in rice, barley, oats, and sorghum, respectively, were identified as compounds with potent bioactivity. Studies demonstrated that cereal polyphenols are likely to have chemopreventive activities, particularly those found in pigmented varieties. In conclusion, findings suggest that the consumption of pigmented cereals could potentially have an important role as a natural complementary cancer preventive therapeutic. However, further studies to develop a complete understanding of the mechanisms by which phenolic compounds inhibit cancerous cell proliferation are warranted.
Collapse
Affiliation(s)
- Shiwangni Rao
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia.,b Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University , Wagga Wagga , New South Wales , Australia
| | - Abishek B Santhakumar
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia.,b Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University , Wagga Wagga , New South Wales , Australia
| | - Kenneth A Chinkwo
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia.,b Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University , Wagga Wagga , New South Wales , Australia
| | - Thiru Vanniasinkam
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia
| | - Jixun Luo
- c New South Wales Department of Primary Industries , Yanco Agricultural Institute , Yanco , New South Wales , Australia
| | - Christopher L Blanchard
- a School of Biomedical Sciences , Charles Sturt University , Wagga Wagga , New South Wales , Australia.,b Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University , Wagga Wagga , New South Wales , Australia
| |
Collapse
|
22
|
Antonini E, Iori R, Ninfali P, Scarpa ES. A Combination of Moringin and Avenanthramide 2f Inhibits the Proliferation of Hep3B Liver Cancer Cells Inducing Intrinsic and Extrinsic Apoptosis. Nutr Cancer 2018; 70:1159-1165. [PMID: 30204484 DOI: 10.1080/01635581.2018.1497672] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Moringin (MOR), a glycosyl-isothiocyanate obtained by myrosinase-catalyzed hydrolysis of the precursor 4-(α-l-rhamnosyloxy)-benzyl glucosinolate (glucomoringin), found predominantly in the seeds of Moringa oleifera, shows anticancer effects against several cancer cell lines. Avenanthramide (AVN) 2f is a phytochemical purified from oats with antioxidant and anticancer properties. The aim of this study was to investigate the antiproliferative and proapoptotic effects of MOR and AVN 2f used alone and in combination on Hep3B cancer cells, which are highly resistant to conventional anticancer drugs. We found that a cocktail of MOR and AVN 2f significantly inhibited the Hep3B proliferation rate by markedly increasing the activity of caspases 2, 8, 9, and 3. Extrinsic apoptosis was induced by the AVN 2f-mediated activation of caspase 8, while the intrinsic apoptotic pathway was triggered by MOR-induced increase in the levels of intracellular reactive oxygen species, MOR-mediated activation of caspases 2 and 9 and the MOR-mediated downregulation of the prosurvival gene BIRC5. Our results suggest that the combination MOR + AVN 2f could be an effective chemopreventive cocktail against the development of hepatocarcinoma.
Collapse
Affiliation(s)
- Elena Antonini
- a Department of Biomolecular Sciences , University of Urbino "Carlo Bo," Urbino (PU) , Italy
| | - Renato Iori
- b Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Agricoltura e Ambiente (CREA-AA) , Bologna , Italy
| | - Paolino Ninfali
- a Department of Biomolecular Sciences , University of Urbino "Carlo Bo," Urbino (PU) , Italy
| | | |
Collapse
|
23
|
Yeast-Derived Recombinant Avenanthramides Inhibit Proliferation, Migration and Epithelial Mesenchymal Transition of Colon Cancer Cells. Nutrients 2018; 10:nu10091159. [PMID: 30149546 PMCID: PMC6165333 DOI: 10.3390/nu10091159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
Avenanthramides (Avns), polyphenols found exclusively in oats, are emerging as promising therapeutic candidates for the treatment of several human diseases, including colon cancer. By engineering a Saccharomyces cerevisiae strain, we previously produced two novel phenolic compounds, N-(E)-p-coumaroyl-3-hydroxyanthranilic acid (Yeast avenanthramide I, YAvnI) and N-(E)-caffeoyl-3-hydroxyanthranilic acid (Yeast avenanthramide II, YAvnII), which are endowed with a structural similarity to bioactive oat avenanthramides and stronger antioxidant properties. In this study, we evaluated the ability of these yeast-derived recombinant avenanthramides to inhibit major hallmarks of colon cancer cells, including sustained proliferation, migration and epithelial-mesenchymal transition (EMT). Using the human colon adenocarcinoma cell line HT29, we compared the impact of YAvns and natural Avns, including Avn-A and Avn-C, on colon cancer cells by performing MTT, clonogenic, adhesion, migration, and anchorage-independent growth assays, and analyzing the expression of EMT markers. We found that both YAvns and Avns were able to inhibit colon cancer cell growth by increasing the expression of p21, p27 and p53 proteins. However, YAvns resulted more effective than natural compounds in inhibiting cancer cell migration and reverting major molecular features of the EMT process, including the down-regulation of E-cadherin mRNA and protein levels.
Collapse
|
24
|
Rao S, Schwarz LJ, Santhakumar AB, Chinkwo KA, Blanchard CL. Cereal phenolic contents as affected by variety and environment. Cereal Chem 2018. [DOI: 10.1002/cche.10085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shiwangni Rao
- School of Biomedical Sciences Charles Sturt University Wagga Wagga New South Wales Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga New South Wales Australia
| | - Lachlan J. Schwarz
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga New South Wales Australia
- School of Agricultural and Wine Sciences Charles Sturt University Wagga Wagga New South Wales Australia
| | - Abishek B. Santhakumar
- School of Biomedical Sciences Charles Sturt University Wagga Wagga New South Wales Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga New South Wales Australia
| | - Kenneth A. Chinkwo
- School of Biomedical Sciences Charles Sturt University Wagga Wagga New South Wales Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga New South Wales Australia
| | - Christopher L. Blanchard
- School of Biomedical Sciences Charles Sturt University Wagga Wagga New South Wales Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains Graham Centre for Agricultural Innovation Charles Sturt University Wagga Wagga New South Wales Australia
| |
Collapse
|
25
|
Tripathi V, Singh A, Ashraf M. Avenanthramides of oats: Medicinal importance and future perspectives. Pharmacogn Rev 2018. [DOI: 10.4103/phrev.phrev_34_17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Scarpa ES, Mari M, Antonini E, Palma F, Ninfali P. Natural and synthetic avenanthramides activate caspases 2, 8, 3 and downregulate hTERT, MDR1 and COX-2 genes in CaCo-2 and Hep3B cancer cells. Food Funct 2018; 9:2913-2921. [DOI: 10.1039/c7fo01804e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Avenanthramides inhibit proliferation of CaCo-2 and Hep3B cancer cells through induction of apoptosis and downregulation of pro-survival mechanisms.
Collapse
Affiliation(s)
- E. S. Scarpa
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| | - M. Mari
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| | - E. Antonini
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| | - F. Palma
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| | - P. Ninfali
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| |
Collapse
|
27
|
Hastings J, Kenealey J. Avenanthramide-C reduces the viability of MDA-MB-231 breast cancer cells through an apoptotic mechanism. Cancer Cell Int 2017; 17:93. [PMID: 29075150 PMCID: PMC5648482 DOI: 10.1186/s12935-017-0464-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/13/2017] [Indexed: 11/23/2022] Open
Abstract
Background Avenanthramides (AVN) are a relatively unstudied family of phytochemicals that could be novel chemotherapeutics. These compounds, found in oats, are non-toxic to healthy cells and have been shown to reduce viability of human colon and liver cancers in vitro. However, these studies do not elucidate a molecular mechanism for individual AVN. In this study we aim to see the effects of AVN on MDA-MB-231 breast cancer cells. Methods An MTT assay was used to determine cell viability. Staining and analysis with a flow cytometer was used to identify cell cycle progression and apoptosis. FloJo software was used to analyze the cytometric data. In all experiments, statistical significance was determined by a two-tailed t test. Results This study demonstrates that AVN-A, B, and C individually reduce viability in the MDA-MB-231 breast cancer cell line. AVN-C has the most potent decrease in tumor cell viability, decreasing viable cells to below 25% at 400 µM when compared to control after 96 h. We demonstrate that treatment with AVN-C causes DNA fragmentation and accumulation of over 90% of cells into a sub G1 cell cycle population. Further, we conclude that AVN-C treated cells activate apoptosis because 97% of treated cells stain positive for annexin V while 91% have caspase-3/7 activity, a late marker of apoptosis. Conclusions Breast cancer cells treated with AVN-C have a decrease in cell viability, an increase in the sub G1 population, and stain positive for both annexin V and caspase activity, indicating that AVN-C induces apoptosis in breast cancer cells. These compounds may be able to act as chemotherapeutics as demonstrated through future in vivo studies.
Collapse
Affiliation(s)
- Jordan Hastings
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, ESC S249, Provo, UT 84602 USA
| | - Jason Kenealey
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, ESC S249, Provo, UT 84602 USA
| |
Collapse
|
28
|
Ninfali P, Antonini E, Frati A, Scarpa ES. C-Glycosyl Flavonoids from Beta vulgaris Cicla and Betalains from Beta vulgaris rubra: Antioxidant, Anticancer and Antiinflammatory Activities-A Review. Phytother Res 2017; 31:871-884. [PMID: 28464411 DOI: 10.1002/ptr.5819] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/07/2022]
Abstract
The green beet (Beta vulgaris var. cicla L.) and red beetroot (B. vulgaris var. rubra L.) contain phytochemicals that have beneficial effects on human health. Specifically, the green beet contains apigenin, vitexin, vitexin-2-O-xyloside and vitexin-2-O-rhamnoside, while the red beetroot is a source of betaxanthins and betacyanins. These phytochemicals show considerable antioxidant activity, as well as antiinflammatory and antiproliferative activities. Vitexin-2-O-xyloside, in combination with betaxanthins and betacyanins, exerts antiproliferative activity in breast, liver, colon and bladder cancer cell lines, through the induction of both intrinsic and extrinsic apoptotic pathways. A significant body of evidence also points to the role of these phytochemicals in the downregulation of the pro-survival genes, baculoviral inhibitor of apoptosis repeat-containing 5 and catenin beta-1, as well as the genes controlling angiogenesis, hypoxia inducible factor 1A and vascular endothelial growth factor A. The multi-target action of these phytochemicals enhances their anticancer activity. Vitexin-2-O-xyloside, betaxanthins and betacyanins can be used in combination with conventional anticancer drugs to reduce their toxicity and overcome the multidrug resistance of cancer cells. In this review, we describe the molecular mechanisms that enable these dietary phytochemicals to block the proliferation of tumor cells and inhibit their pro-survival pathways. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Paolino Ninfali
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', via Saffi, 2, 61029, Urbino, PU, Italy
| | - Elena Antonini
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', via Saffi, 2, 61029, Urbino, PU, Italy
| | - Alessandra Frati
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', via Saffi, 2, 61029, Urbino, PU, Italy
| | - Emanuele-Salvatore Scarpa
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', via Saffi, 2, 61029, Urbino, PU, Italy
| |
Collapse
|