1
|
Bernhard W, Böckmann KA, Minarski M, Wiechers C, Busch A, Bach D, Poets CF, Franz AR. Evidence and Perspectives for Choline Supplementation during Parenteral Nutrition-A Narrative Review. Nutrients 2024; 16:1873. [PMID: 38931230 PMCID: PMC11206924 DOI: 10.3390/nu16121873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Choline is an essential nutrient, with high requirements during fetal and postnatal growth. Tissue concentrations of total choline are tightly regulated, requiring an increase in its pool size proportional to growth. Phosphatidylcholine and sphingomyelin, containing a choline headgroup, are constitutive membrane phospholipids, accounting for >85% of total choline, indicating that choline requirements are particularly high during growth. Daily phosphatidylcholine secretion via bile for lipid digestion and very low-density lipoproteins for plasma transport of arachidonic and docosahexaenoic acid to other organs exceed 50% of its hepatic pool. Moreover, phosphatidylcholine is required for converting pro-apoptotic ceramides to sphingomyelin, while choline is the source of betaine as a methyl donor for creatine synthesis, DNA methylation/repair and kidney function. Interrupted choline supply, as during current total parenteral nutrition (TPN), causes a rapid drop in plasma choline concentration and accumulating deficit. The American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) defined choline as critical to all infants requiring TPN, claiming its inclusion in parenteral feeding regimes. We performed a systematic literature search in Pubmed with the terms "choline" and "parenteral nutrition", resulting in 47 relevant publications. Their results, together with cross-references, are discussed. While studies on parenteral choline administration in neonates and older children are lacking, preclinical and observational studies, as well as small randomized controlled trials in adults, suggest choline deficiency as a major contributor to acute and chronic TPN-associated liver disease, and the safety and efficacy of parenteral choline administration for its prevention. Hence, we call for choline formulations suitable to be added to TPN solutions and clinical trials to study their efficacy, particularly in growing children including preterm infants.
Collapse
Affiliation(s)
- Wolfgang Bernhard
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Katrin A. Böckmann
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Michaela Minarski
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Cornelia Wiechers
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Annegret Busch
- Pharmaceutical Department, University Hospital, 72076 Tübingen, Germany; (A.B.); (D.B.)
| | - Daniela Bach
- Pharmaceutical Department, University Hospital, 72076 Tübingen, Germany; (A.B.); (D.B.)
| | - Christian F. Poets
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
| | - Axel R. Franz
- Department of Neonatology, University Children’s Hospital, 72076 Tübingen, Germany; (W.B.); (K.A.B.); (M.M.); (C.W.); (C.F.P.)
- Center for Pediatric Clinical Studies, University Children’s Hospital, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Zhang DW, Lu JL, Dong BY, Fang MY, Xiong X, Qin XJ, Fan XM. Gut microbiota and its metabolic products in acute respiratory distress syndrome. Front Immunol 2024; 15:1330021. [PMID: 38433840 PMCID: PMC10904571 DOI: 10.3389/fimmu.2024.1330021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
The prevalence rate of acute respiratory distress syndrome (ARDS) is estimated at approximately 10% in critically ill patients worldwide, with the mortality rate ranging from 17% to 39%. Currently, ARDS mortality is usually higher in patients with COVID-19, giving another challenge for ARDS treatment. However, the treatment efficacy for ARDS is far from satisfactory. The relationship between the gut microbiota and ARDS has been substantiated by relevant scientific studies. ARDS not only changes the distribution of gut microbiota, but also influences intestinal mucosal barrier through the alteration of gut microbiota. The modulation of gut microbiota can impact the onset and progression of ARDS by triggering dysfunctions in inflammatory response and immune cells, oxidative stress, cell apoptosis, autophagy, pyroptosis, and ferroptosis mechanisms. Meanwhile, ARDS may also influence the distribution of metabolic products of gut microbiota. In this review, we focus on the impact of ARDS on gut microbiota and how the alteration of gut microbiota further influences the immune function, cellular functions and related signaling pathways during ARDS. The roles of gut microbiota-derived metabolites in the development and occurrence of ARDS are also discussed.
Collapse
Affiliation(s)
- Dong-Wei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Jia-Li Lu
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Bi-Ying Dong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Meng-Ying Fang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xue-Jun Qin
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Xian-Ming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
4
|
Minarski M, Maas C, Heinrich C, Böckmann KA, Bernhard W, Shunova A, Poets CF, Franz AR. Choline and Betaine Levels in Plasma Mirror Choline Intake in Very Preterm Infants. Nutrients 2023; 15:4758. [PMID: 38004152 PMCID: PMC10675502 DOI: 10.3390/nu15224758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Choline is essential for cell membrane formation and methyl transfer reactions, impacting parenchymal and neurological development. It is therefore enriched via placental transfer, and fetal plasma concentrations are high. In spite of the greater needs of very low birth weight infants (VLBWI), choline content of breast milk after preterm delivery is lower (median (p25-75): 158 mg/L (61-360 mg/L) compared to term delivery (258 mg/L (142-343 mg/L)). Even preterm formula or fortified breast milk currently provide insufficient choline to achieve physiological plasma concentrations. This secondary analysis of a randomized controlled trial comparing growth of VLBWI with different levels of enteral protein supply aimed to investigate whether increased enteral choline intake results in increased plasma choline, betaine and phosphatidylcholine concentrations. We measured total choline content of breast milk from 33 mothers of 34 VLBWI. Enteral choline intake from administered breast milk, formula and fortifier was related to the respective plasma choline, betaine and phosphatidylcholine concentrations. Plasma choline and betaine levels in VLBWI correlated directly with enteral choline intake, but administered choline was insufficient to achieve physiological (fetus-like) concentrations. Hence, optimizing maternal choline status, and the choline content of milk and fortifiers, is suggested to increase plasma concentrations of choline, ameliorate the choline deficit and improve growth and long-term development of VLBWI.
Collapse
Affiliation(s)
- Michaela Minarski
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Christoph Maas
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Christine Heinrich
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Katrin A. Böckmann
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Wolfgang Bernhard
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Anna Shunova
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Christian F. Poets
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Axel R. Franz
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
- Center for Pediatric Clinical Studies, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Wu L, Hu J, Yi X, Lv J, Yao J, Tang W, Zhang S, Wan M. Gut microbiota interacts with inflammatory responses in acute pancreatitis. Therap Adv Gastroenterol 2023; 16:17562848231202133. [PMID: 37829561 PMCID: PMC10566291 DOI: 10.1177/17562848231202133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common acute abdominal conditions, and its incidence has been increasing for years. Approximately 15-20% of patients develop severe AP (SAP), which is complicated by critical inflammatory injury and intestinal dysfunction. AP-associated inflammation can lead to the gut barrier and function damage, causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and the inflammatory response may be a key pathogenic feature of SAP. Treating either of these factors or breaking their interaction may offer some benefits for SAP treatment. In this review, we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that can deteriorate or even cure both, including some traditional Chinese medicine treatments, to provide new methods for studying AP pathogenesis and developing therapies.
Collapse
Affiliation(s)
- Linjun Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Jing Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Xiaolin Yi
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Intensive Care Unit, Suining Municipal Hospital of TCM, Suining, China
| | - Jianqin Lv
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, Sichuan, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, China
| |
Collapse
|
6
|
Bal Topcu D, Er B, Ozcan F, Aslan M, Coplu L, Lay I, Oztas Y. Decreased plasma levels of sphingolipids and total cholesterol in adult cystic fibrosis patients. Prostaglandins Leukot Essent Fatty Acids 2023; 197:102590. [PMID: 37741047 DOI: 10.1016/j.plefa.2023.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Sphingolipid species in the lung epithelium have a critical role for continuity of membrane structure, vesicular transport, and cell survival. Sphingolipid species were reported to have a role in the inflammatory etiology of cystic fibrosis by previous work. The aim of the study was to investigate the levels of plasma sphingomyelin and ceramide in adult cystic fibrosis (CF) patients and compared with healthy controls. MATERIALS AND METHODS Blood samples were obtained from CF patients at exacerbation (n = 15), discharge (n = 13) and stable periods (n = 11). Healthy individuals (n = 15) of similar age served as control. Levels of C16-C24 sphingomyelin and C16-C24 ceramide were measured in the plasma by LC-MS/MS. Also, cholesterol and triglyceride levels were determined in plasma samples of the patients at stable period. RESULTS All measured sphingomyelin and ceramide levels in all periods of CF patients were significantly lower than healthy controls except C16 sphingomyelin level in the stable period. However, plasma Cer and SM levels among exacerbation, discharge, and stable periods of CF were not different. CF patients had significantly lower cholesterol levels compared to healthy individuals. We found significant correlation of cholesterol with C16 sphingomyelin. CONCLUSION We observed lower plasma Cer and SM levels in adult CF patients at exacerbation, discharge, and stable periods compared to healthy controls. We didn't find any significant difference between patient Cer and SM levels among these three periods. Our limited number of patients might have resulted with this statistical insignificance. However, percentage of SM16 levels were increased at discharge compared to exacerbation levels, while percentage of Cer16 and Cer 20 decreased at stable compared to exacerbation. Inclusion of a larger number of CF patients in such a follow up study may better demonstrate any possible difference between exacerbation, discharge, and stable periods.
Collapse
Affiliation(s)
- Dilara Bal Topcu
- Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, 06100, Ankara, Turkey
| | - Berrin Er
- Hacettepe University, Faculty of Medicine, Department of Chest Diseases, 06100, Ankara, Turkey
| | - Filiz Ozcan
- Antalya Bilim University, Vocational School of Health Services, Department of Dialysis, 07190, Antalya, Turkey
| | - Mutay Aslan
- Akdeniz University, Faculty of Medicine, Department of Medical Biochemistry, Konyaaltı, 07070, Antalya, Turkey
| | - Lutfi Coplu
- Hacettepe University, Faculty of Medicine, Department of Chest Diseases, 06100, Ankara, Turkey
| | - Incilay Lay
- Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, 06100, Ankara, Turkey
| | - Yesim Oztas
- Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, 06100, Ankara, Turkey.
| |
Collapse
|
7
|
Böckmann KA, Bernhard W, Minarski M, Shunova A, Wiechers C, Poets CF, Franz AR. Choline supplementation for preterm infants: metabolism of four Deuterium-labeled choline compounds. Eur J Nutr 2023; 62:1195-1205. [PMID: 36460779 PMCID: PMC10030424 DOI: 10.1007/s00394-022-03059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Supply of choline is not guaranteed in current preterm infant nutrition. Choline serves in parenchyma formation by membrane phosphatidylcholine (PC), plasma transport of poly-unsaturated fatty acids (PUFA) via PC, and methylation processes via betaine. PUFA-PC concentrations are high in brain, liver and lung, and deficiency may result in developmental disorders. We compared different deuterated (D9-) choline components for kinetics of D9-choline, D9-betaine and D9-PC. METHODS Prospective study (1/2021-12/2021) in 32 enterally fed preterm infants (28 0/7-32 0/7 weeks gestation). Patients were randomized to receive enterally a single dose of 2.7 mg/kg D9-choline-equivalent as D9-choline chloride, D9-phosphoryl-choline, D9-glycerophosphorylcholine (D9-GPC) or D9-1-palmitoyl-2-oleoyl-PC(D9-POPC), followed by blood sampling at 1 + 24 h or 12 + 60 h after administration. Plasma concentrations were analyzed by tandem mass spectrometry. Results are expressed as median (25th/75th percentile). RESULTS At 1 h, plasma D9-choline was 1.8 (0.9/2.2) µmol/L, 1.3 (0.9/1.5) µmol/L and 1.2 (0.7/1.4) µmol/L for D9-choline chloride, D9-GPC and D9-phosphoryl-choline, respectively. D9-POPC did not result in plasma D9-choline. Plasma D9-betaine was maximal at 12 h, with lowest concentrations after D9-POPC. Maximum plasma D9-PC values at 12 h were the highest after D9-POPC (14.4 (9.1/18.9) µmol/L), compared to the other components (D9-choline chloride: 8.1 [5.6/9.9] µmol/L; D9-GPC: 8.4 (6.2/10.3) µmol/L; D9-phosphoryl-choline: 9.8 (8.6/14.5) µmol/L). Predominance of D9-PC comprising linoleic, rather than oleic acid, indicated fatty-acyl remodeling of administered D9-POPC prior to systemic delivery. CONCLUSION D9-Choline chloride, D9-GPC and D9-phosphoryl-choline equally increased plasma D9-choline and D9-betaine. D9-POPC shifted metabolism from D9-betaine to D9-PC. Combined supplementation of GPC and (PO) PC may be best suited to optimize choline supply in preterm infants. Due to fatty acid remodeling of (PO) PC during its assimilation, PUFA co-supplementation with (PO) PC may increase PUFA-delivery to critical organs. This study was registered (22.01.2020) at the Deutsches Register Klinischer Studien (DRKS) (German Register for Clinical Studies), DRKS00020502. STUDY REGISTRATION This study was registered at the Deutsches Register Klinischer Studien (DRKS) (German Register for Clinical Studies), DRKS00020502.
Collapse
Affiliation(s)
- Katrin A Böckmann
- Department of Neonatology, Faculty of Medicine, Eberhard Karls University, Calwer Straße 7, 72076, Tuebingen, Germany.
| | - Wolfgang Bernhard
- Department of Neonatology, Faculty of Medicine, Eberhard Karls University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Michaela Minarski
- Department of Neonatology, Faculty of Medicine, Eberhard Karls University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Anna Shunova
- Department of Neonatology, Faculty of Medicine, Eberhard Karls University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Cornelia Wiechers
- Department of Neonatology, Faculty of Medicine, Eberhard Karls University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Christian F Poets
- Department of Neonatology, Faculty of Medicine, Eberhard Karls University, Calwer Straße 7, 72076, Tuebingen, Germany
| | - Axel R Franz
- Department of Neonatology, Faculty of Medicine, Eberhard Karls University, Calwer Straße 7, 72076, Tuebingen, Germany
- Center for Pediatric Clinical Studies, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
8
|
Different choline supplement metabolism in adults using deuterium labelling. Eur J Nutr 2023; 62:1795-1807. [PMID: 36840817 DOI: 10.1007/s00394-023-03121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Choline deficiency leads to pathologies particularly of the liver, brain and lung. Adequate supply is important for preterm infants and patients with cystic fibrosis. We analysed the assimilation of four different enterally administered deuterium-labelled (D9-) choline supplements in adults. METHODS Prospective randomised cross-over study (11/2020-1/2022) in six healthy men, receiving four single doses of 2.7 mg/kg D9-choline equivalent each in the form of D9-choline chloride, D9-phosphorylcholine, D9-alpha-glycerophosphocholine (D9-GPC) or D9-1-palmitoyl-2-oleoyl-glycero-3-phosphoryl-choline (D9-POPC), in randomised order 6 weeks apart. Plasma was obtained at baseline (t = - 0.1 h) and at 0.5 h to 7d after intake. Concentrations of D9-choline and its D9-labelled metabolites were analysed by tandem mass spectrometry. Results are shown as median and interquartile range. RESULTS Maximum D9-choline and D9-betaine concentrations were reached latest after D9-POPC administration versus other components. D9-POPC and D9-phosphorylcholine resulted in lower D9-trimethylamine (D9-TMAO) formation. The AUCs (0-7d) of plasma D9-PC concentration showed highest values after administration of D9-POPC. D9-POPC appeared in plasma after fatty acid remodelling, predominantly as D9-1-palmitoyl-2-linoleyl-PC (D9-PLPC), confirming cleavage to 1-palmitoyl-lyso-D9-PC and re-acylation with linoleic acid as the most prominent alimentary unsaturated fatty acid. CONCLUSION There was a delayed increase in plasma D9-choline and D9-betaine after D9-POPC administration, with no differences in AUC over time. D9-POPC resulted in a higher AUC of D9-PC and virtually absent D9-TMAO levels. D9-POPC is remodelled according to enterocytic fatty acid availability. D9-POPC seems best suited as choline supplement to increase plasma PC concentrations, with PC as a carrier of choline and targeted fatty acid supply as required by organs. This study was registered at Deutsches Register Klinischer Studien (DRKS) (German Register for Clinical Studies), DRKS00020498, 22.01.2020. STUDY REGISTRATION This study was registered at Deutsches Register Klinischer Studien (DRKS) (German Register for Clinical Studies), DRKS00020498.
Collapse
|
9
|
Li Z, Li R, Li J, Wang Z, He H, Yan D, Yu L, Li H, Li M, Xu H. Coprophagy Prevention Affects the Reproductive Performance in New Zealand White Rabbits Is Mediated through Nox4-ROS-NF κB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8999899. [PMID: 39282150 PMCID: PMC11401658 DOI: 10.1155/2022/8999899] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 09/18/2024]
Abstract
Coprophagy is of great significance to the growth, development, and reproductive performance of rabbits. This study is aimed at exploring the effect of coprophagy on the reproductive performance of New Zealand white rabbits by coprophagy prevention (CP). The results showed that CP treatment significantly decreased the growth and development performance of female rabbits and the live birth rate of embryos. The results of blood biochemical indexes showed that CP treatment significantly increased the contents of serum ALB, ALP, and MDA, while serum SOD activity was significantly decreased. Transcriptome analysis showed that GO terms were mainly enriched in transport function and reproductive function after CP treatment. In addition, KEGG results showed that inflammation related signal pathways were activated and the expression level of genes related to tight junction proteins was downregulated by CP treatment. Concurrently, western blot further confirmed the results of KEGG. In short, fecal feeding is an important survival strategy for some small rodents, coprophagy prevention will affect the inflammatory level of the body, change the oxidative stress level of the body, and then activate NOX4-ROS-NF-κB pathway, increase the expression level of adhesion protein ICAM-1 and VCAM-1, lead to the damage of uterine epithelial barrier, and then affect the reproductive performance of rabbits.
Collapse
Affiliation(s)
- Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - RuiTing Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Jing Li
- Animal Health Supervision Institute of Biyang, Henan 463700, China
| | - Zhitong Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hui He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Duo Yan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hengjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
10
|
Li ZP, Xu DH, He LP, Wang XJ. Fuzhuan brick tea affects obesity process by modulating gut microbiota. World J Gastrointest Pharmacol Ther 2022; 13:30-32. [PMID: 35646421 PMCID: PMC9124955 DOI: 10.4292/wjgpt.v13.i3.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
The effect of Fuzhuan brick tea (FBT) on metabolism in obese mice is mediated by regulation of N-methyltransferase by aryl hydrocarbon receptor. The expression of the phosphatidylethanolamine N-methyltransferase gene is regulated by many transcription factors, and those specific to this effect need further investigation. Experimental animal studies have been designed to observe the effects of a single drug or the sequential effects of drugs. A washout period should be included if different drugs (e.g., antibiotics and FBT) are given to avoid or reduce additive effects or synergy. Currently, most experimental studies performed in mice used only male animals. However, experience has revealed that the results of using only male mice are very likely to have sex differences.
Collapse
Affiliation(s)
- Zhi-Peng Li
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Dong-Hui Xu
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Lian-Ping He
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Xin-Juan Wang
- School of Medicine, Taizhou University, Taizhou 318000, Zhejiang Province, China
| |
Collapse
|
11
|
Sherwood JS, Ullal J, Kutney K, Hughan KS. Cystic fibrosis related liver disease and endocrine considerations. J Clin Transl Endocrinol 2022; 27:100283. [PMID: 35024343 PMCID: PMC8724940 DOI: 10.1016/j.jcte.2021.100283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis-liver disease (CFLD) is one of the most common non-pulmonary complications in the CF population, is associated with significant morbidity and represents the third leading cause of mortality in those with CF. CFLD encompasses a broad spectrum of hepatobiliary manifestations ranging from mild transaminitis, biliary disease, hepatic steatosis, focal biliary cirrhosis and multilobular biliary cirrhosis. The diagnosis of CFLD and prediction of disease progression remains a clinical challenge. The identification of novel CFLD biomarkers as well as the role of newer imaging techniques such as elastography to allow for early detection and intervention are active areas of research focus. Biliary cirrhosis with portal hypertension represents the most severe spectrum of CFLD, almost exclusively develops in the pediatric population, and is associated with a decline in pulmonary function, poor nutritional status, and greater risk of hospitalization. Furthermore, those with CFLD are at increased risk for vitamin deficiencies and endocrinopathies including CF-related diabetes, CF-related bone disease and hypogonadism, which can have further implications on disease outcomes and management. Effective treatment for CFLD remains limited and current interventions focus on optimization of nutritional status, identification and treatment of comorbid conditions, as well as early detection and management of CFLD specific sequelae such as portal hypertension or variceal bleeding. The extent to which highly effective modulator therapies may prevent the development or modify the progression of CFLD remains an active area of research. In this review, we discuss the challenges with defining and evaluating CFLD and the endocrine considerations and current management of CFLD.
Collapse
Key Words
- APRI, aspartate aminotransferase to platelet ratio
- BMI, body mass index
- CFBD, CF bone disease
- CFLD, Cystic fibrosis-liver disease
- CFRD, CF related diabetes
- CFTR, cystic fibrosis transmembrane conductance regulator
- Cirrhosis
- Cystic fibrosis liver disease
- Cystic fibrosis-related diabetes
- FFA, free fatty acids
- Fib-4, Fibrosis-4
- GH, growth hormone
- IGF-1, insulin-like growth factor-1
- Insulin resistance
- UDCA, ursodeoxycholic acid
- ULN, upper limit of normal
Collapse
Affiliation(s)
- Jordan S. Sherwood
- Department of Pediatrics, Diabetes Research Center, Division of Pediatric Endocrinology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, United States
| | - Jagdeesh Ullal
- Department of Medicine, UPMC Center for Diabetes and Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Katherine Kutney
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Kara S. Hughan
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States
| |
Collapse
|
12
|
Bernhard W, Raith M, Shunova A, Lorenz S, Böckmann K, Minarski M, Poets CF, Franz AR. Choline Kinetics in Neonatal Liver, Brain and Lung-Lessons from a Rodent Model for Neonatal Care. Nutrients 2022; 14:nu14030720. [PMID: 35277079 PMCID: PMC8837973 DOI: 10.3390/nu14030720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Choline requirements are high in the rapidly growing fetus and preterm infant, mainly serving phosphatidylcholine (PC) synthesis for parenchymal growth and one-carbon metabolism via betaine. However, choline metabolism in critical organs during rapid growth is poorly understood. Therefore, we investigated the kinetics of D9-choline and its metabolites in the liver, plasma, brain and lung in 14 d old rats. Animals were intraperitoneally injected with 50 mg/kg D9-choline chloride and sacrificed after 1.5 h, 6 h and 24 h. Liver, plasma, lungs, cerebrum and cerebellum were analyzed for D9-choline metabolites, using tandem mass spectrometry. In target organs, D9-PC and D9-betaine comprised 15.1 ± 1.3% and 9.9 ± 1.2% of applied D9-choline at 1.5 h. D9-PC peaked at 1.5 h in all organs, and decreased from 1.5-6 h in the liver and lung, but not in the brain. Whereas D9-labeled PC precursors were virtually absent beyond 6 h, D9-PC increased in the brain and lung from 6 h to 24 h (9- and 2.5-fold, respectively) at the expense of the liver, suggesting PC uptake from the liver via plasma rather than local synthesis. Kinetics of D9-PC sub-groups suggested preferential hepatic secretion of linoleoyl-PC and acyl remodeling in target organs. D9-betaine showed rapid turnover and served low-level endogenous (D3-)choline synthesis. In conclusion, in neonatal rats, exogenous choline is rapidly metabolized to PC by all organs. The liver supplies the brain and lung directly with PC, followed by organotypic acyl remodeling. A major fraction of choline is converted to betaine, feeding the one-carbon pool and this must be taken into account when calculating choline requirements.
Collapse
Affiliation(s)
- Wolfgang Bernhard
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
- Correspondence:
| | - Marco Raith
- Max-Planck-Institut für Psychiatrie, 80804 Munich, Bavaria, Germany;
| | - Anna Shunova
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Stephan Lorenz
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Katrin Böckmann
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Michaela Minarski
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Christian F. Poets
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
| | - Axel R. Franz
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany; (A.S.); (S.L.); (K.B.); (M.M.); (C.F.P.); (A.R.F.)
- Center for Pediatric Clinical Studies, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Baden-Wuerttemberg, Germany
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Liver disease (CFLD) as a complication of cystic fibrosis is recognized as a more severe disease phenotype in both children and adults. We review recent advances in understanding the disease mechanism and consider the implications of new strategies for the diagnosis and management of cystic fibrosis in those with evidence of clinically significant liver disease. RECENT FINDINGS Evidence suggests that the prevalence of CFLD has not declined with the introduction of newborn screening. Furthermore, children with CFLD, who have been diagnosed with cystic fibrosis following newborn screening continue to have a much higher mortality rate compared with those with no liver disease. There is further data suggesting noncirrhotic obliterative portal venopathy as the predominant pathological mechanism in the majority of children and young adults receiving a liver transplantation. Little progress has been made in developing an accurate noninvasive test for early diagnosis or monitoring disease progression in CFLD. The benefit of new modulator therapies is not well understood in those with established CFLD, whereas the risk of hepatotoxicity as a complication of treatment must be carefully monitored. SUMMARY Better understanding of the pathophysiology of CFLD would allow a standardized approach to diagnosis, with the potential to improve outcomes for those with CFLD.
Collapse
|
14
|
Nilsson Å, Duan RD, Ohlsson L. Digestion and Absorption of Milk Phospholipids in Newborns and Adults. Front Nutr 2021; 8:724006. [PMID: 34490332 PMCID: PMC8417471 DOI: 10.3389/fnut.2021.724006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Milk polar lipids provide choline, ethanolamine, and polyunsaturated fatty acids, which are needed for the growth and plasticity of the tissues in a suckling child. They may also inhibit cholesterol absorption by interacting with cholesterol during micelle formation. They may also have beneficial luminal, mucosal, and metabolic effects in both the neonate and the adult. The milk fat globule membrane contains large proportions of sphingomyelin (SM), phosphatidylcholine (PC), and phosphatidylethanolamine (PE), and some phosphatidylserine (PS), phosphatidylinositol (PI), and glycosphingolipids. Large-scale technical procedures are available for the enrichment of milk fat globule membrane (MFGM) in milk replacement formulations and food additives. Pancreatic phospholipase A2 (PLA2) and mucosal phospholipase B digest glycero-phospholipids in the adult. In the neonate, where these enzymes may be poorly expressed, pancreatic lipase-related protein 2 probably has a more important role. Mucosal alkaline SM-ase and ceramidase catalyze the digestion of SM in both the neonate and the adult. In the mucosa, the sphingosine is converted into sphingosine-1-phosphate, which is both an intermediate in the conversion to palmitic acid and a signaling molecule. This reaction sequence also generates ethanolamine. Here, we summarize the pathways by which digestion and absorption may be linked to the biological effects of milk polar lipids. In addition to the inhibition of cholesterol absorption and the generation of lipid signals in the gut, the utilization of absorbed choline and ethanolamine for mucosal and hepatic phospholipid synthesis and the acylation of absorbed lyso-PC with polyunsaturated fatty acids to chylomicron and mucosal phospholipids are important.
Collapse
Affiliation(s)
- Åke Nilsson
- Division of Medicine, Gastroenterology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rui-Dong Duan
- Gastroenterology and Nutrition Laboratory, Division of Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| | - Lena Ohlsson
- Division of Medicine, Experimental Vascular Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Differential metabolism of choline supplements in adult volunteers. Eur J Nutr 2021; 61:219-230. [PMID: 34287673 PMCID: PMC8783899 DOI: 10.1007/s00394-021-02637-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/05/2021] [Indexed: 10/26/2022]
Abstract
BACKGROUND Adequate intake of choline is essential for growth and homeostasis, but its supply does often not meet requirements. Choline deficiency decreases phosphatidylcholine (PC) and betaine synthesis, resulting in organ pathology, especially of liver, lung, and brain. This is of particular clinical importance in preterm infants and cystic fibrosis patients. We compared four different choline supplements for their impact on plasma concentration and kinetics of choline, betaine as a methyl donor and trimethylamine oxide (TMAO) as a marker of bacterial degradation prior to absorption. METHODS Prospective randomized cross-over study (1/2020-4/2020) in six healthy adult men. Participants received a single dose of 550 mg/d choline equivalent in the form of choline chloride, choline bitartrate, α-glycerophosphocholine (GPC), and egg-PC in randomized sequence at least 1 week apart. Blood was taken from t = - 0.1-6 h after supplement intake. Choline, betaine, TMAO, and total PC concentrations were analyzed by tandem mass spectrometry. Results are shown as medians and interquartile range. RESULTS There was no difference in the AUC of choline plasma concentrations after intake of the different supplements. Individual plasma kinetics of choline and betaine differed and concentrations peaked latest for PC (at ≈3 h). All supplements similarly increased plasma betaine. All water-soluble supplements rapidly increased TMAO, whereas egg-PC did not. CONCLUSION All supplements tested rapidly increased choline and betaine levels to a similar extent, with egg-PC showing the latest peak. Assuming that TMAO may have undesirable effects, egg-PC might be best suited for choline supplementation in adults. STUDY REGISTRATION This study was registered at "Deutsches Register Klinischer Studien" (DRKS) (German Register for Clinical Studies), 17.01.2020, DRKS00020454.
Collapse
|
16
|
Choline Content of Term and Preterm Infant Formulae Compared to Expressed Breast Milk-How Do We Justify the Discrepancies? Nutrients 2020; 12:nu12123815. [PMID: 33322176 PMCID: PMC7763895 DOI: 10.3390/nu12123815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Choline/phosphatidylcholine concentrations are tightly regulated in all organs and secretions. During rapid organ growth in the third trimester, choline requirement is particularly high. Adequate choline intake is 17–18 mg/kg/day in term infants, whereas ~50–60 mg/kg/day is required to achieve fetal plasma concentrations in preterm infants. Whereas free choline is supplied via the placenta, other choline carriers characterize enteral feeding. We therefore quantified the concentrations and types of choline carriers and choline-related components in various infant formulae and fortifiers compared to breast milk, and calculated the supply at full feeds (150 mL/kg/day) using tandem mass spectrometry. Choline concentration in formula ranged from values below to far above that of breastmilk. Humana 0-VLB (2015: 60.7 mg/150 mL; 2020: 27.3 mg/150 mL), Aptamil-Prematil (2020: 34.7 mg/150 mL), Aptamil-Prematil HA (2020: 37.6 mg/150 mL) for preterm infants with weights < 1800 g, and Humana 0 (2020: 41.6 mg/150 mL) for those > 1800 g, comprised the highest values in formulae studied. Formulae mostly were rich in free choline or phosphatidylcholine rather than glycerophosphocholine and phosphocholine (predominating in human milk). Most formulae (150 mL/kg/day) do not supply the amounts and physiologic components of choline required to achieve fetal plasma choline concentrations. A revision of choline content in formulae and breast milk fortifiers and a clear declaration of the choline components in formulae is required to enable informed choices.
Collapse
|