1
|
Wang Y, Zhang D, Liu Y. Research Progress on the Regulating Factors of Muscle Fiber Heterogeneity in Livestock: A Review. Animals (Basel) 2024; 14:2225. [PMID: 39123750 PMCID: PMC11311112 DOI: 10.3390/ani14152225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The type of muscle fiber plays a crucial role in the growth, development, and dynamic plasticity of animals' skeletal muscle. Additionally, it is a primary determinant of the quality of both fresh and processed meat. Therefore, understanding the regulatory factors that contribute to muscle fibers' heterogeneity is of paramount importance. Recent advances in sequencing and omics technologies have enabled comprehensive cross-verification of research on the factors affecting the types of muscle fiber across multiple levels, including the genome, transcriptome, proteome, and metabolome. These advancements have facilitated deeper exploration into the related biological questions. This review focused on the impact of individual characteristics, feeding patterns, and genetic regulation on the proportion and interconversion of different muscle fibers. The findings indicated that individual characteristics and feeding patterns significantly influence the type of muscle fiber, which can effectively enhance the type and distribution of muscle fibers in livestock. Furthermore, non-coding RNA, genes and signaling pathways between complicated regulatory mechanisms and interactions have a certain degree of impact on muscle fibers' heterogeneity. This, in turn, changes muscle fiber profile in living animals through genetic selection or environmental factors, and has the potential to modulate the quality of fresh meat. Collectively, we briefly reviewed the structure of skeletal muscle tissue and then attempted to review the inevitable connection between the quality of fresh meat and the type of muscle fiber, with particular attention to potential events involved in regulating muscle fibers' heterogeneity.
Collapse
Affiliation(s)
| | | | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (Y.W.); (D.Z.)
| |
Collapse
|
2
|
Xue L, Chen X, Sun J, Fan M, Qian H, Li Y, Wang L. Maternal Dietary Carbohydrate and Pregnancy Outcomes: Quality over Quantity. Nutrients 2024; 16:2269. [PMID: 39064712 PMCID: PMC11280101 DOI: 10.3390/nu16142269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary nutrition plays a crucial role in determining pregnancy outcomes, with poor diet being a major contributor to pregnancy metabolic syndrome and metabolic disorders in offspring. While carbohydrates are essential for fetal development, the excessive consumption of low-quality carbohydrates can increase the risk of pregnancy complications and have lasting negative effects on offspring development. Recent studies not only highlighted the link between carbohydrate intake during pregnancy, maternal health, and offspring well-being, but also suggested that the quality of carbohydrate foods consumed is more critical. This article reviews the impacts of low-carbohydrate and high-carbohydrate diets on pregnancy complications and offspring health, introduces the varied physiological effects of different types of carbohydrate consumption during pregnancy, and emphasizes the importance of both the quantity and quality of carbohydrates in nutritional interventions during pregnancy. These findings may offer valuable insights for guiding dietary interventions during pregnancy and shaping the future development of carbohydrate-rich foods.
Collapse
Affiliation(s)
- Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Xiaofang Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Juan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.X.); (J.S.); (M.F.); (H.Q.)
| |
Collapse
|
3
|
Li J, Zhang Z, Bo H, Zhang Y. Exercise couples mitochondrial function with skeletal muscle fiber type via ROS-mediated epigenetic modification. Free Radic Biol Med 2024; 213:409-425. [PMID: 38295887 DOI: 10.1016/j.freeradbiomed.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Skeletal muscle is a heterogeneous tissue composed of different types of muscle fibers, demonstrating substantial plasticity. Physiological or pathological stimuli can induce transitions in muscle fiber types. However, the precise regulatory mechanisms behind these transitions remains unclear. This paper reviews the classification and characteristics of muscle fibers, along with the classical mechanisms of muscle fiber type transitions. Additionally, the role of exercise-induced muscle fiber type transitions in disease intervention is reviewed. Epigenetic pathways mediate cellular adaptations and thus represent potential targets for regulating muscle fiber type transitions. This paper focuses on the mechanisms by which epigenetic modifications couple mitochondrial function and contraction characteristics. Reactive Oxygen Species (ROS) are critical signaling regulators for the health-promoting effects of exercise. Finally, we discuss the role of exercise-induced ROS in regulating epigenetic modifications and the transition of muscle fiber types.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| | - Hai Bo
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
4
|
Hu C, Ji F, Lv R, Zhou H, Hou G, Xu T. Putrescine promotes MMP9-induced angiogenesis in skeletal muscle through hydrogen peroxide/METTL3 pathway. Free Radic Biol Med 2024; 212:433-447. [PMID: 38159892 DOI: 10.1016/j.freeradbiomed.2023.12.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Blood vessels play a crucial role in the development of skeletal muscle, ensuring the supply of nutrients and oxygen. Putrescine, an essential polyamine for eukaryotic cells, has an unclear impact on skeletal muscle angiogenesis. In this study, we observed lower vessel density and reduced putrescine level in the muscle of low-birth-weight piglet models, and identified a positive correlation between putrescine content and muscle vessel density. Furthermore, putrescine was found to promote angiogenesis in skeletal muscle both in vitro and in vivo by targeting matrix metalloproteinase 9 (MMP9). On a mechanistic level, putrescine augmented the expression of methyltransferase like 3 (METTL3) by attenuating hydrogen peroxide production, thereby increasing the level of N6-methyladenosine (m6A)-modified MMP9 mRNA. This m6A-modified MMP9 mRNA was subsequently recognized and bound by the YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), enhancing the stability of MMP9 mRNA and its protein expression, consequently accelerating angiogenesis in skeletal muscle. In summary, our findings suggest that putrescine enhances MMP9-mediated angiogenesis in skeletal muscle via the hydrogen peroxide/METTL3 pathway.
Collapse
Affiliation(s)
- Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Renlong Lv
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hanlin Zhou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
5
|
Zou D, Yang Y, Ji F, Lv R, Xu T, Hu C. DUOX2-Induced Oxidative Stress Inhibits Intestinal Angiogenesis through MMP3 in a Low-Birth-Weight Piglet Model. Antioxidants (Basel) 2023; 12:1800. [PMID: 37891879 PMCID: PMC10603984 DOI: 10.3390/antiox12101800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Intestinal vessels play a critical role in nutrient absorption, whereas the effect and mechanism of low birth weight (LBW) on its formation remain unclear. Here, twenty newborn piglets were assigned to the control (CON) group (1162 ± 98 g) and LBW group (724 ± 31 g) according to their birth weight. Results showed that the villus height and the activity of maltase in the jejunum were lower in the LBW group than in the CON group. LBW group exhibited a higher oxidative stress level and impaired mitochondrial function in the jejunum and was lower than the CON group in the intestinal vascular density. To investigate the role of oxidative stress in intestinal angiogenesis, H2O2 was employed to induce oxidative stress in porcine intestinal epithelial cells (IPEC-J2). The results showed that the conditioned media from IPEC-J2 with H2O2 treatment decreased the angiogenesis of porcine vascular endothelial cells (PVEC). Transcriptome analysis revealed that a higher expression level of dual oxidase 2 (DUOX2) was found in the intestine of LBW piglets. Knockdown of DUOX2 in IPEC-J2 increased the proliferation and decreased the oxidative stress level. In addition, conditioned media from IPEC-J2 with DUOX2-knockdown was demonstrated to promote the angiogenesis of PVEC. Mechanistically, the knockdown of DUOX2 decreased the reactive oxygen species (ROS) level, thus increasing the angiogenesis in a matrix metalloproteinase 3 (MMP3) dependent manner. Conclusively, our results indicated that DUOX2-induced oxidative stress inhibited intestinal angiogenesis through MMP3 in a LBW piglet model.
Collapse
Affiliation(s)
- Dongbin Zou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.Z.); (Y.Y.); (F.J.); (R.L.)
- College of Life Sciences, Hainan University, Haikou 571101, China
| | - Yun Yang
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.Z.); (Y.Y.); (F.J.); (R.L.)
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.Z.); (Y.Y.); (F.J.); (R.L.)
| | - Renlong Lv
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.Z.); (Y.Y.); (F.J.); (R.L.)
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.Z.); (Y.Y.); (F.J.); (R.L.)
| | - Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.Z.); (Y.Y.); (F.J.); (R.L.)
| |
Collapse
|
6
|
An Early and Sustained Inflammatory State Induces Muscle Changes and Establishes Obesogenic Characteristics in Wistar Rats Exposed to the MSG-Induced Obesity Model. Int J Mol Sci 2023; 24:ijms24054730. [PMID: 36902158 PMCID: PMC10003260 DOI: 10.3390/ijms24054730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 03/05/2023] Open
Abstract
The model of obesity induced by monosodium glutamate cytotoxicity on the hypothalamic nuclei is widely used in the literature. However, MSG promotes persistent muscle changes and there is a significant lack of studies that seek to elucidate the mechanisms by which damage refractory to reversal is established. This study aimed to investigate the early and chronic effects of MSG induction of obesity upon systemic and muscular parameters of Wistar rats. The animals were exposed to MSG subcutaneously (4 mg·g-1 b.w.) or saline (1.25 mg·g-1 b.w.) daily from PND01 to PND05 (n = 24). Afterwards, in PND15, 12 animals were euthanized to determine the plasma and inflammatory profile and to assess muscle damage. In PND142, the remaining animals were euthanized, and samples for histological and biochemical analyses were obtained. Our results suggest that early exposure to MSG reduced growth, increased adiposity, and inducted hyperinsulinemia and a pro-inflammatory scenario. In adulthood, the following were observed: peripheral insulin resistance, increased fibrosis, oxidative distress, and a reduction in muscle mass, oxidative capacity, and neuromuscular junctions, increased fibrosis, and oxidative distress. Thus, we can conclude that the condition found in adult life and the difficulty restoring in the muscle profile is related to the metabolic damage established early on.
Collapse
|
7
|
Zhao L, Liu X, Gomez NA, Gao Y, Son JS, Chae SA, Zhu MJ, Du M. Stage-specific nutritional management and developmental programming to optimize meat production. J Anim Sci Biotechnol 2023; 14:2. [PMID: 36597116 PMCID: PMC9809060 DOI: 10.1186/s40104-022-00805-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/23/2022] [Indexed: 01/04/2023] Open
Abstract
Over the past few decades, genetic selection and refined nutritional management have extensively been used to increase the growth rate and lean meat production of livestock. However, the rapid growth rates of modern breeds are often accompanied by a reduction in intramuscular fat deposition and increased occurrences of muscle abnormalities, impairing meat quality and processing functionality. Early stages of animal development set the long-term growth trajectory of offspring. However, due to the seasonal reproductive cycles of ruminant livestock, gestational nutrient deficiencies caused by seasonal variations, frequent droughts, and unfavorable geological locations negatively affect fetal development and their subsequent production efficiency and meat quality. Therefore, enrolling livestock in nutritional intervention strategies during gestation is effective for improving the body composition and meat quality of the offspring at harvest. These crucial early developmental stages include embryonic, fetal, and postnatal stages, which have stage-specific effects on subsequent offspring development, body composition, and meat quality. This review summarizes contemporary research in the embryonic, fetal, and neonatal development, and the impacts of maternal nutrition on the early development and programming effects on the long-term growth performance of livestock. Understanding the developmental and metabolic characteristics of skeletal muscle, adipose, and fibrotic tissues will facilitate the development of stage-specific nutritional management strategies to optimize production efficiency and meat quality.
Collapse
Affiliation(s)
- Liang Zhao
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, PR China ,grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Xiangdong Liu
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Noe A Gomez
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Yao Gao
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Jun Seok Son
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA ,grid.411024.20000 0001 2175 4264Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, MD 21201 Baltimore, USA
| | - Song Ah Chae
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Mei-Jun Zhu
- grid.30064.310000 0001 2157 6568School of Food Science, Washington State University, WA Pullman, USA
| | - Min Du
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| |
Collapse
|
8
|
Tan C, Huang Z, Xiong W, Ye H, Deng J, Yin Y. A review of the amino acid metabolism in placental function response to fetal loss and low birth weight in pigs. J Anim Sci Biotechnol 2022; 13:28. [PMID: 35232472 PMCID: PMC8889744 DOI: 10.1186/s40104-022-00676-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/09/2022] [Indexed: 11/10/2022] Open
Abstract
The fertility of sows mainly depends on the embryo losses during gestation and the survival rate of the post-farrowing piglets. The selection of highly-prolific sows has been mainly focused on the selection of genotypes with high ovulatory quota. However, in the early- and post-implantation stages, the rate of embryo losses was increased with the increase of zygotes. Among the various factors, placental growth and development is the vital determinant for fetal survival, growth, and development. Despite the potential survival of fetuses with deficient placental development, their life-conditions and growth can be damaged by a process termed intrauterine growth retardation (IUGR). The newborn piglets affected by IUGR are prone to increased morbidity and mortality rates; meanwhile, the growth, health and welfare of the surviving piglets will remain hampered by these conditions, with a tendency to exacerbate with age. Functional amino acids such as glycine, proline, and arginine continue to increase with the development of placenta, which are not only essential to placental growth (including vascular growth) and development, but can also be used as substrates for the production of glutathione, polyamines and nitric oxide to benefit placental function in many ways. However, the exact regulation mechanism of these amino acids in placental function has not yet been clarified. In this review, we provide evidence from literature and our own work for the role and mechanism of dietary functional amino acids during pregnancy in regulating the placental functional response to fetal loss and birth weight of piglets. This review will provide novel insights into the response of nutritionally nonessential amino acids (glycine and proline) to placental development as well as feasible strategies to enhance the fertility of sows.
Collapse
Affiliation(s)
- Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Wenyu Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hongxuan Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
9
|
Azad MAK, Gao Q, Ma C, Wang K, Kong X. Betaine hydrochloride addition in Bama mini-pig's diets during gestation and lactation enhances immunity and alters intestine microbiota of suckling piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:607-616. [PMID: 34151432 DOI: 10.1002/jsfa.11389] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Maternal nutrition during gestation and lactation is essential for offspring's health. The present study aimed to investigate the effects of betaine hydrochloride addition to sow diets during gestation and lactation on suckling piglet's immunity and intestine microbiota composition. Forty Bama mini-pigs were randomly allocated into two groups and fed a basal diet (control group) and a basal diet supplemented with 3.50 kg ton-1 betaine hydrochloride (betaine group) from day 3 after mating to day 21 of lactation. After 21 days of the delivery, 12 suckling piglets from each group with similar body weight were selected for sample collection. RESULTS The results showed that maternal betaine hydrochloride addition decreased (P < 0.05) the plasma levels of interleukin (IL)-1β, IL-2, IL-6, and tumor necrosis factor-α in suckling piglets. Furthermore, dietary betaine hydrochloride addition in sow diets increased (P < 0.05) the villus height (VH) and VH to crypt depth ratio in the jejunum and ileum of suckling piglets. In the piglets' intestinal microbiota community, the relative abundances of Roseburia (P < 0.05) and Clostridium (P = 0.059) were lower in the betaine group compared to those in the control group. Moreover, betaine hydrochloride addition in sow diets decreased the colonic tyramine (P = 0.091) and skatole (P = 0.070) concentrations in suckling piglets. CONCLUSION Betaine hydrochloride addition in sow diets enhanced the intestinal morphology, improved immunity, and altered intestinal microbiota of suckling piglets. These findings indicated that betaine hydrochloride addition in sow diets during gestation and lactation will impact suckling piglets' health. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Md Abul Kalam Azad
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiankun Gao
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Cui Ma
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Kai Wang
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
10
|
Bolam SM, Satokar VV, Konar S, Coleman B, Monk AP, Cornish J, Munro JT, Vickers MH, Albert BB, Musson DS. A Maternal High Fat Diet Leads to Sex-Specific Programming of Mechanical Properties in Supraspinatus Tendons of Adult Rat Offspring. Front Nutr 2021; 8:729427. [PMID: 34589513 PMCID: PMC8473632 DOI: 10.3389/fnut.2021.729427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Over half of women of reproductive age are now overweight or obese. The impact of maternal high-fat diet (HFD) is emerging as an important factor in the development and health of musculoskeletal tissues in offspring, however there is a paucity of evidence examining its effects on tendon. Alterations in the early life environment during critical periods of tendon growth therefore have the potential to influence tendon health that cross the lifespan. We hypothesised that a maternal HFD would alter biomechanical, morphological and gene expression profiles of adult offspring rotator cuff tendon. Materials and Methods: Female Sprague-Dawley rats were randomly assigned to either: control diet (CD; 10% kcal or 43 mg/g from fat) or HFD (45% kcal or 235 mg/g from fat) 14 days prior to mating and throughout pregnancy and lactation. Eight female and male offspring from each maternal diet group were weaned onto a standard chow diet and then culled at postnatal day 100 for tissue collection. Supraspinatus tendons were used for mechanical testing and histological assessment (cellularity, fibre organisation, nuclei shape) and tail tendons were collected for gene expression analysis. Results: A maternal HFD increased the elasticity (Young's Modulus) in the supraspinatus tendon of male offspring. Female offspring tendon biomechanical properties were not affected by maternal HFD. Gene expression of SCX and COL1A1 were reduced in male and female offspring of maternal HFD, respectively. Despite this, tendon histological organisation were similar between maternal diet groups in both sexes. Conclusion: An obesogenic diet during pregnancy increased tendon elasticity in male, but not female, offspring. This is the first study to demonstrate that maternal diet can modulate the biomechanical properties of offspring tendon. A maternal HFD may be an important factor in regulating adult offspring tendon homeostasis that may predispose offspring to developing tendinopathies and adverse tendon outcomes in later life.
Collapse
Affiliation(s)
- Scott M. Bolam
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Vidit V. Satokar
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Subhajit Konar
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
| | - Brendan Coleman
- Department of Orthopaedic Surgery, Middlemore Hospital, Auckland, New Zealand
| | - Andrew Paul Monk
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jillian Cornish
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
| | - Jacob T. Munro
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - David S. Musson
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Nutrition, University of Auckland, Auckland, New Zealand
| |
Collapse
|