1
|
Khaitov M, Shilovskiy I, Valenta R, Weber M, Korneev A, Tulaeva I, Gattinger P, van Hage M, Hofer G, Konradsen JR, Keller W, Akinfenwa O, Poroshina A, Ilina N, Fedenko E, Elisyutina O, Litovkina A, Smolnikov E, Nikonova A, Rybalkin S, Aldobaev V, Smirnov V, Shershakova N, Petukhova O, Kudlay D, Shatilov A, Timofeeva A, Campana R, Udin S, Skvortsova V. Recombinant PreS-fusion protein vaccine for birch pollen and apple allergy. Allergy 2024; 79:1001-1017. [PMID: 37855043 DOI: 10.1111/all.15919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND IgE cross-sensitization to major birch pollen allergen Bet v 1 and pathogenesis-related (PR10) plant food allergens is responsible for the pollen-food allergy syndrome. METHODS We designed a recombinant protein, AB-PreS, consisting of non-allergenic peptides derived from the IgE-binding sites of Bet v 1 and the cross-reactive apple allergen, Mal d 1, fused to the PreS domain of HBV surface protein as immunological carrier. AB-PreS was expressed in E. coli and purified by chromatography. The allergenic and inflammatory activity of AB-PreS was tested using basophils and PBMCs from birch pollen allergic patients. The ability of antibodies induced by immunization of rabbits with AB-PreS and birch pollen extract-based vaccines to inhibit allergic patients IgE binding to Bet v 1 and Mal d 1 was assessed by ELISA. RESULTS IgE-binding experiments and basophil activation test revealed the hypoallergenic nature of AB-PreS. AB-PreS induced lower T-cell activation and inflammatory cytokine production in cultured PBMCs from allergic patients. IgG antibodies induced by five injections with AB-PreS inhibited allergic patients' IgE binding to Bet v 1 and Mal d 1 better than did IgG induced by up to 30 injections of six licensed birch pollen allergen extract-based vaccines. Additionally, immunization with AB-PreS induced HBV-specific antibodies potentially protecting from infection with HBV. CONCLUSION The recombinant AB-PreS-based vaccine is hypoallergenic and superior over currently registered allergen extract-based vaccines regarding the induction of blocking antibodies to Bet v 1 and Mal d 1 in animals.
Collapse
Affiliation(s)
- Musa Khaitov
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Igor Shilovskiy
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Rudolf Valenta
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Karl Landsteiner University for Healthcare Sciences, Krems, Austria
| | - Milena Weber
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Artem Korneev
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Inna Tulaeva
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Gerhard Hofer
- Department of Materials and Environmental Chemistry, University of Stockholm, Stockholm, Sweden
| | - Jon R Konradsen
- Department of Women's and Children's Health, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Oluwatoyin Akinfenwa
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alina Poroshina
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Nataliya Ilina
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Elena Fedenko
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Olga Elisyutina
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Alla Litovkina
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Evgenii Smolnikov
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | | | - Sergei Rybalkin
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Vladimir Aldobaev
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Valeriy Smirnov
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Olga Petukhova
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | - Dmitriy Kudlay
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Artem Shatilov
- NRC Institute of Immunology, FMBA of Russia, Moscow, Russian Federation
| | | | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sergei Udin
- Federal State Budgetary Institution "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical Biological Agency, Moscow, Russian Federation
| | - Veronica Skvortsova
- Federal Medical Biological Agency of Russia (FMBA Russia), Moscow, Russian Federation
| |
Collapse
|
2
|
Kaeswurm JAH, Neuwald DA, Straub LV, Buchweitz M. Impact of Cultivation and Storage Conditions on Total Mal d 1 Content and Isoallergen Profile in Apples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12975-12985. [PMID: 37625125 DOI: 10.1021/acs.jafc.3c02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The allergen Mal d 1 is often responsible for adverse allergic reactions to fresh apples in northern and central Europe. The Mal d 1 content and isoallergen profile are proposed to have an impact on the allergenic potential of the fruit. Therefore, we investigated the impact of the cropping system on the Mal d 1 content and the isoallergen profile of apples by mass spectrometry for the varieties 'Jonagored' and 'Topaz'. To monitor the impact of storage time and conditions, apples of the varieties 'Santana' and 'Jonagold' were stored for up to 12 weeks under regular air (RA), under RA in combination with 1-methylcyclopropene (1-MCP) treatment, and under a controlled atmosphere (CA). The impact of the cropping system (integrated production vs organic production) was negligible. However, a significant increase in the Mal d 1 content during storage was observed, being higher when stored under CA conditions than under RA conditions. An additional treatment with 1-MCP prior to RA storage drastically reduced the level of Mal d 1 expression in the flesh of the apples by ∼50%. Furthermore, the content of isoallergens 1.03 and 1.06 increased disproportionately under CA conditions, while under RA conditions, only isoallergen 1.06 was affected. With the 1-MCP treatment, no changes in the isoallergen profile were obvious.
Collapse
Affiliation(s)
- Julia A H Kaeswurm
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
- Department of Chemistry, Institute of Food Chemistry, Hamburg University, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - Daniel A Neuwald
- Lake of Constance Research Centre for Fruit Cultivation (KOB), Schuhmacherhof 6, 88213 Ravensburg, Germany
| | - Leonie V Straub
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
- Lake of Constance Research Centre for Fruit Cultivation (KOB), Schuhmacherhof 6, 88213 Ravensburg, Germany
| | - Maria Buchweitz
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
- Department of Chemistry, Institute of Food Chemistry, Hamburg University, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
3
|
Kaeswurm JAH, Straub LV, Siegele A, Brockmeyer J, Buchweitz M. Characterization and Quantification of Mal d 1 Isoallergen Profiles and Contents in Traditional and Commercial Apple Varieties by Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2554-2565. [PMID: 36696630 DOI: 10.1021/acs.jafc.2c05801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The apple allergy in Northern Europe is a cross-reaction to the birch pollen allergy. No correlation between the allergenicity of an apple variety and the content of the major apple allergen Mal d 1, a homologue to the Bet v 1 allergen in birch, could be found using ELISA, so far. Therefore, an impact of polyphenols and/or differences in the isoallergen profile are discussed. To allow a more detailed analysis of the Mal d 1 content and the isoallergen profile, a mass spectrometric method was applied to investigate differences in the flesh and peel of 10 traditional varieties and 10 commercial breeds. The data revealed often, but not always, lower Mal d 1 contents in traditional varieties grown in orchard meadows, which was more obvious in the flesh. Differences among the peels were less pronounced. A closer look at the individual isoallergens 1.01, 1.02, 1.03, and 1.06 reveals an increased impact of the minor isoallergens 1.03 and 1.06 on the allergenic potential, since commercial breeds like Braeburn, Santana, and Holstein Cox, which are considered to have reduced allergenic potentials, were characterized by low levels of these isoallergens.
Collapse
Affiliation(s)
- Julia A H Kaeswurm
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
| | - Leonie V Straub
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
| | - Andreas Siegele
- Obstbauberatung Stuttgart, Liegenschaftsamt, Hospitalstraße 8, 70174 Stuttgart, Germany
| | - Jens Brockmeyer
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
| | - Maria Buchweitz
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Melnikova DN, Finkina EI, Bogdanov IV, Tagaev AA, Ovchinnikova TV. Features and Possible Applications of Plant Lipid-Binding and Transfer Proteins. MEMBRANES 2022; 13:2. [PMID: 36676809 PMCID: PMC9866449 DOI: 10.3390/membranes13010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In plants, lipid trafficking within and inside the cell is carried out by lipid-binding and transfer proteins. Ligands for these proteins are building and signaling lipid molecules, secondary metabolites with different biological activities due to which they perform diverse functions in plants. Many different classes of such lipid-binding and transfer proteins have been found, but the most common and represented in plants are lipid transfer proteins (LTPs), pathogenesis-related class 10 (PR-10) proteins, acyl-CoA-binding proteins (ACBPs), and puroindolines (PINs). A low degree of amino acid sequence homology but similar spatial structures containing an internal hydrophobic cavity are common features of these classes of proteins. In this review, we summarize the latest known data on the features of these protein classes with particular focus on their ability to bind and transfer lipid ligands. We analyzed the structural features of these proteins, the diversity of their possible ligands, the key amino acids participating in ligand binding, the currently known mechanisms of ligand binding and transferring, as well as prospects for possible application.
Collapse
Affiliation(s)
- Daria N. Melnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Ivan V. Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Andrey A. Tagaev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| |
Collapse
|
5
|
Ahammer L, Unterhauser J, Eidelpes R, Meisenbichler C, Nothegger B, Covaciu CE, Cova V, Kamenik AS, Liedl KR, Breuker K, Eisendle K, Reider N, Letschka T, Tollinger M. Ascorbylation of a Reactive Cysteine in the Major Apple Allergen Mal d 1. Foods 2022; 11:2953. [PMID: 36230029 PMCID: PMC9562000 DOI: 10.3390/foods11192953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
The protein Mal d 1 is responsible for most allergic reactions to apples (Malus domestica) in the northern hemisphere. Mal d 1 contains a cysteine residue on its surface, with its reactive side chain thiol exposed to the surrounding food matrix. We show that, in vitro, this cysteine residue is prone to spontaneous chemical modification by ascorbic acid (vitamin C). Using NMR spectroscopy and mass spectrometry, we characterize the chemical structure of the cysteine adduct and provide a three-dimensional structural model of the modified apple allergen. The S-ascorbylated cysteine partially masks a major IgE antibody binding site on the surface of Mal d 1, which attenuates IgE binding in sera of apple-allergic patients. Our results illustrate, from a structural perspective, the role that chemical modifications of allergens with components of the natural food matrix can play.
Collapse
Affiliation(s)
- Linda Ahammer
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Jana Unterhauser
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Reiner Eidelpes
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Christina Meisenbichler
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Bettina Nothegger
- Department of Dermatology, Venerology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Claudia E. Covaciu
- Department of Dermatology, Venerology and Allergology, Central Teaching Hospital, 39100 Bolzano, Italy
| | - Valentina Cova
- Department of Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer, Italy
| | - Anna S. Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Klaus Eisendle
- Department of Dermatology, Venerology and Allergology, Central Teaching Hospital, 39100 Bolzano, Italy
| | - Norbert Reider
- Department of Dermatology, Venerology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Letschka
- Department of Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer, Italy
| | - Martin Tollinger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Strobl MR, Vollmann U, Eckl‐Dorna J, Radakovics A, Ibl V, Schnurer M, Brenner M, Dermendjiev G, Weckwerth W, Neumüller M, Frommlet F, Demir H, Bublin M, Müller C, Bohle B. Identification of apple cultivars hypoallergenic for birch pollen-allergic individuals by a multidisciplinary in vitro and in vivo approach. Clin Transl Allergy 2022; 12:e12186. [PMID: 36036236 PMCID: PMC9412969 DOI: 10.1002/clt2.12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Birch pollen-related apple allergy is the most frequent IgE-mediated food allergy in Central-Northern Europe with Mal d 1 as major allergen. Its concentration in apples varies with the cultivar and storage time. Year-round appealing, hypoallergenic cultivars still are needed to satisfy the nutritional needs of affected individuals. We characterized three promising cultivars by multidisciplinary in vitro assays including long-term storage and by clinical challenges of allergic individuals before and after the birch pollen season. METHODS Proteins were extracted from fruits of 'Santana', 'Golden Delicious' (GD), and three genuine cultivars in November 2018 and April 2019. Mal d 1-levels were analysed by mass spectrometry, SDS-PAGE, immunoblotting, competitive ELISA, and basophil activation tests. Twenty-eight allergic individuals underwent single-blinded open food challenges and skin testing with the cultivars and birch pollen in November 2018 and May 2019. Allergen-specific IgE-levels were determined. RESULTS After storage all cultivars except 'Santana' were of appealing appearance and taste. Their Mal d 1 content had increased, also reflected by significantly amplified basophil activation and stronger reactions in clinical challenges. Besides, individuals showed boosted reactivity after pollen exposure indicated by enhanced allergen-specific IgE-levels and skin reactions to birch pollen. Still, all cultivars remained significantly less allergenic than GD and comparable to Santana in November 2018 in all assessments except for skin testing. CONCLUSIONS Combined expertise in pomology and allergology identified promising new cultivars for allergic consumers. The evaluation of hypoallergenic apples should incorporate long-term storage and birch pollen exposure. Basophil activation tests may be suitable in the selection of promising cultivars for oral challenges.
Collapse
Affiliation(s)
- Maria R. Strobl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaWienAustria
| | - Ute Vollmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaWienAustria
| | - Julia Eckl‐Dorna
- Department of OtorhinolaryngologyMedical University of ViennaViennaAustria
| | - Astrid Radakovics
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaWienAustria
| | - Verena Ibl
- Department of Functional and Evolutionary EcologyDivision of Molecular Systems BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Madeleine Schnurer
- Department of Functional and Evolutionary EcologyDivision of Molecular Systems BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Martin Brenner
- Department of Functional and Evolutionary EcologyDivision of Molecular Systems BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Georgi Dermendjiev
- Department of Functional and Evolutionary EcologyDivision of Molecular Systems BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary EcologyDivision of Molecular Systems BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | | | - Florian Frommlet
- Center for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of ViennaViennaAustria
| | - Hilal Demir
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaWienAustria
| | - Merima Bublin
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaWienAustria
| | - Christian Müller
- Department of OtorhinolaryngologyMedical University of ViennaViennaAustria
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaWienAustria
| |
Collapse
|
7
|
Chebib S, Meng C, Ludwig C, Bergmann KC, Becker S, Dierend W, Schwab W. Identification of allergenomic signatures in allergic and well-tolerated apple genotypes using LC-MS/MS. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100111. [PMID: 35592704 PMCID: PMC9110896 DOI: 10.1016/j.fochms.2022.100111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/12/2022] [Accepted: 05/02/2022] [Indexed: 04/12/2023]
Abstract
The apple fruit (Malus domestica L. Borkh) is one of the most popular fruits worldwide. Beyond their beneficial properties, apples contain proteins that trigger allergic reactions in susceptible consumers. Mal d1 to d4 are allergens present in a variety of different isoforms in apples. In this study, we used proteomics to quantify all four Mal d proteins in 52 apple genotypes with varying allergenic potentials. A total of 195, 17, 14, and 18 peptides were found to be related to Mal d1, d2, d3, and d4 proteins, respectively of which 25 different Mal d proteins could be unambiguously identified. The allergenic potential of the Mal d isoforms was characterized by comparing the isoform abundance with the allergenic score of genotypes from oral challenge tests. The detected Mal d peptides presumably have different IgE binding properties and could be used as potential molecular markers to discriminate between hypoallergenic and hyperallergenic cultivars.
Collapse
Affiliation(s)
- Soraya Chebib
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Karl-Christian Bergmann
- Allergy-Centre-Charité, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Sylvia Becker
- European Centre Allergy Research Foundation, Robert-Koch-Platz 7, 10115 Berlin, Germany
| | - Werner Dierend
- Faculty of Agricultural Science and Landscape Architecture, Fruit Science, University of Applied Sciences Osnabrück, Oldenburger Landstr. 24, 49090 Osnabrück, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
- Corresponding author.
| |
Collapse
|
8
|
Chebib S, Schwab W. Microscale Thermophoresis Reveals Oxidized Glutathione as High-Affinity Ligand of Mal d 1. Foods 2021; 10:foods10112771. [PMID: 34829051 PMCID: PMC8618550 DOI: 10.3390/foods10112771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Pathogenesis-related (PR)-10 proteins, due to their particular secondary structure, can bind various ligands which could be important for their biological function. Accordingly, the PR-10 protein Mal d 1, the major apple allergen, probably also binds molecules in the hydrophobic cavity of its secondary structure, but it has not yet been investigated in this respect. In this study, various natural products found in apples such as flavonoids, glutathione (GSH), and glutathione disulfide (GSSG) were investigated as possible ligands of Mal d 1 using microscale thermophoresis. Dissociation constants of 16.39 µM, 29.51 µM, 35.79 µM, and 0.157 µM were determined for catechin, quercetin-3-O-rhamnoside, GSH, and GSSG, respectively. Molecular docking was performed to better understand the underlying binding mechanism and revealed hydrophobic interactions that stabilize the ligands within the pocket while hydrophilic interactions determine the binding of both GSH derivatives. The binding of these ligands could be important for the allergenicity of the PR-10 protein and provide further insights into its physiological role.
Collapse
|
9
|
Siekierzynska A, Piasecka‐Kwiatkowska D, Myszka A, Burzynska M, Sozanska B, Sozanski T. Apple allergy: Causes and factors influencing fruits allergenic properties-Review. Clin Transl Allergy 2021; 11:e12032. [PMID: 34123364 PMCID: PMC8171779 DOI: 10.1002/clt2.12032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/11/2021] [Accepted: 04/14/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Apple tree fruits (Malus × domestica Borkh.) are a rich source of nutrients and nutraceuticals and are recommended as a part of the healthy, staple diet. However, apples could be also the cause of allergies including severe reactions. Allergies to fruits like apples are predominantly associated with pollinosis. In North and Central Europe, sensitisation to apples is caused mainly by cross-reactive birch pollen aeroallergen, whereas in the Mediterranean area of Europe, apple allergy is mostly associated with allergies to peach. The allergenicity of apples differ across cultivars but only a few varieties were studied. Some factors changing apples allergenicity were identified, including unmodifiable and potentially modifiable factors for example cultivation method, ripening stage and storage conditions. AIM This review presents current knowledge about the molecular basis of apple allergenicity and factors influencing its level. CONCLUSIONS Selecting cultivars with low potential of allergenicity, removing apple peel and heat treatment could reduce the risk of severe allergy reaction incidence and presumably can be used in birch pollen immunotherapy.
Collapse
Affiliation(s)
- Aleksandra Siekierzynska
- Department of Physiology and Plant BiotechnologyInstitute of Agricultural Sciences, Land Management and Environmental ProtectionUniversity of RzeszowRzeszowPoland
| | | | | | - Marta Burzynska
- Department of Food Biochemistry and AnalysisPoznan University of Life SciencesPoznanPoland
| | - Barbara Sozanska
- 1st Department of Pediatric Allergology and CardiologyWroclaw Medical UniversityWroclawPoland
| | - Tomasz Sozanski
- Department of PharmacologyWroclaw Medical UniversityWroclawPoland
| |
Collapse
|
10
|
Orozco-Navarrete B, Kaczmarska Z, Dupeux F, Garrido-Arandia M, Pott D, Perales AD, Casañal A, Márquez JA, Valpuesta V, Merchante C. Structural Bases for the Allergenicity of Fra a 1.02 in Strawberry Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10951-10961. [PMID: 31774998 PMCID: PMC7644122 DOI: 10.1021/acs.jafc.9b05714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although strawberries are highly appreciated fruits, their intake can induce allergic reactions in atopic patients. These reactions can be due to the patient's previous sensitization to the major birch pollen allergen Bet v 1, by which IgE generated in response to Bet v 1 cross-reacts with the structurally related strawberry Fra a 1 protein family. Fra a 1.02 is the most expressed paralog in ripe strawberries and is highly allergenic. To better understand the molecular mechanisms regulating this allergic response, we have determined the three-dimensional structure of Fra a 1.02 and four site-directed mutants that were designed based on their positions in potential epitopes. Fra a 1.02 and mutants conform to the START fold. We show that the cross-reactivity of all the mutant variants to IgE from patients allergic to Bet v 1 was significantly reduced without altering the conserved structural fold, so that they could potentially be used as hypoallergenic Fra a 1 variants for the generation of vaccines against strawberry allergy in atopic patients.
Collapse
Affiliation(s)
- Begoña Orozco-Navarrete
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-CSIC, 29016 Málaga, Spain
| | - Zuzanna Kaczmarska
- European Molecular Biology Laboratory, 38042 Grenoble, France
- International Institute of Molecular and Cell Biology, 12-109 Warsaw, Poland
| | - Florine Dupeux
- European Molecular Biology Laboratory, 38042 Grenoble, France
- Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - María Garrido-Arandia
- Departamento de Biotecnología-Biología Vegetal, Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Delphine Pott
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-CSIC, 29016 Málaga, Spain
| | - Araceli Díaz Perales
- Departamento de Biotecnología-Biología Vegetal, Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Ana Casañal
- Cambridge Biomedical Campus, Francis Crick Avenue, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, England
| | - José A Márquez
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-CSIC, 29016 Málaga, Spain
| | - Catharina Merchante
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-CSIC, 29016 Málaga, Spain
| |
Collapse
|
11
|
Bastiaan‐Net S, Pina‐Pérez MC, Dekkers BJW, Westphal AH, America AHP, Ariëns RMC, de Jong NW, Wichers HJ, Mes JJ. Identification and in silico bioinformatics analysis of PR10 proteins in cashew nut. Protein Sci 2020; 29:1581-1595. [PMID: 32219913 PMCID: PMC7314402 DOI: 10.1002/pro.3856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
Proteins from cashew nut can elicit mild to severe allergic reactions. Three allergenic proteins have already been identified, and it is expected that additional allergens are present in cashew nut. pathogenesis-related protein 10 (PR10) allergens from pollen have been found to elicit similar allergic reactions as those from nuts and seeds. Therefore, we investigated the presence of PR10 genes in cashew nut. Using RNA-seq analysis, we were able to identify several PR10-like transcripts in cashew nut and clone six putative PR10 genes. In addition, PR10 protein expression in raw cashew nuts was confirmed by immunoblotting and liquid chromatography-mass spectrometry (LC-MS/MS) analyses. An in silico allergenicity assessment suggested that all identified cashew PR10 proteins are potentially allergenic and may represent three different isoallergens.
Collapse
Affiliation(s)
- Shanna Bastiaan‐Net
- Wageningen Food and Biobased ResearchWageningen University and ResearchWageningenThe Netherlands
| | | | - Bas J. W. Dekkers
- Wageningen Seed Lab, Laboratory of Plant PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Adrie H. Westphal
- BiochemistryWageningen University and ResearchWageningenThe Netherlands
| | - Antoine H. P. America
- Wageningen Plant ResearchWageningen University and ResearchWageningenThe Netherlands
| | - Renata M. C. Ariëns
- Wageningen Food and Biobased ResearchWageningen University and ResearchWageningenThe Netherlands
| | | | - Harry J. Wichers
- Wageningen Food and Biobased ResearchWageningen University and ResearchWageningenThe Netherlands
| | - Jurriaan J. Mes
- Wageningen Food and Biobased ResearchWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
12
|
Tiered approach for the identification of Mal d 1 reduced, well tolerated apple genotypes. Sci Rep 2020; 10:9144. [PMID: 32499528 PMCID: PMC7272412 DOI: 10.1038/s41598-020-66051-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/06/2020] [Indexed: 12/02/2022] Open
Abstract
A rising proportion of the world population suffers from food-related allergies, including incompatibilities to apples. Although several allergenic proteins have been found in apples, the most important proteins that cause allergic reactions to apples in Central-Northern Europe, and North America are the Mal d 1 proteins, which are homologues of the birch pollen allergen Bet v 1. As the demand for hypoallergenic fruits is constantly increasing, we selected apple genotypes with a low total content of Mal d 1 by enzyme-linked immunosorbent assay analysis from segregating populations and tested the tolerability of these fruits through a human provocation study. This tiered approach, which exploited the natural diversity of apples, led to the identification of fruits, which were tolerated by allergic patients. In addition, we found a significant correlation (coefficient >0.76) between the total Mal d 1 content and flavan-3-ol amount and show that the isoform composition of the Mal d 1 proteins, which was determined by LC-MS/MS has a decisive effect on the tolerability of apple genotypes. The approach presented can be applied to other types of fruit and to other allergenic proteins. Therefore, the strategy can be used to reduce the allergen content of other plant foods, thereby improving food safety for allergy subjects.
Collapse
|
13
|
Sánchez Acosta G, Kinaciyan T, Kitzmüller C, Möbs C, Pfützner W, Bohle B. IgE-blocking antibodies following SLIT with recombinant Mal d 1 accord with improved apple allergy. J Allergy Clin Immunol 2020; 146:894-900.e2. [PMID: 32259540 DOI: 10.1016/j.jaci.2020.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND We recently reported that 16 weeks of sublingual immunotherapy (SLIT) with recombinant (r) Mal d 1, but not rBet v 1, significantly improved birch pollen-related apple allergy. Allergen-specific IgE-blocking IgG antibodies have been associated with clinical efficacy. OBJECTIVE We compared the quantity, quality, and IgE-blocking bioactivity of SLIT-induced Mal d 1-specific IgG antibodies in both treatment groups. METHODS Pre- and post-SLIT sera were assessed for rMal d 1-specific IgG antibodies in ELISA and for their ability to inhibit apple allergen-induced upregulation of CD63 on basophils from nontreated individuals with birch pollen-related apple allergy. Post-SLIT sera depleted of IgG1 or IgG4 were compared for their IgE-blocking activity. IgG1 binding to rMal d 1 was competed with rMal d 1 and rBet v 1 in ELISA. RESULTS SLIT with rMal d 1 and rBet v 1 induced comparable levels of rMal d 1-specific IgG1, IgG2, IgG3, and IgG4 antibodies. Only post-rMal d 1 SLIT sera displayed IgE-blocking activity, which was significantly reduced by depletion of IgG1 and less so by IgG4 depletion. In competition ELISA, IgG1 binding to Mal d 1 in post-rMal d 1 SLIT sera was fully inhibited with rMal d 1 but not with rBet v 1. Correspondingly, Bet v 1 was the more potent competitor for IgG1 binding to Mal d 1 in post-rBet v 1 SLIT sera. CONCLUSION rMal d 1 SLIT for 16 weeks induced functional, primarily Mal d 1-specific IgE-blocking antibodies, whereas rBet v 1 SLIT induced Bet v 1-specific, Mal d 1-cross-reactive IgG antibodies with limited cross-blocking activity. These results provide a possible explanation for the limited effectiveness of birch pollen immunotherapy in birch pollen-related food allergy and indicate a dominant protective role of functional IgE-blocking IgG1 antibodies in the early phase of allergy treatment.
Collapse
Affiliation(s)
- Gabriela Sánchez Acosta
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Tamar Kinaciyan
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claudia Kitzmüller
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christian Möbs
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Wolfgang Pfützner
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
The Effect of Birch Pollen Immunotherapy on Apple and rMal d 1 Challenges in Adults with Apple Allergy. Nutrients 2020; 12:nu12020519. [PMID: 32085633 PMCID: PMC7071292 DOI: 10.3390/nu12020519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 11/24/2022] Open
Abstract
Background: A proportion of patients allergic to birch pollen are also allergic to pit fruit. The objective of this study was to investigate the effect of immunotherapy with birch pollen on birch-pollen-related apple allergy. Method: Patients with birch pollen immunotherapy underwent a skin-prick test with birch pollen, apple and rMal d 1, global assessments and nasal challenges with birch pollen, open food challenge with apple and a double-blind, placebo-controlled test with rMal d 1 at the start of and during the immunotherapy. Measurements of specific IgE in response to Bet v 1 and rMal d 1 and IgG4 in response to Bet v 1 and rMal d 1 took place. Results: Six of eight patients demonstrated an improvement of nasal challenge test results and all patients improved on global assessment during the immunotherapy. The median oral dose of apple required to elicit a reaction increased but was not statistically significant. The patients showed a decrease in skin-prick test values in response to birch pollen (1.05 to 0.36), apple (0.78 to 0.25) and rMal d 1 (0.51 to 0.10) with p-values of 0.04, 0.03 and 0.06, respectively and a decrease of specific IgE in response to Bet v 1 (10.66 kU/L to 5.19 kU/L) and rMal d 1 (0.99 to 0.61 kU/L) with p-values of 0.01 and 0.05, respectively. Only the median specific IgG4 value to Bet v 1 increased from 0.05 to 1.85 mg/L (p-value of 0.02) and not to IgG4 rMal d 1 (0.07 to 0.08 kU/L). Conclusion: The beneficial effects of immunotherapy for birch pollen were accompanied by a limited effect on apple allergy.
Collapse
|
15
|
Rib-Schmidt C, Riedl P, Meisinger V, Schwaben L, Schulenborg T, Reuter A, Schiller D, Seutter von Loetzen C, Rösch P. pH and Heat Resistance of the Major Celery Allergen Api g 1. Mol Nutr Food Res 2018; 62:e1700886. [PMID: 29800504 DOI: 10.1002/mnfr.201700886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/09/2018] [Indexed: 01/24/2023]
Abstract
SCOPE The major celery allergen Api g 1 is a member of the pathogenesis-related 10 class protein family. This study aims to investigate the impact of heat and pH on the native protein conformation required for Immunoglobulin E (IgE) recognition. METHODS AND RESULTS Spectroscopic methods, MS and IgE-binding analyses are used to study the effects of pH and thermal treatment on Api g 1.0101. Heat processing results in a loss of the native protein fold via denaturation, oligomerization, and precipitation along with a subsequent reduction of IgE recognition. The induced effects and timescales are strongly pH dependent. While Api g 1 refolds partially into an IgE-binding conformation at physiological pH, acidic pH treatment leads to the formation of structurally heat-resistant, IgE-reactive oligomers. Thermal processing in the presence of a celery matrix or at pH conditions close to the isoelectric point (pI = 4.63) of Api g 1.0101 results in almost instant precipitation. CONCLUSION This study demonstrates that Api g 1.0101 is not intrinsically susceptible to heat treatment in vitro. However, the pH and the celery matrix strongly influence the stability of Api g 1.0101 and might be the main reasons for the observed temperature lability of this important food allergen.
Collapse
Affiliation(s)
- Carina Rib-Schmidt
- Department of Biopolymers, University of Bayreuth, Bayreuth, 95447, Germany
| | - Philipp Riedl
- Department of Biopolymers, University of Bayreuth, Bayreuth, 95447, Germany
| | - Veronika Meisinger
- Department of Biopolymers, University of Bayreuth, Bayreuth, 95447, Germany
| | - Luisa Schwaben
- Division of Allergology, Paul-Ehrlich-Institut, Langen, 63225, Germany
| | | | - Andreas Reuter
- Division of Allergology, Paul-Ehrlich-Institut, Langen, 63225, Germany
| | - Dirk Schiller
- Division of Allergology, Paul-Ehrlich-Institut, Langen, 63225, Germany
| | | | - Paul Rösch
- Department of Biopolymers, University of Bayreuth, Bayreuth, 95447, Germany
| |
Collapse
|
16
|
Maurer M, Altrichter S, Schmetzer O, Scheffel J, Church MK, Metz M. Immunoglobulin E-Mediated Autoimmunity. Front Immunol 2018; 9:689. [PMID: 29686678 PMCID: PMC5900004 DOI: 10.3389/fimmu.2018.00689] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/20/2018] [Indexed: 12/13/2022] Open
Abstract
The study of autoimmunity mediated by immunoglobulin E (IgE) autoantibodies, which may be termed autoallergy, is in its infancy. It is now recognized that systemic lupus erythematosus, bullous pemphigoid (BP), and chronic urticaria, both spontaneous and inducible, are most likely to be mediated, at least in part, by IgE autoantibodies. The situation in other conditions, such as autoimmune uveitis, rheumatoid arthritis, hyperthyroid Graves’ disease, autoimmune pancreatitis, and even asthma, is far less clear but evidence for autoallergy is accumulating. To be certain of an autoallergic mechanism, it is necessary to identify both IgE autoantibodies and their targets as has been done with the transmembrane protein BP180 and the intracellular protein BP230 in BP and IL-24 in chronic spontaneous urticaria. Also, IgE-targeted therapies, such as anti-IgE, must have been shown to be of benefit to patients as has been done with both of these conditions. This comprehensive review of the literature on IgE-mediated autoallergy focuses on three related questions. What do we know about the prevalence of IgE autoantibodies and their targets in different diseases? What do we know about the relevance of IgE autoantibodies in different diseases? What do we know about the cellular and molecular effects of IgE autoantibodies? In addition to providing answers to these questions, based on a broad review of the literature, we outline the current gaps of knowledge in our understanding of IgE autoantibodies and describe approaches to address them.
Collapse
Affiliation(s)
- Marcus Maurer
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Altrichter
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Schmetzer
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg Scheffel
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin K Church
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Metz
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Affiliation(s)
- S Scheurer
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany.
| | - M Toda
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
18
|
Wang J, Vanga SK, Raghavan V. Effect of pre-harvest and post-harvest conditions on the fruit allergenicity: A review. Crit Rev Food Sci Nutr 2017; 59:1027-1043. [DOI: 10.1080/10408398.2017.1389691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jin Wang
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9 X 3V9, Canada
| | - Sai Kranthi Vanga
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9 X 3V9, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9 X 3V9, Canada
| |
Collapse
|
19
|
Savi E, Incorvaia C, Boni E, Mauro M, Peveri S, Pravettoni V, Quercia O, Reccardini F, Montagni M, Pessina L, Ridolo E. Which immunotherapy product is better for patients allergic to Polistes venom? A laboratory and clinical study. PLoS One 2017; 12:e0180270. [PMID: 28686638 PMCID: PMC5501507 DOI: 10.1371/journal.pone.0180270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 06/13/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Venom immunotherapy (VIT) is highly effective in preventing allergic reactions to insect stings, but the appropriate venom must be used to achieve clinical protection. In patients with multiple positive results to venoms, molecular allergy diagnostics or CAP-inhibition may identify the causative venom. Concerning allergy to venom from Polistes spp. it has been proposed that only the European species P. dominulus should be used for VIT. However, this recommendation is not present in any international guideline. Using both laboratory and clinical data, we aimed to evaluate the reliability of this proposal. METHODS We performed an in vitro study using CAP-inhibition to determine sensitization of 19 patients allergic to Polistes venom. The clinical study included 191 patients with positive tests to Polistes treated with VIT, 102 were treated with P. dominulus and 89 were treated with a mix of American Polistes (mAP). RESULTS The difference in % of inhibition was significant concerning inhibition of P. dominulus sIgE by P. dominulus venom (79.8%) compared with inhibition by mAP venom (64.2%) and not significant concerning the inhibition of mAP sIgE by P. dominulus venom (80.1%) and by mAP venom (73.6%). Instead, the clinical protection from stings was not statistically different between the two kinds of venom. CONCLUSION The data from CAP inhibition would suggest that the choice of either P. dominulus venom or mAP venom for VIT is appropriate in patients with CAP inhibition higher than 70%, but the clinical data show the same odds of protection from stings using for VIT P. dominulus or mAP venom.
Collapse
Affiliation(s)
- Eleonora Savi
- Allergy Dept. Unit, G. Da Saliceto Hospital, AUSL, Piacenza, Italy
| | | | - Elisa Boni
- Allergy Unit, Sant’Anna Hospital, ASST Lariana, Como, Italy
| | - Marina Mauro
- Allergy Unit, Sant’Anna Hospital, ASST Lariana, Como, Italy
| | - Silvia Peveri
- Allergy Dept. Unit, G. Da Saliceto Hospital, AUSL, Piacenza, Italy
| | - Valerio Pravettoni
- Clinical Allergy and Immunology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Oliviero Quercia
- Unità ad Alta Specializzazione di Allergologia, Ospedale di Faenza (RA), Faenza, Italy
| | - Federico Reccardini
- Azienda Sanitaria Universitaria Integrata Udine, SOC Pneumologia Fisiopatologia Respiratoria, Udine, Italy
| | | | - Laura Pessina
- Cardiac/Pulmonary Rehabilitation, ASST Gaetano Pini/CTO, Milan, Italy
| | - Erminia Ridolo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- * E-mail:
| |
Collapse
|
20
|
Ahammer L, Grutsch S, Kamenik AS, Liedl KR, Tollinger M. Structure of the Major Apple Allergen Mal d 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1606-1612. [PMID: 28161953 PMCID: PMC5334782 DOI: 10.1021/acs.jafc.6b05752] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 05/24/2023]
Abstract
More than 70% of birch pollen-allergic patients develop allergic cross-reactions to the major allergen found in apple fruits (Malus domestica), the 17.5 kDa protein Mal d 1. Allergic reactions against this protein result from initial sensitization to the major allergen from birch pollen, Bet v 1. Immunologic cross-reactivity of Bet v 1-specific IgE antibodies with Mal d 1 after apple consumption can subsequently provoke severe oral allergic syndromes. This study presents the three-dimensional NMR solution structure of Mal d 1 (isoform Mal d 1.0101, initially cloned from 'Granny Smith' apples). This protein is composed of a seven-stranded antiparallel β-sheet and three α-helices that form a large internal cavity, similar to Bet v 1 and other cross-reactive food allergens. The Mal d 1 structure provides the basis for elucidating the details of allergic cross-reactivity between birch pollen and apple allergens on a molecular level.
Collapse
Affiliation(s)
- Linda Ahammer
- Institute
of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Sarina Grutsch
- Institute
of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna S. Kamenik
- Institute
of General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, Innrain
80/82, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute
of General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, Innrain
80/82, A-6020 Innsbruck, Austria
| | - Martin Tollinger
- Institute
of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| |
Collapse
|
21
|
Husslik F, Nürnberg J, Seutter von Loetzen C, Mews T, Ballmer-Weber BK, Kleine-Tebbe J, Treudler R, Simon JC, Randow S, Völker E, Reuter A, Rösch P, Vieths S, Holzhauser T, Schiller D. The conformational IgE epitope profile of soya bean allergen Gly m 4. Clin Exp Allergy 2016; 46:1484-1497. [PMID: 27533495 DOI: 10.1111/cea.12796] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Birch pollen-related soya allergy is mediated by Gly m 4. Conformational IgE epitopes of Gly m 4 are unknown. OBJECTIVE To identify the IgE epitope profile of Gly m 4 in subjects with birch pollen-related soya allergy utilizing an epitope library presented by Gly m 4-type model proteins. METHODS Sera from patients with (n = 26) and without (n = 19) allergy to soya as determined by oral provocation tests were studied. Specific IgE (Bet v 1/Gly m 4) was determined by ImmunoCAP. A library of 59 non-allergenic Gly m 4-type model proteins harbouring individual and multiple putative epitopes for IgE was tested in IgE binding assays. Primary, secondary and tertiary protein structures were assessed by mass spectrometry, circular dichroism and nuclear magnetic resonance spectroscopy. RESULTS All subjects were sensitized to Gly m 4 and Bet v 1. Allergen-specific serum IgE levels ranged from 0.94 to > 100 kUA /L. The avidities of serum IgE were 5.06 ng (allergic) and 1.8 ng (tolerant) as determined by EC50 for IgE binding to Gly m 4. 96% (46/48) of the protein variants bound IgE. Model proteins had Gly m 4-type conformation and individual IgE binding clustered in six major surface areas. Gly m 4-specific IgE binding could be inhibited to up to 80% by model proteins harbouring individual IgE binding sites in an epitope-wise equimolar fashion. Receiver operating curve analysis revealed an area under fitted curve of up to 0.88 for model proteins and 0.66 for Gly m 4. CONCLUSION AND CLINICAL RELEVANCE Serum levels and avidity of Gly m 4-specific IgE do not correlate with clinical reactivity to soya. Six IgE-binding areas, represented by 23 amino acids, account for more than 80% of total IgE binding capacity of Gly m 4. Model proteins may be used for epitope-resolved diagnosis to differentiate birch-soya allergy from clinical tolerance.
Collapse
Affiliation(s)
- F Husslik
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - J Nürnberg
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - T Mews
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - B K Ballmer-Weber
- Centre for Dermatology and Allergology, Kantonsspital Luzern, Luzern, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - R Treudler
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| | - J-C Simon
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany
| | - S Randow
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - E Völker
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - A Reuter
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - P Rösch
- Department of Biopolymers, University of Bayreuth, Bayreuth, Germany
| | - S Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - T Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - D Schiller
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany.
| |
Collapse
|
22
|
Siebeneicher S, Reuter S, Wangorsch A, Krause M, Foetisch K, Heinz A, Naito S, Reuter A, Taube C, Vieths S, Scheurer S, Toda M. Epicutaneous immunotherapy with a hypoallergenic Bet v 1 suppresses allergic asthma in a murine model. Allergy 2015; 70:1559-68. [PMID: 26304061 DOI: 10.1111/all.12732] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Due to reduced allergic potency, hypoallergenic variants have been suggested as safer and potentially more efficacious alternative to the corresponding wild-type allergens in allergen-specific immunotherapy. Here, we aimed at investigating the efficacy of recombinant Bet v 1B2, a hypoallergenic folding variant of Bet v 1, in epicutaneous immunotherapy to suppress asthmatic features using a murine model of birch pollen allergy. METHODS AND RESULTS Before, or after sensitization with rBet v 1 plus ALUMW and intranasal challenges with birch pollen extract, BALB/c mice received epicutaneous immunization (EPI) with rBet v 1, or rBet v 1B2 on their depilated back. Prophylactic EPI with rBet v 1B2, but not with rBet v 1, suppressed serum levels of Bet v 1-specific IgE antibodies and reduced the number of eosinophils and the concentrations of Th2 cytokines in bronchoalveolar lavage. In an established allergic condition, serum levels of Bet v 1-specific IgE antibodies were similar between PBS-treated control mice and EPI-treated mice. However, therapeutic EPI with rBet v 1B2, but not with rBet v 1, significantly suppressed the development of airway inflammation and lung function impairment. CONCLUSION This study is the first to show the effect of therapeutic EPI with a recombinant form of a hypoallergenic folding variant on the suppression of asthmatic features. Our results suggest that rBet v 1B2 along with its reduced IgE-binding capacity could be a preferred therapeutic allergen than wild-type rBet v 1 in epicutaneous immunotherapy of birch pollen-induced allergic asthma, in particular due to a lower risk of allergic side effect.
Collapse
Affiliation(s)
- S. Siebeneicher
- Junior Research Group 1 ‘Experimental Allergy Models’; Paul-Ehrlich-Institut; Langen Germany
| | - S. Reuter
- The III Medical Department; University Medical Centre; Mainz Germany
- Experimental Asthma Research; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Borstel Germany
| | - A. Wangorsch
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
| | - M. Krause
- Junior Research Group 1 ‘Experimental Allergy Models’; Paul-Ehrlich-Institut; Langen Germany
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
| | - K. Foetisch
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - A. Heinz
- The III Medical Department; University Medical Centre; Mainz Germany
| | - S. Naito
- Department of Quality Assurance and Radiological Protection; The National Institute of Infectious Diseases; Tokyo Japan
| | - A. Reuter
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - C. Taube
- Department of Pulmonology; Leiden University Medical Center; Leiden the Netherlands
| | - S. Vieths
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - S. Scheurer
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - M. Toda
- Junior Research Group 1 ‘Experimental Allergy Models’; Paul-Ehrlich-Institut; Langen Germany
- Vice President's Research Group ‘Molecular Allergology’; Paul-Ehrlich-Institut; Langen Germany
| |
Collapse
|
23
|
Folded or Not? Tracking Bet v 1 Conformation in Recombinant Allergen Preparations. PLoS One 2015; 10:e0132956. [PMID: 26186356 PMCID: PMC4506129 DOI: 10.1371/journal.pone.0132956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/20/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recombinant Bet v 1a (rBet v 1a) has been used in allergy research for more than three decades, including clinical application of so-called hypoallergens. Quantitative IgE binding to rBet v 1a depends on its native protein conformation, which might be compromised upon heterologous expression, purification, or mutational engineering of rBet v 1a. OBJECTIVE To correlate experimental/theoretical comparisons of IgE binding of defined molar ratios of folded/misfolded recombinant Bet v 1a variants and to determine accuracy and precision of immuno- and physicochemical assays routinely used to assess the quality of recombinant allergen preparations. METHODS rBet v 1a and its misfolded variant rBet v 1aS112P/R145P were heterologously expressed and purified from Escherichia coli. Structural integrities and oligomerisation of the recombinant allergens were evaluated by 1H-nuclear magnetic resonance (1H-NMR), circular dichroism (CD) spectroscopy, and dynamic light scattering (DLS). IgE binding of defined combinations of rBet v 1a and rBet v 1aS112P/R145P was assessed using immunoblotting (IB), enzyme-linked immunosorbent assay (ELISA) and mediator release (MR) of humanized rat basophilic leukemia cells sensitized with serum IgE of subjects allergic to birch pollen. Experimental and theoretically expected results of the analyses were compared. RESULTS 1H-NMR spectra of rBet v 1a and rBet v 1aS112P/R145P demonstrate a native and highly disordered protein conformations, respectively. The CD spectra suggested typical alpha-helical and beta-sheet secondary structure content of rBet v 1a and random coil for rBet v 1aS112P/R145P. The hydrodynamic radii (RH) of 2.49 ± 0.39 nm (rBet v 1a) and 3.1 ± 0.56 nm (rBet v 1aS112P/R145P) showed monomeric dispersion of both allergens in solution. Serum IgE of birch pollen allergic subjects bound to 0.1% rBet v 1a in the presence of 99.9% of non-IgE binding rBet v 1aS112P/R145P. Immunoblot analysis overestimated, whereas ELISA and mediator release assay underestimated the actual quantity of IgE-reactive rBet v 1a in mixtures of rBet v 1a/rBet v 1aS112P/R145P with a molar ratio of rBet v 1a ≤ 10%. CONCLUSION Valid conclusions on quantitative IgE binding of recombinant Bet v 1a preparations depend on the accuracy and precision of physico- and immunochemical assays with which natively folded allergen is detected.
Collapse
|
24
|
Haka J, Niemi MH, Iljin K, Reddy VS, Takkinen K, Laukkanen ML. Isolation of Mal d 1 and Api g 1 - specific recombinant antibodies from mouse IgG Fab fragment libraries - Mal d 1-specific antibody exhibits cross-reactivity against Bet v 1. BMC Biotechnol 2015; 15:34. [PMID: 26013405 PMCID: PMC4446070 DOI: 10.1186/s12896-015-0157-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/01/2015] [Indexed: 11/12/2022] Open
Abstract
Background Around 3–5% of the population suffer from IgE-mediated food allergies in Western countries and the number of food-allergenic people is increasing. Individuals with certain pollen allergies may also suffer from a sensitisation to proteins in the food products. As an example a person sensitised to the major birch pollen allergen, Bet v 1, is often sensitised to its homologues, such as the major allergens of apple, Mal d 1, and celery, Api g 1, as well. Development of tools for the reliable, sensitive and quick detection of allergens present in various food products is essential for allergic persons to prevent the consumption of substances causing mild and even life-threatening immune responses. The use of monoclonal antibodies would ensure the specific detection of the harmful food content for a sensitised person. Methods Mouse IgG antibody libraries were constructed from immunised mice and specific recombinant antibodies for Mal d 1 and Api g 1 were isolated from the libraries by phage display. More detailed characterisation of the resulting antibodies was carried out using ELISA, SPR experiments and immunoprecipitation assays. Results The allergen-specific Fab fragments exhibited high affinity towards the target recombinant allergens. Furthermore, the Fab fragments also recognised native allergens from natural sources. Interestingly, isolated Mal d 1-specific antibody bound also to Bet v 1, the main allergen eliciting the cross-reactivity syndrome between the birch pollen and apple. Despite the similarities in Api g 1 and Bet v 1 tertiary structures, the isolated Api g 1-specific antibodies showed no cross-reactivity to Bet v 1. Conclusions Here, high-affinity allergen-specific recombinant antibodies were isolated with interesting binding properties. With further development, these antibodies can be utilised as tools for the specific and reliable detection of allergens from different consumable products. This study gives new preliminary insights to elucidate the mechanism behind the pollen-food syndrome and to study the IgG epitope of the allergens.
Collapse
Affiliation(s)
- Jaana Haka
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo, FI-02044 VTT, Finland.
| | - Merja H Niemi
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, P.O. Box 111, Joensuu, FI-80101, Finland.
| | - Kristiina Iljin
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo, FI-02044 VTT, Finland.
| | - Vanga Siva Reddy
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Kristiina Takkinen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo, FI-02044 VTT, Finland.
| | - Marja-Leena Laukkanen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo, FI-02044 VTT, Finland.
| |
Collapse
|
25
|
Enlarging the toolbox for allergen epitope definition with an allergen-type model protein. PLoS One 2014; 9:e111691. [PMID: 25356997 PMCID: PMC4214763 DOI: 10.1371/journal.pone.0111691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Birch pollen-allergic subjects produce polyclonal cross-reactive IgE antibodies that mediate pollen-associated food allergies. The major allergen Bet v 1 and its homologs in plant foods bind IgE in their native protein conformation. Information on location, number and clinical relevance of IgE epitopes is limited. We addressed the use of an allergen-related protein model to identify amino acids critical for IgE binding of PR-10 allergens. METHOD Norcoclaurine synthase (NCS) from meadow rue is structurally homologous to Bet v 1 but does not bind Bet v 1-reactive IgE. NCS was used as the template for epitope grafting. NCS variants were tested with sera from 70 birch pollen allergic subjects and with monoclonal antibody BV16 reported to compete with IgE binding to Bet v 1. RESULTS We generated an NCS variant (Δ29NCSN57/I58E/D60N/V63P/D68K) harboring an IgE epitope of Bet v 1. Bet v 1-type protein folding of the NCS variant was evaluated by 1H-15N-HSQC NMR spectroscopy. BV16 bound the NCS variant and 71% (50/70 sera) of our study population showed significant IgE binding. We observed IgE and BV16 cross-reactivity to the epitope presented by the NCS variant in a subgroup of Bet v 1-related allergens. Moreover BV16 blocked IgE binding to the NCS variant. Antibody cross-reactivity depended on a defined orientation of amino acids within the Bet v 1-type conformation. CONCLUSION Our system allows the evaluation of patient-specific epitope profiles and will facilitate both the identification of clinically relevant epitopes as biomarkers and the monitoring of therapeutic outcomes to improve diagnosis, prognosis, and therapy of allergies caused by PR-10 proteins.
Collapse
|
26
|
Meta-analysis of IgE-binding allergen epitopes. Clin Immunol 2014; 153:31-9. [DOI: 10.1016/j.clim.2014.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/19/2014] [Indexed: 12/11/2022]
|
27
|
Schenk MF, Gilissen LJWJ, Smulders RJM, America THP. Mass spectrometry and pollen allergies. Expert Rev Proteomics 2014; 7:627-30. [DOI: 10.1586/epr.10.32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Żbikowska-Gotz M, Jóźwiak J, Rędowicz JM, Kuźmiński A, Napiórkowska K, Przybyszewski M, Socha E, Bartuzi Z, Karczewska E. Assessment of cross-reactivity in patients allergic to birch pollen by immunoblotting. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2012.714358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
29
|
Nybom H, Cervin-Hoberg C, Andersson M. Oral challenges with four apple cultivars result in significant differences in oral allergy symptoms. Int Arch Allergy Immunol 2013; 161:258-64. [PMID: 23548468 DOI: 10.1159/000345954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/16/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We analyzed the hypoallergenic potential of a recently bred apple selection with unusually low content of Mal d 1, using an oral challenge model with three additional apple cultivars for comparison. METHODS Sixty-six birch pollen-allergic individuals with a history of oral allergy syndrome after apple intake were subjected to a double-blind oral provocation with two apple cultivars (B:0654 and 'Discovery'). Thirteen also tested two other apple cultivars ('Ingrid Marie' and 'Gloster'). Three doses were given consecutively, 30 min apart: 10 g without peel, and 10 and 50 g with peel. A final assessment was conducted 30 min after the last intake. Oral symptoms were graded from 0 to 5. Total oral symptom score (TOS) included all scores for each cultivar at all time points. RESULTS B:0654 induced significantly higher TOS than 'Discovery' when tested by 66 individuals, in spite of its lower Mal d 1 content. TOS values were higher in females and increased with increasing age of the individuals when challenged with 'Discovery'. Among the 13 individuals who tested all four cultivars, B:0654 produced a higher score after the second dose compared to 'Ingrid Marie'. This was also the case after the third dose compared to 'Ingrid Marie' and 'Gloster', and again 30 min after the last intake compared to each of the other three cultivars, as well as a higher TOS compared to each of the other three cultivars (all p < 0.01). CONCLUSIONS Our test was safe and well tolerated, and produced significant differences among the apple cultivars. Contrary to expectations, B:0654 was less well tolerated than the other three cultivars.
Collapse
Affiliation(s)
- Hilde Nybom
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, Kristianstad, Sweden. hilde.nybom @ slu.se
| | | | | |
Collapse
|
30
|
Pasquariello MS, Palazzo P, Tuppo L, Liso M, Petriccione M, Rega P, Tartaglia A, Tamburrini M, Alessandri C, Ciardiello MA, Mari A. Analysis of the potential allergenicity of traditional apple cultivars by Multiplex Biochip-Based Immunoassay. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.04.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Takahashi H, Matsuo H, Chinuki Y, Kohno K, Tanaka A, Maruyama N, Morita E. Recombinant high molecular weight-glutenin subunit-specific IgE detection is useful in identifying wheat-dependent exercise-induced anaphylaxis complementary to recombinant omega-5 gliadin-specific IgE test. Clin Exp Allergy 2012; 42:1293-8. [DOI: 10.1111/j.1365-2222.2012.04039.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- H. Takahashi
- Department of Dermatology; Shimane University Faculty of Medicine; Shimane; Japan
| | - H. Matsuo
- Department of Pathophysiology and Therapeutics; Hiroshima University Graduate School of Biomedical Sciences; Hiroshima; Japan
| | - Y. Chinuki
- Department of Dermatology; Shimane University Faculty of Medicine; Shimane; Japan
| | - K. Kohno
- Department of Dermatology; Shimane University Faculty of Medicine; Shimane; Japan
| | - A. Tanaka
- Scientific Affairs; Phadia K.K; Tokyo; Japan
| | - N. Maruyama
- Research Institute for Food Science; Kyoto University; Uji, Kyoto; Japan
| | - E. Morita
- Department of Dermatology; Shimane University Faculty of Medicine; Shimane; Japan
| |
Collapse
|
32
|
Menezes SP, dos Santos JL, Cardoso THS, Pirovani CP, Micheli F, Noronha FSM, Alves AC, Faria AMC, da Silva Gesteira A. Evaluation of the allergenicity potential of TcPR-10 protein from Theobroma cacao. PLoS One 2012; 7:e37969. [PMID: 22768037 PMCID: PMC3387164 DOI: 10.1371/journal.pone.0037969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/27/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The pathogenesis related protein PR10 (TcPR-10), obtained from the Theobroma cacao-Moniliophthora perniciosa interaction library, presents antifungal activity against M. perniciosa and acts in vitro as a ribonuclease. However, despite its biotechnological potential, the TcPR-10 has the P-loop motif similar to those of some allergenic proteins such as Bet v 1 (Betula verrucosa) and Pru av 1 (Prunus avium). The insertion of mutations in this motif can produce proteins with reduced allergenic power. The objective of the present work was to evaluate the allergenic potential of the wild type and mutant recombinant TcPR-10 using bioinformatics tools and immunological assays. METHODOLOGY/PRINCIPAL FINDINGS Mutant substitutions (T10P, I30V, H45S) were inserted in the TcPR-10 gene by site-directed mutagenesis, cloned into pET28a and expressed in Escherichia coli BL21(DE3) cells. Changes in molecular surface caused by the mutant substitutions was evaluated by comparative protein modeling using the three-dimensional structure of the major cherry allergen, Pru av 1 as a template. The immunological assays were carried out in 8-12 week old female BALB/c mice. The mice were sensitized with the proteins (wild type and mutants) via subcutaneous and challenged intranasal for induction of allergic airway inflammation. CONCLUSIONS/SIGNIFICANCE We showed that the wild TcPR-10 protein has allergenic potential, whereas the insertion of mutations produced proteins with reduced capacity of IgE production and cellular infiltration in the lungs. On the other hand, in vitro assays show that the TcPR-10 mutants still present antifungal and ribonuclease activity against M. perniciosa RNA. In conclusion, the mutant proteins present less allergenic potential than the wild TcPR-10, without the loss of interesting biotechnological properties.
Collapse
Affiliation(s)
| | | | | | | | - Fabienne Micheli
- UESC, Centro de Biotecnologia e Genética, Ilhéus, Bahia, Brasil
- CIRAD, UMAR AGAP, Montpellier, France
| | | | - Andréa Catão Alves
- UFMG, Instituto de Ciências Biológicas, Pampulha, Belo Horizonte, Minas Gerais, Brasil
| | | | | |
Collapse
|
33
|
Mauro M, Russello M, Incorvaia C, Gazzola G, Frati F, Moingeon P, Passalacqua G. Birch-apple syndrome treated with birch pollen immunotherapy. Int Arch Allergy Immunol 2011; 156:416-22. [PMID: 21832831 DOI: 10.1159/000323909] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 12/27/2010] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The most common pollen-fruit cross-reaction is the birch-apple syndrome. Allergen immunotherapy (IT) is clearly effective for birch allergy, but its efficacy on apple allergy is controversial. We performed a randomized study on patients with birch-apple syndrome to evaluate the outcome of subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT). METHODS Forty patients underwent IT with a birch extract (Staloral; Stallergenes, Antony, France), 20 by SCIT and 20 by SLIT. After 1 year of treatment, 15 patients (8 for SCIT and 7 for SLIT) accepted to undergo an oral apple challenge. Measurements of specific IgE to Bet v 1 and Mal d 1 and related allergens Api g 1 and Dau c 1 were obtained in 10 patients, at baseline and after IT. RESULTS Two of 8 SCIT-treated patients (25%) and 1 of 7 SLIT-treated patients (14.2%) developed complete tolerance to apple. In the remaining patients, an increase in the provocative dose was found in 3 of the SCIT-treated (37.5%) and 2 of the SLIT-treated patients (28.6%). Changes in the levels of specific IgE to Mal d 1 were unrelated to clinical results. CONCLUSIONS These findings suggest that different doses of birch extract may be needed in different patients to improve the associated apple allergy and that a finer diagnostic work-up in selecting patients with birch-apple syndrome who are candidates to respond to birch pollen IT also concerning apple allergy is required.
Collapse
|
34
|
Schenk MF, Cordewener JHG, America AHP, Peters J, Smulders MJM, Gilissen LJWJ. Proteomic analysis of the major birch allergen Bet v 1 predicts allergenicity for 15 birch species. J Proteomics 2011; 74:1290-300. [PMID: 21459169 DOI: 10.1016/j.jprot.2011.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/08/2011] [Accepted: 03/16/2011] [Indexed: 11/19/2022]
Abstract
Pollen of the European and Asian white birch (Betula pendula and B. platyphylla) causes hay fever in humans. The allergenic potency of other birch species is largely unknown. To identify birch trees with a reduced allergenicity, we assessed the immunochemical characteristics of 15 species and two hybrids, representing four subgenera within the genus Betula, while focusing on the major pollen allergen Bet v 1. Antigenic and allergenic profiles of pollen extracts from these species were evaluated by SDS-PAGE and Western blot using pooled sera of birch-allergic individuals. Tryptic digests of the Bet v 1 bands were analyzed by LC-MS(E) to determine the abundance of various Bet v 1 isoforms. Bet v 1 was the most abundant pollen protein across all birch species. LC-MS(E) confirmed that pollen of all species contained a mixture of multiple Bet v 1 isoforms. Considerable differences in Bet v 1 isoform composition exist between birch species. However, isoforms that are predicted to have a high IgE-reactivity prevailed in pollen of all species. Immunoblotting confirmed that all pollen extracts were similar in immune-reactivity, implying that pollen of all birch species is likely to evoke strong allergic reactions.
Collapse
Affiliation(s)
- Martijn F Schenk
- Plant Research International, Wageningen UR, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Wallner M, Hauser M, Himly M, Zaborsky N, Mutschlechner S, Harrer A, Asam C, Pichler U, van Ree R, Briza P, Thalhamer J, Bohle B, Achatz G, Ferreira F. Reshaping the Bet v 1 fold modulates T(H) polarization. J Allergy Clin Immunol 2011; 127:1571-8.e9. [PMID: 21420160 DOI: 10.1016/j.jaci.2011.01.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/28/2010] [Accepted: 01/31/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND Several alternative mechanisms have been proposed to explain why some proteins are able to induce a T(H)2-biased and IgE-mediated immune response. These include specific interactions with receptors of the innate immune system, proteolytic activities, allergen-associated carbohydrate structures, and intrinsic structural determinants. OBJECTIVES Available data suggest that a fold-dependent allergy-promoting mechanism could be a driving force for the T(H)2-polarization activity of Bet v 1, the major birch pollen allergen. METHODS Computer-aided sequence and fold analysis of the Bet v 1 family identified a short stretch susceptible for mutations inducing an altered fold of the entire molecule. With this knowledge, 7 consecutive amino acids of Bet v 1 were replaced with the homologous Mal d 1 sequence, creating the derivative BM4. RESULTS The minimal changes of the sequence led to a loss of the Bet v 1-like fold and influenced the immunologic behavior. Compared to wild-type Bet v 1, BM4 induced elevated T-cell proliferation of human PBMCs. In the mouse model, immunization with Bet v 1 absorbed to aluminum hydroxide triggered strong T(H)2 polarization, whereas BM4 immunization additionally recruited T(H)1 cells. Furthermore, the fold variant BM4 showed enhanced uptake by dendritic cells and a decreased susceptibility to endo-/lysosomal proteolysis. CONCLUSION Modifications in the 3-dimensional structure of Bet v 1.0101 resulted in a change of its immunologic properties. We observed that the fold alteration led to a modified crosstalk with dendritic cells and a shift of the immune response polarization toward a mixed T(H)1/T(H)2 cytokine production.
Collapse
Affiliation(s)
- Michael Wallner
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Erler A, Hawranek T, Krückemeier L, Asam C, Egger M, Ferreira F, Briza P. Proteomic profiling of birch (Betula verrucosa) pollen extracts from different origins. Proteomics 2011; 11:1486-98. [PMID: 21360672 DOI: 10.1002/pmic.201000624] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/08/2010] [Accepted: 01/18/2011] [Indexed: 01/13/2023]
Abstract
Pollen of the European white birch is a major source of spring pollinosis in Europe. Pollen-allergy diagnosis and treatment by specific immunotherapy commonly rely on extracts of natural origin. To gain insight into the protein content and its variability, we evaluated the profile of allergenic and non-allergenic proteins in extracts of pollen from different origins by MS-based proteomics. Aqueous extracts prepared from commercially available Swedish birch pollen, pollen collected from Austrian trees and a commercial skin prick extract were analyzed by 1-DE, 2-DE, immunoblotting and mass spectrometry, resulting in a complete inventory of extractable, disease-relevant pollen proteins. A main focus of this study was on the isoform distribution of Bet v 1, the major allergen of birch pollen. Using a combination of intact mass determination and peptide sequencing, five isoforms (a, b, d, f and j) were unequivocally identified in Swedish and Austrian birch pollen extracts, while the skin prick extract contained only isoforms a, b and d. Using the same methods as for Bet v 1, divergencies in the sequence of birch profilin (Bet v 2), a plant panallergen, were solved. The molecular characterization of pollen extracts is relevant for standardization and development of new reagents for specific immunotherapy.
Collapse
Affiliation(s)
- Anja Erler
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
37
|
Yeul Son D, Fahlbusch B, Müller WD, Petersen A, Lee SI, Vieths S. Monoclonal Antibodies Raised against the Major Apple Allergen, Mal d 1, are Useful Tools for Epitope Studies. FOOD AGR IMMUNOL 2010. [DOI: 10.1080/09540100051074202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Dae Yeul Son
- a Department of Pediatrics, Samsung Medical Center , Sungkyunkwan Universitity School of Medicine , Seoul , South Korea
| | - Bärbel Fahlbusch
- b Department of Clinical Immunology , The University of Jena , Jena , Germany
| | - Wolf-Dieter Müller
- b Department of Clinical Immunology , The University of Jena , Jena , Germany
| | - Arnd Petersen
- c Department of Allergology , Borstel Research Center , Borstel , Germany
| | - Sang Il Lee
- a Department of Pediatrics, Samsung Medical Center , Sungkyunkwan Universitity School of Medicine , Seoul , South Korea
| | - Stefan Vieths
- d Department of Allergology , Paul-Ehrlich-Institut , Langen , Germany
| |
Collapse
|
38
|
YAGAMI TAKESHI. Features and Mode of Action of Cross-reactive Plant Allergens Relevant to Latex-fruit Syndrome. FOOD AGR IMMUNOL 2010. [DOI: 10.1080/0954010021000096382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- TAKESHI YAGAMI
- a Division of Medical Devices , National Institute of Health Sciences , Kamiyoga 1-18-1, Setagaya-ku, Tokyo , 158-8501 , Japan
| |
Collapse
|
39
|
Klockenbring T, Boese A, Bauer R, Goerlich R. Comparative Investigations of Wheat and Spelt Cultivars: IgA, IgE, IgG1 and IgG4 Binding Characteristics. FOOD AGR IMMUNOL 2010. [DOI: 10.1080/09540100120075826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
40
|
Ren X, Zhang X, Li Y, Wang Z. Epitope mapping and immunological characterization of a major allergen TBa in tartary buckwheat. Biotechnol Lett 2010; 32:1317-24. [DOI: 10.1007/s10529-010-0281-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 04/16/2010] [Indexed: 11/29/2022]
|
41
|
Bianco L, Lopez L, Scalone AG, Di Carli M, Desiderio A, Benvenuto E, Perrotta G. Strawberry proteome characterization and its regulation during fruit ripening and in different genotypes. J Proteomics 2009; 72:586-607. [DOI: 10.1016/j.jprot.2008.11.019] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/08/2008] [Accepted: 11/24/2008] [Indexed: 11/17/2022]
|
42
|
Historique et description des principales allergies croisées. REVUE FRANCAISE D ALLERGOLOGIE 2009. [DOI: 10.1016/j.reval.2009.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Schenk MF, Cordewener JHG, America AHP, van't Westende WPC, Smulders MJM, Gilissen LJWJ. Characterization of PR-10 genes from eight Betula species and detection of Bet v 1 isoforms in birch pollen. BMC PLANT BIOLOGY 2009; 9:24. [PMID: 19257882 PMCID: PMC2671506 DOI: 10.1186/1471-2229-9-24] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 03/03/2009] [Indexed: 05/24/2023]
Abstract
BACKGROUND Bet v 1 is an important cause of hay fever in northern Europe. Bet v 1 isoforms from the European white birch (Betula pendula) have been investigated extensively, but the allergenic potency of other birch species is unknown. The presence of Bet v 1 and closely related PR-10 genes in the genome was established by amplification and sequencing of alleles from eight birch species that represent the four subgenera within the genus Betula. Q-TOF LC-MSE was applied to identify which PR-10/Bet v 1 genes are actually expressed in pollen and to determine the relative abundances of individual isoforms in the pollen proteome. RESULTS All examined birch species contained several PR-10 genes. In total, 134 unique sequences were recovered. Sequences were attributed to different genes or pseudogenes that were, in turn, ordered into seven subfamilies. Five subfamilies were common to all birch species. Genes of two subfamilies were expressed in pollen, while each birch species expressed a mixture of isoforms with at least four different isoforms. Isoforms that were similar to isoforms with a high IgE-reactivity (Bet v 1a = PR-10.01A01) were abundant in all species except B. lenta, while the hypoallergenic isoform Bet v 1d (= PR-10.01B01) was only found in B. pendula and its closest relatives. CONCLUSION Q-TOF LC-MSE allows efficient screening of Bet v 1 isoforms by determining the presence and relative abundance of these isoforms in pollen. B. pendula contains a Bet v 1-mixture in which isoforms with a high and low IgE-reactivity are both abundant. With the possible exception of B. lenta, isoforms identical or very similar to those with a high IgE-reactivity were found in the pollen proteome of all examined birch species. Consequently, these species are also predicted to be allergenic with regard to Bet v 1 related allergies.
Collapse
Affiliation(s)
- Martijn F Schenk
- Plant Research International, Wageningen UR, Wageningen, the Netherlands
- Allergy Consortium Wageningen, Wageningen UR, Wageningen, the Netherlands
| | - Jan HG Cordewener
- Plant Research International, Wageningen UR, Wageningen, the Netherlands
| | - Antoine HP America
- Plant Research International, Wageningen UR, Wageningen, the Netherlands
| | | | - Marinus JM Smulders
- Plant Research International, Wageningen UR, Wageningen, the Netherlands
- Allergy Consortium Wageningen, Wageningen UR, Wageningen, the Netherlands
| | - Luud JWJ Gilissen
- Plant Research International, Wageningen UR, Wageningen, the Netherlands
- Allergy Consortium Wageningen, Wageningen UR, Wageningen, the Netherlands
| |
Collapse
|
44
|
Fall BI, Niessner R. Detection of known allergen-specific IgE antibodies by immunological methods. Methods Mol Biol 2009; 509:107-122. [PMID: 19212717 DOI: 10.1007/978-1-59745-372-1_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An increasing number of patients are suffering from allergic diseases such as rhinoconjunctivitis, atopic eczema, uticaria, anaphylaxis, and food and drug allergies. Although it is possible to measure a multitude of allergen-specific IgE antibodies by radio or enzyme immunoassays in the patients' blood, these tests are expensive, time-consuming, and usually need a rather high volume of reagent solutions (allergens and blood). Protein microarrays offer the possibility to circumvent these limitations. The described in vitro allergy testing system is based on microscopic glass slides activated with glycidyloxypropyl-trimethoxysilane. Allergen solutions (allergen extracts and/or purified allergens; approximately 10 nL) are printed on the activated glass surface with a piezoelectric spotting machine. The protein components of the allergen solutions are immobilized on the modified glass surface via hydrophobic interaction and/ or covalent binding. After a blocking step, the slides are incubated with the respective diluted serum sample (approximately 25 microL serum required) and bound IgE antibodies are detected with a secondary horseradish peroxidase (HRP) labelled anti-human-IgE antibody via chemiluminescence. The measurement can be performed automatically with the so called PASA system. Test results are directly visualized with a CCD-camera. Analytical and clinical data have shown that the microarray-based test format offers significant advantages in time and costs compared with traditional test formats. The described allergen microarray demonstrated a sufficient qualitative reproducibility and enabled the distinction between allergic and non-allergic patients. Detection limits of 0.35 kU/L (r Bet v1), 0.16 kU/L (PLA2), 1.9 kU/L (Der p1), and 41 kU/L (total IgE) were achieved.
Collapse
|
45
|
Gao Z, Weg EWVD, Matos CI, Arens P, Bolhaar STHP, Knulst AC, Li Y, Hoffmann-Sommergruber K, Gilissen LJWJ. Assessment of allelic diversity in intron-containing Mal d 1 genes and their association to apple allergenicity. BMC PLANT BIOLOGY 2008; 8:116. [PMID: 19014530 PMCID: PMC2596139 DOI: 10.1186/1471-2229-8-116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 11/13/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND Mal d 1 is a major apple allergen causing food allergic symptoms of the oral allergy syndrome (OAS) in birch-pollen sensitised patients. The Mal d 1 gene family is known to have at least 7 intron-containing and 11 intronless members that have been mapped in clusters on three linkage groups. In this study, the allelic diversity of the seven intron-containing Mal d 1 genes was assessed among a set of apple cultivars by sequencing or indirectly through pedigree genotyping. Protein variant constitutions were subsequently compared with Skin Prick Test (SPT) responses to study the association of deduced protein variants with allergenicity in a set of 14 cultivars. RESULTS From the seven intron-containing Mal d 1 genes investigated, Mal d 1.01 and Mal d 1.02 were highly conserved, as nine out of ten cultivars coded for the same protein variant, while only one cultivar coded for a second variant. Mal d 1.04, Mal d 1.05 and Mal d 1.06 A, B and C were more variable, coding for three to six different protein variants. Comparison of Mal d 1 allelic composition between the high-allergenic cultivar Golden Delicious and the low-allergenic cultivars Santana and Priscilla, which are linked in pedigree, showed an association between the protein variants coded by the Mal d 1.04 and -1.06A genes (both located on linkage group 16) with allergenicity. This association was confirmed in 10 other cultivars. In addition, Mal d 1.06A allele dosage effects associated with the degree of allergenicity based on prick to prick testing. Conversely, no associations were observed for the protein variants coded by the Mal d 1.01 (on linkage group 13), -1.02, -1.06B, -1.06C genes (all on linkage group 16), nor by the Mal d 1.05 gene (on linkage group 6). CONCLUSION Protein variant compositions of Mal d 1.04 and -1.06A and, in case of Mal d 1.06A, allele doses are associated with the differences in allergenicity among fourteen apple cultivars. This information indicates the involvement of qualitative as well as quantitative factors in allergenicity and warrants further research in the relative importance of quantitative and qualitative aspects of Mal d 1 gene expression on allergenicity. Results from this study have implications for medical diagnostics, immunotherapy, clinical research and breeding schemes for new hypo-allergenic cultivars.
Collapse
Affiliation(s)
- Zhongshan Gao
- Department of Horticulture/Allergy Research Center, Zhejiang University, Hangzhou 310029, PR China
- Allergy Consortium Wageningen, Wageningen University and Research Centre, P.O. Box 16, 6700AA, Wageningen, the Netherlands
- Plant Research International, Wageningen University and Research Centre, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Eric W van de Weg
- Allergy Consortium Wageningen, Wageningen University and Research Centre, P.O. Box 16, 6700AA, Wageningen, the Netherlands
- Plant Research International, Wageningen University and Research Centre, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Catarina I Matos
- Allergy Consortium Wageningen, Wageningen University and Research Centre, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Paul Arens
- Plant Research International, Wageningen University and Research Centre, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Suzanne THP Bolhaar
- Department of Dermatology/Allergology, University Medical Center Utrecht, P.O. Box 85500, 3508GA Utrecht, the Netherlands
| | - Andre C Knulst
- Department of Dermatology/Allergology, University Medical Center Utrecht, P.O. Box 85500, 3508GA Utrecht, the Netherlands
| | - Yinghui Li
- Plant Research International, Wageningen University and Research Centre, P.O. Box 16, 6700AA, Wageningen, the Netherlands
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm & Biotechnology (MOA), Institute of Crop Science, China Academy of Agricultural Science, Beijing, 100081, PR China
| | - Karin Hoffmann-Sommergruber
- Department of Pathophysiology, Medical University of Vienna, AKH-EBO-3Q, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Luud JWJ Gilissen
- Allergy Consortium Wageningen, Wageningen University and Research Centre, P.O. Box 16, 6700AA, Wageningen, the Netherlands
- Plant Research International, Wageningen University and Research Centre, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| |
Collapse
|
46
|
Oberhuber C, Ma Y, Marsh J, Rigby N, Smole U, Radauer C, Alessandri S, Briza P, Zuidmeer L, Maderegger B, Himly M, Sancho AI, van Ree R, Knulst A, Ebner C, Shewry P, Mills ENC, Wellner K, Breiteneder H, Hoffmann-Sommergruber K, Bublin M. Purification and characterisation of relevant natural and recombinant apple allergens. Mol Nutr Food Res 2008; 52 Suppl 2:S208-19. [DOI: 10.1002/mnfr.200700522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Bernstein IL, Li JT, Bernstein DI, Hamilton R, Spector SL, Tan R, Sicherer S, Golden DBK, Khan DA, Nicklas RA, Portnoy JM, Blessing-Moore J, Cox L, Lang DM, Oppenheimer J, Randolph CC, Schuller DE, Tilles SA, Wallace DV, Levetin E, Weber R. Allergy diagnostic testing: an updated practice parameter. Ann Allergy Asthma Immunol 2008; 100:S1-148. [PMID: 18431959 DOI: 10.1016/s1081-1206(10)60305-5] [Citation(s) in RCA: 291] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Steckelbroeck S, Ballmer-Weber BK, Vieths S. Potential, pitfalls, and prospects of food allergy diagnostics with recombinant allergens or synthetic sequential epitopes. J Allergy Clin Immunol 2008; 121:1323-30. [PMID: 18472149 DOI: 10.1016/j.jaci.2008.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 01/16/2023]
Abstract
This article aims to critically review developments in food allergy diagnostics with regard to the verification of specific IgE antibodies and the identification of the responsible allergens. Results of IgE-binding tests with food extracts are hampered by cross-reactive proteins, low-quality test agents, or both. Specificity can be increased by defining adequate cutoff values, whereas sensitivity can be improved by using high-quality test agents. IgE-binding tests with purified allergens enabled reliable quantification of allergen-specific IgE titers, with higher levels found in individuals with food allergy compared with individuals without food allergy. However, the overlap in individual test reactivity between allergic and nonallergic subjects complicates interpretation. Recombinant allergens and synthetic sequential epitopes enabled detection of sensitization profiles, with IgE specific to several allergens and substructures now being suggested as markers of severity, persistence, or both. However, high-power quantitative studies with larger numbers of patients are required to confirm these markers. IgE-binding tests merely indicate sensitization, whereas the final proof of clinical relevance still relies on family/case history, physical examinations, and provocation tests. Novel technologies promise superior diagnostics. Microarray technology permits simultaneous measurement of multiple IgE reactivities regarding specificity, abundance, reactivity, or interaction. Improved functional tests might enable reliable estimation of the clinical relevance of IgE sensitizations at justifiable expenses.
Collapse
|
49
|
Lobo J, Santos F, Grosso D, Lima R, Barreira A, Leite, Jr. M, Mafra D, Abdalla D. Electronegative LDL and Lipid Abnormalities in Patients Undergoing Hemodialysis and Peritoneal Dialysis. ACTA ACUST UNITED AC 2008; 108:c298-304. [DOI: 10.1159/000127982] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 12/28/2007] [Indexed: 11/19/2022]
|
50
|
Heyries KA, Loughran MG, Hoffmann D, Homsy A, Blum LJ, Marquette CA. Microfluidic biochip for chemiluminescent detection of allergen-specific antibodies. Biosens Bioelectron 2008; 23:1812-8. [PMID: 18396032 DOI: 10.1016/j.bios.2008.02.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/01/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
Protein microarrays for allergen-specific antibodies detection were integrated in microfluidic chips, with imaging chemiluminescence as the analytical technique. This paper demonstrates the feasibility of miniaturized chemiluminescent ELISA by presenting rapid, reproducible and sensitive detection of protein antibodies using microfluidics. Three different proteins, beta-lactoglobulin, peanut lectin and human IgG were immobilized via a "macromolecules to polydimethylsiloxane elastomer (PDMS) transfer" protocol and used as capturing agent for the detection of specific antibodies. A convenient and reversible procedure was used to bond the PDMS microarray substrate to complimentary SU-8/glass microfluidic reaction chambers. The hydrodynamic behaviours of the three proteins interactions within the micro-chambers were investigated to select the most efficient flowing parameters (come to terms with the assay time and performances). The use of optimized conditions led to the concomitant detection of three specific antibodies at pM level in 300 microL and using 6 min sample incubation time. Finally, sera from allergic patients were assayed using the microfluidic device modified with apple hazelnut and pollen allergen. The results obtained compared favourably with those obtained with the classical Pharmacia CAP system.
Collapse
Affiliation(s)
- Kevin A Heyries
- Laboratoire de Génie Enzymatique et Biomoléculaire, Université Lyon 1, CNRS 5246 ICBMS, Bât CPE, Villeurbanne Cedex, France
| | | | | | | | | | | |
Collapse
|