1
|
Zhou Z, Chai W, Liu Y, Zhou M, Zhang X. Connexins and angiogenesis: Functional aspects, pathogenesis, and emerging therapies (Review). Int J Mol Med 2022; 50:110. [PMID: 35762312 PMCID: PMC9256078 DOI: 10.3892/ijmm.2022.5166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Connexins (Cxs) play key roles in cellular communication. By facilitating metabolite exchange or interfering with distinct signaling pathways, Cxs affect cell homeostasis, proliferation, and differentiation. Variations in the activity and expression of Cxs have been linked to numerous clinical conditions including carcinomas, cardiac disorders, and wound healing. Recent discoveries on the association between Cxs and angiogenesis have sparked interest in Cx-mediated angiogenesis due to its essential functions in tissue formation, wound repair, tumor growth, and metastasis. It is now widely recognized that understanding the association between Cxs and angiogenesis may aid in the development of new targeted therapies for angiogenic diseases. The aim of the present review was to provide a comprehensive overview of Cxs and Cx-mediated angiogenesis, with a focus on therapeutic implications.
Collapse
Affiliation(s)
- Zizi Zhou
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Wenxiang Chai
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Yi Liu
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Meng Zhou
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaoming Zhang
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
2
|
Pourtaji A, Jahani V, Moallem SMH, Karimani A, Mohammadpour AH. Application of G-CSF in Congestive Heart Failure Treatment. Curr Cardiol Rev 2019; 15:83-90. [PMID: 30378501 PMCID: PMC6520582 DOI: 10.2174/1573403x14666181031115118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Congestive Heart Failure (CHF) is a disorder in which the heart is unable to supply enough blood for body tissues. Since heart is an adaptable organ, it overcomes this condition by going under remodeling process. Considering cardiac myocytes are capable of proliferation after MI, stimulation of neovascularization as well as their regeneration might serve as a novel target in cardiac remodeling prevention and CHF treatment. Granulocyte Colony-Stimulating Factor (G-CSF), is a hematopoietic cytokine that promotes proliferation and differentiation of neutrophils and is involved in cardiac repair after MI. So far, this is the first review to focus on GCSF as a novel treatment for heart failure. METHODS We conducted a search of some databases such as PubMed for articles and reviews published between 2003 and 2017, with different keywords including "G-CSF", "congestive heart failure", "new therapies for CHF", "filgrastim", "in vivo study". RESULTS GCSF exerts its beneficial effects on cardiac repair through either stem cell mobilization or direct angiogenesis promotion. All of which are capable of promoting cardiac cell repair. CONCLUSION GCSF is a promising target in CHF-therapy by means of cardiac repair and remodeling prevention through multiple mechanisms, which are effective enough to be used in clinical practice.
Collapse
Affiliation(s)
- Atena Pourtaji
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vajiheh Jahani
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Asieh Karimani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Frommeyer G, Eckardt L. Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms. Nat Rev Cardiol 2015; 13:36-47. [PMID: 26194552 DOI: 10.1038/nrcardio.2015.110] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug-induced ventricular tachyarrhythmias can be caused by cardiovascular drugs, noncardiovascular drugs, and even nonprescription agents. They can result in arrhythmic emergencies and sudden cardiac death. If a new arrhythmia or aggravation of an existing arrhythmia develops during therapy with a drug at a concentration usually considered not to be toxic, the situation can be defined as proarrhythmia. Various cardiovascular and noncardiovascular drugs can increase the occurrence of polymorphic ventricular tachycardia of the 'torsade de pointes' type. Antiarrhythmic drugs, antimicrobial agents, and antipsychotic and antidepressant drugs are the most important groups. Age, female sex, and structural heart disease are important risk factors for the occurrence of torsade de pointes. Genetic predisposition and individual pharmacodynamic and pharmacokinetic sensitivity also have important roles in the generation of arrhythmias. An increase in spatial or temporal dispersion of repolarization and a triangular action-potential configuration have been identified as crucial predictors of proarrhythmia in experimental models. These studies emphasized that sole consideration of the QT interval is not sufficient to assess the proarrhythmic risk. In this Review, we focus on important triggers of proarrhythmia and the underlying electrophysiological mechanisms that can enhance or prevent the development of torsade de pointes.
Collapse
Affiliation(s)
- Gerrit Frommeyer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Strasse 33, D-48149 Münster, Germany
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer Strasse 33, D-48149 Münster, Germany
| |
Collapse
|
4
|
Givvimani S, Pushpakumar S, Veeranki S, Tyagi SC. Dysregulation of Mfn2 and Drp-1 proteins in heart failure. Can J Physiol Pharmacol 2014; 92:583-91. [PMID: 24905188 DOI: 10.1139/cjpp-2014-0060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Therapeutic approaches for cardiac regenerative mechanisms have been explored over the past decade to target various cardiovascular diseases (CVD). Structural and functional aberrations of mitochondria have been observed in CVD. The significance of mitochondrial maturation and function in cardiomyocytes is distinguished by their attribution to embryonic stem cell differentiation into adult cardiomyocytes. An abnormal fission process has been implicated in heart failure, and treatment with mitochondrial division inhibitor 1 (Mdivi-1), a specific inhibitor of dynamin related protein-1 (Drp-1), has been shown to improve cardiac function. We recently observed that the ratio of mitofusin 2 (Mfn2; a fusion protein) and Drp-1 (a fission protein) was decreased during heart failure, suggesting increased mitophagy. Treatment with Mdivi-1 improved cardiac function by normalizing this ratio. Aberrant mitophagy and enhanced oxidative stress in the mitochondria contribute to abnormal activation of MMP-9, leading to degradation of the important gap junction protein connexin-43 (Cx-43) in the ventricular myocardium. Reduced Cx-43 levels were associated with increased fibrosis and ventricular dysfunction in heart failure. Treatment with Mdivi-1 restored MMP-9 and Cx-43 expression towards normal. In this review, we discuss mitochondrial dynamics, its relation to MMP-9 and Cx-43, and the therapeutic role of fission inhibition in heart failure.
Collapse
Affiliation(s)
- Srikanth Givvimani
- Department of Physiology & Biophysics, School of Medicine, University of Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
5
|
Chevallier D, Carette D, Segretain D, Gilleron J, Pointis G. Connexin 43 a check-point component of cell proliferation implicated in a wide range of human testis diseases. Cell Mol Life Sci 2013; 70:1207-20. [PMID: 22918484 PMCID: PMC11113700 DOI: 10.1007/s00018-012-1121-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 01/09/2023]
Abstract
Gap junction channels link cytoplasms of adjacent cells. Connexins, their constitutive proteins, are essential in cell homeostasis and are implicated in numerous physiological processes. Spermatogenesis is a sophisticated model of germ cell proliferation, differentiation, survival, and apoptosis, in which a connexin isotype, connexin 43, plays a crucial role as evidenced by genomic approaches based on gene deletion. The balance between cell proliferation/differentiation/apoptosis is a prerequisite for maintaining levels of spermatozoa essential for fertility and for limiting anarchic cell proliferation, a major risk of testis tumor. The present review highlights the emerging role of connexins in testis pathogenesis, focusing specifically on two intimately interconnected human testicular diseases (azoospermia with impaired spermatogenesis and testicular germ cell tumors), whose incidence increased during the last decades. This work proposes connexin 43 as a potential cancer diagnostic and prognostic marker, as well as a promising therapeutic target for testicular diseases.
Collapse
Affiliation(s)
- Daniel Chevallier
- Department of Urology, Pasteur Hospital, Nice, France
- INSERM U 1065, Team 5 “Physiopathologic Control of Germ Cell Proliferation: Genomic and Non Genomic Mechanisms”, University Nice Sophia-Antipolis, C3M, 151 route Saint-Antoine de Ginestière BP 2 3194, Nice Cedex 3, 06204 France
| | - Diane Carette
- UMR S775, University Paris Descartes, 45 rue des Saints Pères, Paris, 75006 France
- University of Versailles, Saint Quentin, 78035 France
| | - Dominique Segretain
- UMR S775, University Paris Descartes, 45 rue des Saints Pères, Paris, 75006 France
- University of Versailles, Saint Quentin, 78035 France
| | - Jérome Gilleron
- INSERM U 1065, Team 5 “Physiopathologic Control of Germ Cell Proliferation: Genomic and Non Genomic Mechanisms”, University Nice Sophia-Antipolis, C3M, 151 route Saint-Antoine de Ginestière BP 2 3194, Nice Cedex 3, 06204 France
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Georges Pointis
- INSERM U 1065, Team 5 “Physiopathologic Control of Germ Cell Proliferation: Genomic and Non Genomic Mechanisms”, University Nice Sophia-Antipolis, C3M, 151 route Saint-Antoine de Ginestière BP 2 3194, Nice Cedex 3, 06204 France
| |
Collapse
|
6
|
Herz K, Heinemann JC, Hesse M, Ottersbach A, Geisen C, Fuegemann CJ, Röll W, Fleischmann BK, Wenzel D. Live monitoring of small vessels during development and disease using the flt-1 promoter element. Basic Res Cardiol 2012; 107:257. [PMID: 22382299 DOI: 10.1007/s00395-012-0257-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 02/16/2012] [Accepted: 02/22/2012] [Indexed: 12/23/2022]
Abstract
Vessel formation is of critical importance for organ function in the normal and diseased state. In particular, the labeling and quantitation of small vessels prove to be technically challenging using current approaches. We have, therefore, established a transgenic embryonic stem (ES) cell line and a transgenic mouse model where the vascular endothelial growth factor receptor VEGFR-1 (flt-1) promoter drives the expression of the live reporter eGFP. Fluorescence microscopy and immunostainings revealed endothelial-specific eGFP labeling of vascular networks. The expression pattern recapitulates that of the endogenous flt-1 gene, because small and large vessels are labeled by eGFP during embryonic development; after birth, the expression becomes more restricted to small vessels. We have explored this in the cardiovascular system more in detail and found that all small vessels and capillaries within the heart are strongly eGFP+. In addition, myocardial injuries have been induced in transgenic mice and prominent vascular remodeling, and an increase in endothelial cell area within the peri-infarct area could be observed underscoring the utility of this mouse model. Thus, the transgenic flt-1/eGFP models are powerful tools to investigate and quantify vascularization in vivo and to probe the effect of different compounds on vessel formation in vitro.
Collapse
Affiliation(s)
- Katia Herz
- Institute of Physiology I, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Proarrhythmia in a non-failing murine model of cardiac-specific Na+/Ca 2+ exchanger overexpression: whole heart and cellular mechanisms. Basic Res Cardiol 2012; 107:247. [PMID: 22327339 DOI: 10.1007/s00395-012-0247-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 01/02/2012] [Accepted: 01/22/2012] [Indexed: 10/14/2022]
Abstract
The cardiac Na(+)/Ca(2+) exchanger (NCX) generates an inward electrical current during SR-Ca(2+) release, thus possibly promoting afterdepolarizations of the action potential (AP). We used transgenic mice 12.5 weeks or younger with cardiomyocyte-directed overexpression of NCX (NCX-Tg) to study the proarrhythmic potential and mechanisms of enhanced NCX activity. NCX-Tg exhibited normal echocardiographic left ventricular function and heart/body weight ratio, while the QT interval was prolonged in surface ECG recordings. Langendorff-perfused NCX-Tg, but not wild-type (WT) hearts, developed ventricular tachycardia. APs and ionic currents were measured in isolated cardiomyocytes. Cell capacitance was unaltered between groups. APs were prolonged in NCX-Tg versus WT myocytes along with voltage-activated K(+) currents (K(v)) not being reduced but even increased in amplitude. During abrupt changes in pacing cycle length, early afterdepolarizations (EADs) were frequently recorded in NCX-Tg but not in WT myocytes. Next to EADs, delayed afterdepolarizations (DAD) triggering spontaneous APs (sAPs) occurred in NCX-Tg but not in WT myocytes. To test whether sAPs were associated with spontaneous Ca(2+) release (sCR), Ca(2+) transients were recorded. Despite the absence of sAPs in WT, sCR was observed in myocytes of both genotypes suggesting a facilitated translation of sCR into DADs in NCX-Tg. Moreover, sCR was more frequent in NCX-Tg as compared to WT. Myocardial protein levels of Ca(2+)-handling proteins were not different between groups except the ryanodine receptor (RyR), which was increased in NCX-Tg versus WT. We conclude that NCX overexpression is proarrhythmic in a non-failing environment even in the absence of reduced K(V). The underlying mechanisms are: (1) occurrence of EADs due to delayed repolarization; (2) facilitated translation from sCR into DADs; (3) proneness to sCR possibly caused by altered Ca(2+) handling and/or increased RyR expression.
Collapse
|