1
|
Piché J, Van Vliet PP, Pucéat M, Andelfinger G. The expanding phenotypes of cohesinopathies: one ring to rule them all! Cell Cycle 2019; 18:2828-2848. [PMID: 31516082 PMCID: PMC6791706 DOI: 10.1080/15384101.2019.1658476] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
Preservation and development of life depend on the adequate segregation of sister chromatids during mitosis and meiosis. This process is ensured by the cohesin multi-subunit complex. Mutations in this complex have been associated with an increasing number of diseases, termed cohesinopathies. The best characterized cohesinopathy is Cornelia de Lange syndrome (CdLS), in which intellectual and growth retardations are the main phenotypic manifestations. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably. Novel roles of the cohesin complex have emerged during the past decades, suggesting that important cell cycle regulators exert important biological effects through non-cohesion-related functions and broadening the potential pathomechanisms involved in cohesinopathies. This review focuses on non-cohesion-related functions of the cohesin complex, gene dosage effect, epigenetic regulation and TGF-β in cohesinopathy context, especially in comparison to Chronic Atrial and Intestinal Dysrhythmia (CAID) syndrome, a very distinct cohesinopathy caused by a homozygous Shugoshin-1 (SGO1) mutation (K23E) and characterized by pacemaker failure in both heart (sick sinus syndrome followed by atrial flutter) and gut (chronic intestinal pseudo-obstruction) with no intellectual or growth delay. We discuss the possible impact of SGO1 alterations in human pathologies and the potential impact of the SGO1 K23E mutation in the sinus node and gut development and functions. We suggest that the human phenotypes observed in CdLS, CAID syndrome and other cohesinopathies can inform future studies into the less well-known non-cohesion-related functions of cohesin complex genes. Abbreviations: AD: Alzheimer Disease; AFF4: AF4/FMR2 Family Member 4; ANKRD11: Ankyrin Repeat Domain 11; APC: Anaphase Promoter Complex; ASD: Atrial Septal Defect; ATRX: ATRX Chromatin Remodeler; ATRX: Alpha Thalassemia X-linked intellectual disability syndrome; BIRC5: Baculoviral IAP Repeat Containing 5; BMP: Bone Morphogenetic Protein; BRD4: Bromodomain Containing 4; BUB1: BUB1 Mitotic Checkpoint Serine/Threonine Kinase; CAID: Chronic Atrial and Intestinal Dysrhythmia; CDK1: Cyclin Dependent Kinase 1; CdLS: Cornelia de Lange Syndrome; CHD: Congenital Heart Disease; CHOPS: Cognitive impairment, coarse facies, Heart defects, Obesity, Pulmonary involvement, Short stature, and skeletal dysplasia; CIPO: Chronic Intestinal Pseudo-Obstruction; c-kit: KIT Proto-Oncogene Receptor Tyrosine Kinase; CoATs: Cohesin Acetyltransferases; CTCF: CCCTC-Binding Factor; DDX11: DEAD/H-Box Helicase 11; ERG: Transcriptional Regulator ERG; ESCO2: Establishment of Sister Chromatid Cohesion N-Acetyltransferase 2; GJC1: Gap Junction Protein Gamma 1; H2A: Histone H2A; H3K4: Histone H3 Lysine 4; H3K9: Histone H3 Lysine 9; HCN4: Hyperpolarization Activated Cyclic Nucleotide Gated Potassium and Sodium Channel 4;p HDAC8: Histone deacetylases 8; HP1: Heterochromatin Protein 1; ICC: Interstitial Cells of Cajal; ICC-MP: Myenteric Plexus Interstitial cells of Cajal; ICC-DMP: Deep Muscular Plexus Interstitial cells of Cajal; If: Pacemaker Funny Current; IP3: Inositol trisphosphate; JNK: C-Jun N-Terminal Kinase; LDS: Loeys-Dietz Syndrome; LOAD: Late-Onset Alzheimer Disease; MAPK: Mitogen-Activated Protein Kinase; MAU: MAU Sister Chromatid Cohesion Factor; MFS: Marfan Syndrome; NIPBL: NIPBL, Cohesin Loading Factor; OCT4: Octamer-Binding Protein 4; P38: P38 MAP Kinase; PDA: Patent Ductus Arteriosus; PDS5: PDS5 Cohesin Associated Factor; P-H3: Phospho Histone H3; PLK1: Polo Like Kinase 1; POPDC1: Popeye Domain Containing 1; POPDC2: Popeye Domain Containing 2; PP2A: Protein Phosphatase 2; RAD21: RAD21 Cohesin Complex Component; RBS: Roberts Syndrome; REC8: REC8 Meiotic Recombination Protein; RNAP2: RNA polymerase II; SAN: Sinoatrial node; SCN5A: Sodium Voltage-Gated Channel Alpha Subunit 5; SEC: Super Elongation Complex; SGO1: Shogoshin-1; SMAD: SMAD Family Member; SMC1A: Structural Maintenance of Chromosomes 1A; SMC3: Structural Maintenance of Chromosomes 3; SNV: Single Nucleotide Variant; SOX2: SRY-Box 2; SOX17: SRY-Box 17; SSS: Sick Sinus Syndrome; STAG2: Cohesin Subunit SA-2; TADs: Topology Associated Domains; TBX: T-box transcription factors; TGF-β: Transforming Growth Factor β; TGFBR: Transforming Growth Factor β receptor; TOF: Tetralogy of Fallot; TREK1: TREK-1 K(+) Channel Subunit; VSD: Ventricular Septal Defect; WABS: Warsaw Breakage Syndrome; WAPL: WAPL Cohesin Release Factor.
Collapse
Affiliation(s)
- Jessica Piché
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| | - Patrick Piet Van Vliet
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), INSERM, Marseille, U1251-13885, France
| | - Michel Pucéat
- LIA (International Associated Laboratory), CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), INSERM, Marseille, U1251-13885, France
- INSERM U-1251, MMG,Aix-Marseille University, Marseille, 13885, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
2
|
Xue J, Yan X, Yang Y, Chen M, Wu L, Gou Z, Sun Z, Talabieke S, Zheng Y, Luo D. Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts. Basic Res Cardiol 2019; 114:40. [DOI: 10.1007/s00395-019-0748-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
|
3
|
Sheng L, Wan B, Feng P, Sun J, Rigo F, Bennett CF, Akerman M, Krainer AR, Hua Y. Downregulation of Survivin contributes to cell-cycle arrest during postnatal cardiac development in a severe spinal muscular atrophy mouse model. Hum Mol Genet 2019; 27:486-498. [PMID: 29220503 DOI: 10.1093/hmg/ddx418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality, characterized by progressive degeneration of spinal-cord motor neurons, leading to atrophy of skeletal muscles. However, accumulating evidence indicates that it is a multi-system disorder, particularly in its severe forms. Several studies delineated structural and functional cardiac abnormalities in SMA patients and mouse models, yet the abnormalities have been primarily attributed to autonomic dysfunction. Here, we show in a severe mouse model that its cardiomyocytes undergo G0/G1 cell-cycle arrest and enhanced apoptosis during postnatal development. Microarray and real-time RT-PCR analyses revealed that a set of genes associated with cell cycle and apoptosis were dysregulated in newborn pups. Of particular interest, the Birc5 gene, which encodes Survivin, an essential protein for heart development, was down-regulated even on pre-symptomatic postnatal day 0. Interestingly, cultured cardiomyocytes depleted of SMN recapitulated the gene expression changes including downregulation of Survivin and abnormal cell-cycle progression; and overexpression of Survivin rescued the cell-cycle defect. Finally, increasing SMN in SMA mice with a therapeutic antisense oligonucleotide improved heart pathology and recovered expression of deregulated genes. Collectively, our data demonstrate that the cardiac malfunction of the severe SMA mouse model is mainly a cell-autonomous defect, caused by widespread gene deregulation in heart tissue, particularly of Birc5, resulting in developmental abnormalities through cell-cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Lei Sheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bo Wan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pengchao Feng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junjie Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | | | - Martin Akerman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.,Envisagenics, Inc., New York, NY 10017, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Yimin Hua
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
4
|
Piché J, Gosset N, Legault LM, Pacis A, Oneglia A, Caron M, Chetaille P, Barreiro L, Liu D, Qi X, Nattel S, Leclerc S, Breton-Larrivée M, McGraw S, Andelfinger G. Molecular Signature of CAID Syndrome: Noncanonical Roles of SGO1 in Regulation of TGF-β Signaling and Epigenomics. Cell Mol Gastroenterol Hepatol 2018; 7:411-431. [PMID: 30739867 PMCID: PMC6369230 DOI: 10.1016/j.jcmgh.2018.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS A generalized human pacemaking syndrome, chronic atrial and intestinal dysrhythmia (CAID) (OMIM 616201), is caused by a homozygous SGO1 mutation (K23E), leading to chronic intestinal pseudo-obstruction and arrhythmias. Because CAID patients do not show phenotypes consistent with perturbation of known roles of SGO1, we hypothesized that noncanonical roles of SGO1 drive the clinical manifestations observed. METHODS To identify a molecular signature for CAID syndrome, we achieved unbiased screens in cell lines and gut tissues from CAID patients vs wild-type controls. We performed RNA sequencing along with stable isotope labeling with amino acids in cell culture. In addition, we determined the genome-wide DNA methylation and chromatin accessibility signatures using reduced representative bisulfite sequencing and assay for transposase-accessible chromatin with high-throughput sequencing. Functional studies included patch-clamp, quantitation of transforming growth factor-β (TGF-β) signaling, and immunohistochemistry in CAID patient gut biopsy specimens. RESULTS Proteome and transcriptome studies converge on cell-cycle regulation, cardiac conduction, and smooth muscle regulation as drivers of CAID syndrome. Specifically, the inward rectifier current, an important regulator of cellular function, was disrupted. Immunohistochemistry confirmed overexpression of Budding Uninhibited By Benzimidazoles 1 (BUB1) in patients, implicating the TGF-β pathway in CAID pathogenesis. Canonical TGF-β signaling was up-regulated and uncoupled from noncanonical signaling in CAID patients. Reduced representative bisulfite sequencing and assay for transposase-accessible chromatin with high-throughput sequencing experiments showed significant changes of chromatin states in CAID, pointing to epigenetic regulation as a possible pathologic mechanism. CONCLUSIONS Our findings point to impaired inward rectifier potassium current, dysregulation of canonical TGF-β signaling, and epigenetic regulation as potential drivers of intestinal and cardiac manifestations of CAID syndrome. Transcript profiling and genomics data are as follows: repository URL: https://www.ncbi.nlm.nih.gov/geo; SuperSeries GSE110612 was composed of the following subseries: GSE110309, GSE110576, and GSE110601.
Collapse
Affiliation(s)
- Jessica Piché
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Natacha Gosset
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Lisa-Marie Legault
- Department of Biochemistry and Molecular Medicine, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Alain Pacis
- Department of Genetics, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada,Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Andrea Oneglia
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Caron
- Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Philippe Chetaille
- Service of Pediatric Cardiology, Department of Pediatrics, Centre Mère Enfants Soleil, Centre Hospitalier de l’Université de Québec, Québec City, Québec, Canada
| | - Luis Barreiro
- Department of Genetics, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada,Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada,Department of Pediatrics, Université de Montréal, Québec, Canada
| | - Donghai Liu
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Xioyan Qi
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Séverine Leclerc
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Breton-Larrivée
- Department of Biochemistry and Molecular Medicine, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | | | - Serge McGraw
- Department of Biochemistry and Molecular Medicine, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada,Departement of Obstetrics and Gynecology, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte Justine Research Center, Université de Montréal, Montréal, Québec, Canada,Correspondence Address correspondence to: Gregor Andelfinger, MD, FRCPC, Service of Cardiology, Department of Pediatrics, Cardiovascular Genetics Research Laboratory, Centre Hospitalier Sainte Justine Research Center, Université de Montréal 3175, Chemin Côte Sainte Catherine, Montréal, Québec, H3T 1C5 Canada. fax: (514) 345-4896.
| |
Collapse
|
5
|
Ho YS, Tsai WH, Lin FC, Huang WP, Lin LC, Wu SM, Liu YR, Chen WP. Cardioprotective Actions of TGFβRI Inhibition Through Stimulating Autocrine/Paracrine of Survivin and Inhibiting Wnt in Cardiac Progenitors. Stem Cells 2015; 34:445-55. [PMID: 26418219 DOI: 10.1002/stem.2216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/17/2015] [Accepted: 09/14/2015] [Indexed: 01/10/2023]
Abstract
Heart failure due to myocardial infarction (MI) is a major cause of morbidity and mortality in the world. We found previously that A83-01, a TGFβRI inhibitor, could facilitate cardiac repair in post-MI mice and induce the expansion of a Nkx2.5 + cardiomyoblast population. This study aimed to investigate the key autocrine/paracrine factors regulated by A83-01 in the injured heart and the mechanism of cardioprotection by this molecule. Using a previously described transgenic Nkx2.5 enhancer-green fluorescent protein (GFP) reporter mice, we isolated cardiac progenitor cells (CPC) including Nkx2.5-GFP + (Nkx2.5+), sca1+, and Nkx2.5+/sca1 + cells. A83-01 was found to induce proliferation of these three subpopulations mainly through increasing Birc5 expression in the MEK/ERK-dependent pathway. Survivin, encoded by Birc5, could also directly proliferate Nkx2.5 + cells and enhance cultured cardiomyocytes viability. A83-01 could also reverse the downregulation of Birc5 in postinjured mice hearts (n = 6) to expand CPCs. Moreover, the increased Wnt3a in postinjured hearts could decrease CPCs, which could be reversed by A83-01 via inhibiting Fzd6 and Wnt1-induced signaling protein 1 expressions in CPCs. Next, we used inducible αMHC-cre/mTmG mice to label cardiomyocytes with GFP and nonmyocytes with RFP. We found A83-01 preserved more GFP + myocytes (68.6% ± 3.1% vs. 80.9% ± 3.0%; p < .05, n = 6) and fewer renewed RFP + myocytes (0.026% ± 0.005% vs. 0.062% ± 0.008%; p < .05, n = 6) in parallel with less cardiac fibrosis in isoprenaline-injected mice treated with A83-01. TGFβRI inhibition in an injured adult heart could both stimulate the autocrine/paracrine activity of survivin and inhibit Wnt in CPCs to mediate cardioprotection and improve cardiac function.
Collapse
Affiliation(s)
- Yu-Sian Ho
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Wan-Hsuan Tsai
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Fen-Chiung Lin
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei City, Taiwan.,Division of Cardiology, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Wei-Pang Huang
- Department of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Lung-Chun Lin
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Sean M Wu
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Yu-Ru Liu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Wen-Pin Chen
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
6
|
Lübkemeier I, Andrié R, Lickfett L, Bosen F, Stöckigt F, Dobrowolski R, Draffehn AM, Fregeac J, Schultze JL, Bukauskas FF, Schrickel JW, Willecke K. The Connexin40A96S mutation from a patient with atrial fibrillation causes decreased atrial conduction velocities and sustained episodes of induced atrial fibrillation in mice. J Mol Cell Cardiol 2013; 65:19-32. [PMID: 24060583 DOI: 10.1016/j.yjmcc.2013.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 12/22/2022]
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and a major cause of stroke. In the mammalian heart the gap junction proteins connexin40 (Cx40) and connexin43 (Cx43) are strongly expressed in the atrial myocardium mediating effective propagation of electrical impulses. Different heterozygous mutations in the coding region for Cx40 were identified in patients with AF. We have generated transgenic Cx40A96S mice harboring one of these mutations, the loss-of-function Cx40A96S mutation, as a model for atrial fibrillation. Cx40A96S mice were characterized by immunochemical and electrophysiological analyses. Significantly reduced atrial conduction velocities and strongly prolonged episodes of atrial fibrillation were found after induction in Cx40A96S mice. Analyses of the gating properties of Cx40A96S channels in cultured HeLa cells also revealed significantly lower junctional conductance and enhanced sensitivity voltage gating of Cx40A96S in comparison to Cx40 wild-type gap junctions. This is caused by reduced open probabilities of Cx40A96S gap junction channels, while single channel conductance remained the same. Similar to the corresponding patient, heterozygous Cx40A96S mice revealed normal expression levels and localization of the Cx40 protein. We conclude that heterozygous Cx40A96S mice exhibit prolonged episodes of induced atrial fibrillation and severely reduced atrial conduction velocities similar to the corresponding human patient.
Collapse
Affiliation(s)
- Indra Lübkemeier
- Life and Medical Sciences (LIMES) Institute, Molecular Genetics, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Oikawa M, Wu M, Lim S, Knight WE, Miller CL, Cai Y, Lu Y, Blaxall BC, Takeishi Y, Abe JI, Yan C. Cyclic nucleotide phosphodiesterase 3A1 protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol 2013; 64:11-9. [PMID: 23988739 PMCID: PMC3869570 DOI: 10.1016/j.yjmcc.2013.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
Phosphodiesterase 3A (PDE3A) is a major regulator of cAMP in cardiomyocytes. PDE3 inhibitors are used for acute treatment of congestive heart failure, but are associated with increased incidence of arrhythmias and sudden death with long-term use. We previously reported that chronic PDE3A downregulation or inhibition induced myocyte apoptosis in vitro. However, the cardiac protective effect of PDE3A has not been demonstrated in vivo in disease models. In this study, we examined the role of PDE3A in regulating myocardial function and survival in vivo using genetically engineered transgenic mice with myocardial overexpression of the PDE3A1 isozyme (TG). TG mice have reduced cardiac function characterized by reduced heart rate and ejection fraction (52.5±7.8% vs. 83.9±4.7%) as well as compensatory expansion of left ventricular diameter (4.19±0.19mm vs. 3.10±0.18mm). However, there was no maladaptive increase of fibrosis and apoptosis in TG hearts compared to wild type (WT) hearts, and the survival rates also remained the same. The diminution of cardiac contractile function is very likely attributed to a decrease in beta-adrenergic receptor (β-AR) response in TG mice. Importantly, the myocardial infarct size (4.0±1.8% vs. 24.6±3.8%) and apoptotic cell number (1.3±1.0% vs. 5.6±1.5%) induced by ischemia/reperfusion (I/R) injury were significantly attenuated in TG mice. This was associated with decreased expression of inducible cAMP early repressor (ICER) and increased expression of anti-apoptotic protein BCL-2. To further verify the anti-apoptotic effects of PDE3A1, we performed in vitro apoptosis study in isolated adult TG and WT cardiomyocytes. We found that the apoptotic rates stimulated by hypoxia/reoxygenation or H2O2 were indeed significantly reduced in TG myocytes, and the differences between TG and WT myocytes were completely reversed in the presence of the PDE3 inhibitor milrinone. These together indicate that PDE3A1 negatively regulates β-AR signaling and protects against I/R injury by inhibiting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Masayoshi Oikawa
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Meiping Wu
- Department of Cardiovascular, Shanghai Hospital of TCM, Affiliated to Shanghai University of TCM, Shanghai, China
| | - Soyeon Lim
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Walter E. Knight
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Clint L. Miller
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Yujun Cai
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Yan Lu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Burns C. Blaxall
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Yasuchika Takeishi
- Fukushima Medical University, Department of Cardiology and Hematology, Fukushima city, Fukushima prefecture, Japan
| | - Jun-ichi Abe
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
8
|
Islet1 is a direct transcriptional target of the homeodomain transcription factor Shox2 and rescues the Shox2-mediated bradycardia. Basic Res Cardiol 2013; 108:339. [PMID: 23455426 PMCID: PMC3597335 DOI: 10.1007/s00395-013-0339-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/31/2013] [Accepted: 02/08/2013] [Indexed: 01/10/2023]
Abstract
The heart's rhythm is initiated and regulated by a group of specialized cells in the sinoatrial node (SAN), the primary pacemaker of the heart. Abnormalities in the development of the SAN can result in irregular heart rates (arrhythmias). Although several of the critical genes important for SAN formation have been identified, our understanding of the transcriptional network controlling SAN development remains at a relatively early stage. The homeodomain transcription factor Shox2 is involved in the specification and patterning of the SAN. While the Shox2 knockout in mice results in embryonic lethality due to severe cardiac defects including improper SAN development, Shox2 knockdown in zebrafish causes a reduced heart rate (bradycardia). In order to gain deeper insight into molecular pathways involving Shox2, we compared gene expression levels in right atria of wildtype and Shox2 (-/-) hearts using microarray experiments and identified the LIM homeodomain transcription factor Islet1 (Isl1) as one of its putative target genes. The downregulation of Isl1 expression in Shox2 (-/-) hearts was confirmed and the affected region narrowed down to the SAN by whole-mount in situ hybridization. Using luciferase reporter assays and EMSA studies, we identified two specific SHOX2 binding sites within intron 2 of the ISL1 locus. We also provide functional evidence for Isl1 as a transcriptional target of Shox2 by rescuing the Shox2-mediated bradycardia phenotype with Isl1 using zebrafish as a model system. Our findings demonstrate a novel epistatic relationship between Shox2 and Isl1 in the heart with important developmental consequences for SAN formation and heart beat.
Collapse
|