1
|
Dun Y, Zhang W, Du Y, Xie K, Liu Y, Li C, Qiu L, Fu S, Olson TP, Long Y, You B, Liu S. High-Intensity Interval Training Mitigates Sarcopenia and Suppresses the Myoblast Senescence Regulator EEF1E1. J Cachexia Sarcopenia Muscle 2024. [PMID: 39276001 DOI: 10.1002/jcsm.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND The optimal exercise regimen for alleviating sarcopenia remains uncertain. This study aimed to investigate the efficacy of high-intensity interval training (HIIT) over moderate-intensity continuous training (MICT) in ameliorating sarcopenia. METHODS We conducted a randomized crossover trial to evaluate plasma proteomic reactions to acute HIIT (four 4-min high-intensity intervals at 70% maximal capacity alternating with 4 min at 30%) versus MICT (constant 50% maximal capacity) in inactive adults. We explored the relationship between a HIIT-specific protein relative to MICT, identified via comparative proteomic analysis, eukaryotic translation elongation factor 1 epsilon 1 (EEF1E1) and sarcopenia in a paired case-control study of elderly individuals (aged over 65). Young (3 months old) and aged (20 months old) mice were randomized to sedentary, HIIT and MICT groups (five sessions/week for 4 weeks; n = 8 for each group). Measurements included skeletal muscle index, hand grip strength, expression of atrophic markers Atrogin1 and MuRF1 and differentiation markers MyoD, myogenin and MyHC-II via western blotting. We examined the impact of EEF1E1 siRNA and recombinant protein on D-galactose-induced myoblast senescence, measuring senescence-associated β-galactosidase and markers like p21 and p53. RESULTS The crossover trial, including 10 sedentary adults (32 years old, IQR 31-32) demonstrated significant alterations in the abundance of 21 plasma proteins after HIIT compared with MICT. In the paired case-control study of 84 older adults (84 years old, IQR 69-81; 52% female), EEF1E1 was significantly increased in those with sarcopenia compared to those without (14.68 [95%CI, 2.02-27.34] pg/mL, p = 0.03) and was associated with skeletal muscle index (R2 = 0.51, p < 0.001) and hand grip strength (R2 = 0.54, p < 0.001). In the preclinical study, aged mice exhibited higher EEF1E1 mRNA and protein levels in skeletal muscle compared to young mice, accompanied by a lower muscle mass and strength, increased cellular senescence and protein degradation markers and reduced muscle differentiation efficiency (all p < 0.05). HIIT reduced EEF1E1 expression and mitigated age-related muscle decline and atrophy in aged mice more effectively than MICT. Notably, EEF1E1 downregulation via siRNA significantly counteracted D-galactose-induced myoblast senescence as evidenced by reduced markers of muscle protein degradation and improved muscle differentiation efficiency (all p < 0.05). Conversely, treatments that increased EEF1E1 levels accelerated the senescence process (p < 0.05). Further exploration indicated that the decrease in EEF1E1 was associated with increased SIRT1 level and enhanced autophagy. CONCLUSIONS This study highlights the potential of HIIT as a promising approach to prevent and treat sarcopenia while also highlighting EEF1E1 as a potential intervention target.
Collapse
Affiliation(s)
- Yaoshan Dun
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Wenliang Zhang
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Du
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kangling Xie
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cui Li
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Qiu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siqian Fu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Thomas P Olson
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yuqiong Long
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baiyang You
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Ma J, Pang X, Wang T, Ning M, Liang Y, Li X, Tian X, Mo Y, Laher I, Li S. Acute aerobic exercise regulation of myocardial calcium homeostasis involves CASQ1, CASQ2, and TRDN. J Appl Physiol (1985) 2023; 135:707-716. [PMID: 37589058 DOI: 10.1152/japplphysiol.00299.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Exercise maintains cardiac calcium homeostasis and promotes cardiovascular health. This study explored temporal changes of calcium-related myocardial transcriptome changes during the recovery phase following a single bout of moderate-intensity aerobic exercise. Healthy male Sprague-Dawley rats were anesthetized with sodium pentobarbital after moderate-intensity aerobic exercise at four time points (0, 12, 24, and 72 h postexercise). The hearts were removed and RNA-seq and bioinformatics analyses were used to examine temporal transcriptional changes in the myocardium. Casq1, Casq2, and Trdn were identified as key genes in the regulation of calcium homeostasis during myocardial recovery. The highest expression of Casq1, Casq2, and Trdn genes and the proteins they encode occurred 24 h after exercise. An in vitro calcium overload heart model using the Langendorff heart perfusion method was used to examine myocardial calcium buffering capacity. Calcium overload caused the least changes in left ventricular developed pressure, infarct area, Lactate dehydrogenase release, and extent of morphological damage to myocardial cells, with the highest protein expressions of CASQ1, CASQ2, and TRDN at 24 h after acute exercise. This study indicates that maximal myocardial Ca2+ buffering capacity occurs 24 h postexercise in rats. Our study provides insights into exercise-mediated improvements in cardiovascular function and exercise preconditioning.NEW & NOTEWORTHY Acute aerobic exercise upregulates myocardial Casq1, Casq2, and Trdn genes and the proteins they encode in rats. Higher protein levels of CASQ1, CASQ2, and TRDN conferred an improved ability of the myocardium to resist calcium overload. Furthermore, 24 h postexercise is the time point with optimal myocardial calcium buffer capacity.
Collapse
Affiliation(s)
- Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Tutu Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Miaomiao Ning
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Yu Liang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Xiaole Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Xinyu Tian
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Yurou Mo
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Geiseler SJ, Phan KD, Brox C, Nguyen TD, Tartanoglu C, Doosje HL, Christiansen CL, Liesz A, Morland C. Pre-stroke exercise does not reduce atrophy in healthy young adult mice. Neurosci Lett 2023; 814:137447. [PMID: 37604388 DOI: 10.1016/j.neulet.2023.137447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Stroke is the main cause of acquired disability in adults. Exercise reduces the risk for stroke and protects against functional loss after stroke. An exercise-induced reduction in key risk factors probably contributes to the protective effect, but direct effects on the brain may also contribute to stroke protection. We previously reported that exercise increases angiogenesis and neurogenesis through activation of the lactate receptor HCA1. Here we exposed young adult wild-type mice and HCA1 knockout mice to interval exercise at high or medium intensity, or to intraperitoneal injections of L-lactate or saline for seven weeks before we induced experimental stroke by permanent occlusion of the distal medial cerebral artery (dMCA). The resulting cortical atrophy measured three weeks after stroke was unaffected by exercise or L-lactate pre-treatments, and independent of HCA1 activation. Our results suggest that the beneficial effect of exercise prior to stroke where no reperfusion occurs is limited in individuals who do not carry risk factors.
Collapse
Affiliation(s)
- Samuel J Geiseler
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | - Kimberly D Phan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Camilla Brox
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Teresa D Nguyen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Can Tartanoglu
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hanne-Lise Doosje
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway; Institute for Life Science and Technology, Hanzehogeschool, Groningen, the Netherlands
| | - Cathrine L Christiansen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Artur Liesz
- Institute for Stroke and Dementia Research, Ludwig-Maximilians University Munich, Munich, Germany; Munich Cluster for Systems Neurology SyNergy, Munich, Germany
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Chung WH, Lin YN, Wu MY, Chang KC. Sympathetic Modulation in Cardiac Arrhythmias: Where We Stand and Where We Go. J Pers Med 2023; 13:786. [PMID: 37240956 PMCID: PMC10221179 DOI: 10.3390/jpm13050786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
The nuance of autonomic cardiac control has been studied for more than 400 years, yet little is understood. This review aimed to provide a comprehensive overview of the current understanding, clinical implications, and ongoing studies of cardiac sympathetic modulation and its anti-ventricular arrhythmias' therapeutic potential. Molecular-level studies and clinical studies were reviewed to elucidate the gaps in knowledge and the possible future directions for these strategies to be translated into the clinical setting. Imbalanced sympathoexcitation and parasympathetic withdrawal destabilize cardiac electrophysiology and confer the development of ventricular arrhythmias. Therefore, the current strategy for rebalancing the autonomic system includes attenuating sympathoexcitation and increasing vagal tone. Multilevel targets of the cardiac neuraxis exist, and some have emerged as promising antiarrhythmic strategies. These interventions include pharmacological blockade, permanent cardiac sympathetic denervation, temporal cardiac sympathetic denervation, etc. The gold standard approach, however, has not been known. Although neuromodulatory strategies have been shown to be highly effective in several acute animal studies with very promising results, the individual and interspecies variation between human autonomic systems limits the progress in this young field. There is, however, still much room to refine the current neuromodulation therapy to meet the unmet need for life-threatening ventricular arrhythmias.
Collapse
Affiliation(s)
- Wei-Hsin Chung
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, CA 90024, USA
| | - Yen-Nien Lin
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 404333, Taiwan
| | - Mei-Yao Wu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 404333, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 404333, Taiwan
| |
Collapse
|
5
|
Feng N, Yu H, Wang Y, Zhang Y, Xiao H, Gao W. Exercise training attenuates angiotensin II-induced cardiac fibrosis by reducing POU2F1 expression. JOURNAL OF SPORT AND HEALTH SCIENCE 2022:S2095-2546(22)00104-1. [PMID: 36374849 PMCID: PMC10362488 DOI: 10.1016/j.jshs.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/09/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE Exercise training protects against heart failure. However, the mechanism underlying the protective effect of exercise training on angiotensin II (Ang II)-induced cardiac fibrosis remains unclear. METHODS An exercise model involving C57BL/6N mice and 6 weeks of treadmill training was used. Ang II (1.44 mg/kg/day) was administered to induce cardiac fibrosis. RNA sequencing and bioinformatic analysis were used to identify the key factors mediating the effects of exercise training on cardiac fibrosis. Primary adult mouse cardiac fibroblasts (CFs) were used in vitro. Adeno-associated virus serotype 9 was used to overexpress POU domain, class 2, transcription factor 1 (POU2F1) in vivo. RESULTS Exercise training attenuated Ang II-induced cardiac fibrosis and reversed 39 gene expression changes. The transcription factor regulating the largest number of these genes was POU2F1. Compared to controls, POU2F1 was shown to be significantly upregulated by Ang II, which is itself reduced by exercise training. In vivo, POU2F1 overexpression nullified the benefits of exercise training on cardiac fibrosis. In CFs, POU2F1 promoted cardiac fibrosis. CCAAT enhancer-binding protein β (C/EBPβ) was predicted to be the transcription factor of POU2F1 and verified using a dual-luciferase reporter assay. In vivo, exercise training activated AMP-activated protein kinase (AMPK) and alleviated the increase in C/EBPβ induced by Ang II. In CFs, AMPK agonist inhibited the increase in C/EBPβ and POU2F1 induced by Ang II, whereas AMPK inhibitor reversed this effect. CONCLUSION Exercise training attenuates Ang II-induced cardiac fibrosis by reducing POU2F1. Exercise training inhibits POU2F1 by activating AMPK, which is followed by the downregulation of C/EBPβ, the transcription factor of POU2F1.
Collapse
Affiliation(s)
- Na Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Haiyi Yu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Yueshen Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
6
|
Zheng Y, Gao W, Zhang Q, Cheng X, Liu Y, Qi Z, Li T. Ferroptosis and Autophagy-Related Genes in the Pathogenesis of Ischemic Cardiomyopathy. Front Cardiovasc Med 2022; 9:906753. [PMID: 35845045 PMCID: PMC9279674 DOI: 10.3389/fcvm.2022.906753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Obesity plays an important role in type 2 diabetes mellitus (T2DM) and myocardial infarction (MI). Ferroptosis and ferritinophagy are related to metabolic pathways, such as fatty acid metabolism and mitochondrial respiration. We aimed to investigate the ferroptosis- and autophagy-related differentially expressed genes (DEGs) that might be potential targets for MI progression. Methods GSE116250 was analyzed to obtain DEGs. A Venn diagram was used to obtain the overlapping ferroptosis- and autophagy-related DEGs. The enrichment pathway analysis was performed and the hub genes were obtained. Pivotal miRNAs, transcription factors, and drugs with the hub genes interactions were also predicted. The MI mice model was constructed, and qPCR analysis and single-cell sequencing were used to validate the hub genes. Results Utilizing the limma package and the Venn diagram, 26 ferroptosis-related and 29 autophagy-related DEGs were obtained. The list of ferroptosis-related DEGs was analyzed, which were involved in the cellular response to a toxic substance, cellular oxidant detoxification, and the IL-17 signaling pathway. The list of autophagy-related DEGs was involved in the regulation of autophagy, the regulation of JAK-STAT signaling pathway, and the regulation of MAPK cascade. In the protein-protein interaction network, the hub DEGs, such as IL-6, PTGS2, JUN, NQO1, NOS3, LEPR, NAMPT, CDKN2A, CDKN1A, and Snai1, were obtained. After validation using qPCR analysis in the MI mice model and single-cell sequencing, the 10 hub genes can be the potential targets for MI deterioration. Conclusion The screened hub genes, IL-6, PTGS2, JUN, NQO1, NOS3, LEPR, NAMPT, CDKN2A, CDKN1A, and Snai1, may be therapeutic targets for patients with MI and may prevent adverse cardiovascular events.
Collapse
Affiliation(s)
- Yue Zheng
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Wenqing Gao
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Qiang Zhang
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Xian Cheng
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Yanwu Liu
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Zhenchang Qi
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Tong Li
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Department of Heart Center, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- *Correspondence: Tong Li,
| |
Collapse
|
7
|
Hastings MH, Herrera JJ, Guseh JS, Atlason B, Houstis NE, Abdul Kadir A, Li H, Sheffield C, Singh AP, Roh JD, Day SM, Rosenzweig A. Animal Models of Exercise From Rodents to Pythons. Circ Res 2022; 130:1994-2014. [PMID: 35679366 PMCID: PMC9202075 DOI: 10.1161/circresaha.122.320247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute and chronic animal models of exercise are commonly used in research. Acute exercise testing is used, often in combination with genetic, pharmacological, or other manipulations, to study the impact of these manipulations on the cardiovascular response to exercise and to detect impairments or improvements in cardiovascular function that may not be evident at rest. Chronic exercise conditioning models are used to study the cardiac phenotypic response to regular exercise training and as a platform for discovery of novel pathways mediating cardiovascular benefits conferred by exercise conditioning that could be exploited therapeutically. The cardiovascular benefits of exercise are well established, and, frequently, molecular manipulations that mimic the pathway changes induced by exercise recapitulate at least some of its benefits. This review discusses approaches for assessing cardiovascular function during an acute exercise challenge in rodents, as well as practical and conceptual considerations in the use of common rodent exercise conditioning models. The case for studying feeding in the Burmese python as a model for exercise-like physiological adaptation is also explored.
Collapse
Affiliation(s)
- Margaret H Hastings
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Jonathan J Herrera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor (J.J.H.)
| | - J Sawalla Guseh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Bjarni Atlason
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Nicholas E Houstis
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Azrul Abdul Kadir
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Haobo Li
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Cedric Sheffield
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Anand P Singh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Jason D Roh
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| | - Sharlene M Day
- Cardiovascular Medicine, Perelman School of Medicine' University of Pennsylvania, Philadelphia (S.M.D.)
| | - Anthony Rosenzweig
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.H.H., J.S.G., B.A., N.E.H., A.A.K., H.L., C.S., A.P.S., J.D.R., A.R.)
| |
Collapse
|
8
|
Li DS, Xue GL, Yang JM, Li CZ, Zhang RX, Tian T, Li Z, Shen KW, Guo Y, Liu XN, Wang J, Lu YJ, Pan ZW. Knockout of interleukin-17A diminishes ventricular arrhythmia susceptibility in diabetic mice via inhibiting NF-κB-mediated electrical remodeling. Acta Pharmacol Sin 2022; 43:307-315. [PMID: 33911193 PMCID: PMC8791974 DOI: 10.1038/s41401-021-00659-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/16/2021] [Indexed: 02/03/2023] Open
Abstract
Interleukin-17A (IL-17), a potent proinflammatory cytokine, has been shown to participate in cardiac electrical disorders. Diabetes mellitus is an independent risk factor for ventricular arrhythmia. In this study, we investigated the role of IL-17 in ventricular arrhythmia of diabetic mice. Diabetes was induced in both wild-type and IL-17 knockout mice by intraperitoneal injection of streptozotocin (STZ). High-frequency electrical stimuli were delivered into the right ventricle to induce ventricular arrhythmias. We showed that the occurrence rate of ventricular tachycardia was significantly increased in diabetic mice, which was attenuated by IL-17 knockout. We conducted optical mapping on perfused mouse hearts and found that cardiac conduction velocity (CV) was significantly decreased, and action potential duration (APD) was prolonged in diabetic mice, which were mitigated by IL-17 knockout. We performed whole-cell patch clamp recordings from isolated ventricular myocytes, and found that the densities of Ito, INa and ICa,L were reduced, the APDs at 50% and 90% repolarization were increased, and early afterdepolarization (EAD) was markedly increased in diabetic mice. These alterations were alleviated by the knockout of IL-17. Moreover, knockout of IL-17 alleviated the downregulation of Nav1.5 (the pore forming subunit of INa), Cav1.2 (the main component subunit of ICa,L) and KChIP2 (potassium voltage-gated channel interacting protein 2, the regulatory subunit of Ito) in the hearts of diabetic mice. The expression of NF-κB was significantly upregulated in the hearts of diabetic mice, which was suppressed by IL-17 knockout. In neonatal mouse ventricular myocytes, knockdown of NF-κB significantly increased the expression of Nav1.5, Cav1.2 and KChIP2. These results imply that IL-17 may represent a potential target for the development of agents against diabetes-related ventricular arrhythmias.
Collapse
Affiliation(s)
- De-Sheng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Gen-Long Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ji-Ming Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chang-Zhu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Rui-Xin Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tao Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zheng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ke-Wei Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue-Ning Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jin Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yan-Jie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhen-Wei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
9
|
Bei Y, Wang L, Ding R, Che L, Fan Z, Gao W, Liang Q, Lin S, Liu S, Lu X, Shen Y, Wu G, Yang J, Zhang G, Zhao W, Guo L, Xiao J. Animal exercise studies in cardiovascular research: Current knowledge and optimal design-A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors' Association. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:660-674. [PMID: 34454088 PMCID: PMC8724626 DOI: 10.1016/j.jshs.2021.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/09/2021] [Accepted: 07/11/2021] [Indexed: 05/02/2023]
Abstract
Growing evidence has demonstrated exercise as an effective way to promote cardiovascular health and protect against cardiovascular diseases However, the underlying mechanisms of the beneficial effects of exercise have yet to be elucidated. Animal exercise studies are widely used to investigate the key mechanisms of exercise-induced cardiovascular protection. However, standardized procedures and well-established evaluation indicators for animal exercise models are needed to guide researchers in carrying out effective, high-quality animal studies using exercise to prevent and treat cardiovascular diseases. In our review, we present the commonly used animal exercise models in cardiovascular research and propose a set of standard procedures for exercise training, emphasizing the appropriate measurements and analysis in these chronic exercise models. We also provide recommendations for optimal design of animal exercise studies in cardiovascular research, including the choice of exercise models, control of exercise protocols, exercise at different stages of disease, and other considerations, such as age, sex, and genetic background. We hope that this position paper will promote basic research on exercise-induced cardiovascular protection and pave the way for successful translation of exercise studies from bench to bedside in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lei Wang
- Department of Rehabilitation Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rongjing Ding
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Lin Che
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhiqing Fan
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing 163000, China
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qi Liang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shenghui Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Guifu Wu
- Department of Cardiology, Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-Sen University, Shenzhen 518033, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian Yang
- Department of Rehabilitation Medicine, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Guolin Zhang
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wei Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Lan Guo
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Junjie Xiao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
10
|
Veitch CR, Power AS, Erickson JR. CaMKII Inhibition is a Novel Therapeutic Strategy to Prevent Diabetic Cardiomyopathy. Front Pharmacol 2021; 12:695401. [PMID: 34381362 PMCID: PMC8350113 DOI: 10.3389/fphar.2021.695401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing prevalence of diabetes mellitus worldwide has pushed the complex disease state to the foreground of biomedical research, especially concerning its multifaceted impacts on the cardiovascular system. Current therapies for diabetic cardiomyopathy have had a positive impact, but with diabetic patients still suffering from a significantly greater burden of cardiac pathology compared to the general population, the need for novel therapeutic approaches is great. A new therapeutic target, calcium/calmodulin-dependent kinase II (CaMKII), has emerged as a potential treatment option for preventing cardiac dysfunction in the setting of diabetes. Within the last 10 years, new evidence has emerged describing the pathophysiological consequences of CaMKII activation in the diabetic heart, the mechanisms that underlie persistent CaMKII activation, and the protective effects of CaMKII inhibition to prevent diabetic cardiomyopathy. This review will examine recent evidence tying cardiac dysfunction in diabetes to CaMKII activation. It will then discuss the current understanding of the mechanisms by which CaMKII activity is enhanced during diabetes. Finally, it will examine the benefits of CaMKII inhibition to treat diabetic cardiomyopathy, including contractile dysfunction, heart failure with preserved ejection fraction, and arrhythmogenesis. We intend this review to serve as a critical examination of CaMKII inhibition as a therapeutic strategy, including potential drawbacks of this approach.
Collapse
Affiliation(s)
- Christopher R Veitch
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Amelia S Power
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Lambertus M, Øverberg LT, Andersson KA, Hjelden MS, Hadzic A, Haugen ØP, Storm‐Mathisen J, Bergersen LH, Geiseler S, Morland C. L-lactate induces neurogenesis in the mouse ventricular-subventricular zone via the lactate receptor HCA 1. Acta Physiol (Oxf) 2021; 231:e13587. [PMID: 33244894 DOI: 10.1111/apha.13587] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
AIM Adult neurogenesis occurs in two major niches in the brain: the subgranular zone of the hippocampal formation and the ventricular-subventricular zone. Neurogenesis in both niches is reduced in ageing and neurological disease involving dementia. Exercise can rescue memory by enhancing hippocampal neurogenesis, but whether exercise affects adult neurogenesis in the ventricular-subventricular zone remains unresolved. Previously, we reported that exercise induces angiogenesis through activation of the lactate receptor HCA1. The aim of the present study is to investigate HCA1 -dependent effects on neurogenesis in the two main neurogenic niches. METHODS Wild-type and HCA1 knock-out mice received high intensity interval exercise, subcutaneous injections of L-lactate, or saline injections, five days per week for seven weeks. Well-established markers for proliferating cells (Ki-67) and immature neurons (doublecortin), were used to investigate neurogenesis in the subgranular zone and the ventricular-subventricular zone. RESULTS We demonstrated that neurogenesis in the ventricular-subventricular zone is enhanced by HCA1 activation: Treatment with exercise or lactate resulted in increased neurogenesis in wild-type, but not in HCA1 knock-out mice. In the subgranular zone, neurogenesis was induced by exercise in both genotypes, but unaffected by lactate treatment. CONCLUSION Our study demonstrates that neurogenesis in the two main neurogenic niches in the brain is regulated differently: Neurogenesis in both niches was induced by exercise, but only in the ventricular-subventricular zone was neurogenesis induced by lactate through HCA1 activation. This opens for a role of HCA1 in the physiological control of neurogenesis, and potentially in counteracting age-related cognitive decline.
Collapse
Affiliation(s)
- Marvin Lambertus
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Linda Thøring Øverberg
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
- Institute for Behavioural Sciences Faculty of Health Sciences OsloMet—Oslo Metropolitan University Oslo Norway
| | - Krister A. Andersson
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
- Division of Anatomy Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Malin S. Hjelden
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Alena Hadzic
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Øyvind P. Haugen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
| | - Jon Storm‐Mathisen
- Division of Anatomy Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Linda Hildegard Bergersen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
- Center for Healthy Aging Department of Neuroscience and Pharmacology Faculty of Health Sciences University of Copenhagen Copenhagen Denmark
| | - Samuel Geiseler
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
- Institute for Behavioural Sciences Faculty of Health Sciences OsloMet—Oslo Metropolitan University Oslo Norway
| |
Collapse
|
12
|
Stølen TO, Høydal MA, Ahmed MS, Jørgensen K, Garten K, Hortigon-Vinagre MP, Zamora V, Scrimgeour NR, Berre AMO, Nes BM, Skogvoll E, Johnsen AB, Moreira JBN, McMullen JR, Attramadal H, Smith GL, Ellingsen Ø, Wisløff U. Exercise training reveals micro-RNAs associated with improved cardiac function and electrophysiology in rats with heart failure after myocardial infarction. J Mol Cell Cardiol 2020; 148:106-119. [PMID: 32918915 DOI: 10.1016/j.yjmcc.2020.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/09/2023]
Abstract
AIMS Endurance training improves aerobic fitness and cardiac function in individuals with heart failure. However, the underlying mechanisms are not well characterized. Exercise training could therefore act as a tool to discover novel targets for heart failure treatment. We aimed to associate changes in Ca2+ handling and electrophysiology with micro-RNA (miRNA) profile in exercise trained heart failure rats to establish which miRNAs induce heart failure-like effects in Ca2+ handling and electrophysiology. METHODS AND RESULTS Post-myocardial infarction (MI) heart failure was induced in Sprague Dawley rats. Rats with MI were randomized to sedentary control (sed), moderate (mod)- or high-intensity (high) endurance training for 8 weeks. Exercise training improved cardiac function, Ca2+ handling and electrophysiology including reduced susceptibility to arrhythmia in an exercise intensity-dependent manner where high intensity gave a larger effect. Fifty-five miRNAs were significantly regulated (up or down) in MI-sed, of which 18 and 3 were changed towards Sham-sed in MI-high and MI-mod, respectively. Thereafter we experimentally altered expression of these "exercise-miRNAs" individually in human induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CM) in the same direction as they were changed in MI. Of the "exercise-miRNAs", miR-214-3p prolonged AP duration, whereas miR-140 and miR-208a shortened AP duration. miR-497-5p prolonged Ca2+ release whereas miR-214-3p and miR-31a-5p prolonged Ca2+ decay. CONCLUSION Using exercise training as a tool, we discovered that miR-214-3p, miR-497-5p, miR-31a-5p contribute to heart-failure like behaviour in Ca2+ handling and electrophysiology and could be potential treatment targets.
Collapse
Affiliation(s)
- Tomas O Stølen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Cardiothoracic Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Morten A Høydal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Cardiothoracic Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Muhammad Shakil Ahmed
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kari Jørgensen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karin Garten
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maria P Hortigon-Vinagre
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Victor Zamora
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Nathan R Scrimgeour
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Marie Ormbostad Berre
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjarne M Nes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eirik Skogvoll
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Anesthesia and Intensive Care Medicine, St. Olav University Hospital, Trondheim, Norway
| | - Anne Berit Johnsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jose B N Moreira
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julie R McMullen
- Cardiac Hypertrophy Laboratory, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Godfrey L Smith
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Øyvind Ellingsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; School of Human Movement & Nutrition Sciences, University of Queensland, Australia
| |
Collapse
|
13
|
Bittencourt MA, Wanner SP, Kunstetter AC, Barbosa NHS, Walker PCL, Andrade PVR, Turnes T, Guglielmo LGA. Comparative effects of two heat acclimation protocols consisting of high-intensity interval training in the heat on aerobic performance and thermoregulatory responses in exercising rats. PLoS One 2020; 15:e0229335. [PMID: 32084208 PMCID: PMC7034902 DOI: 10.1371/journal.pone.0229335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/04/2020] [Indexed: 01/15/2023] Open
Abstract
Acclimation resulting from low- to moderate-intensity physical exertion in the heat induces several thermoregulatory adaptations, including slower exercise-induced increases in core body temperature. However, few studies have investigated the thermoregulatory adaptations induced by high-intensity interval training (HIIT) protocols. Thus, the present study aimed to compare the adaptations in rats’ thermoregulatory parameters and aerobic performance observed after two different heat acclimation regimens consisting of HIIT protocols performed in a hot environment. Twenty-three adult male Wistar rats were initially subjected to an incremental-speed exercise at 32°C until they were fatigued and then randomly assigned to one of the following three heat acclimation strategies: passive heat exposure without any exercise (untrained controls–UN; n = 7), HIIT performed at the maximal aerobic speed (HIIT100%; n = 8) and HIIT performed at a high but submaximal speed (HIIT85%; n = 8). Following the two weeks of interventions, the rats were again subjected to a fatiguing incremental exercise at 32°C, while their colonic temperature (TCOL) was recorded. The workload performed by the rats and their thermoregulatory efficiency were calculated. After the intervention period, rats subjected to both HIIT protocols attained greater workloads (HIIT100%: 313.7 ± 21.9 J vs. HIIT85%: 318.1 ± 32.6 J vs. UN: 250.8 ± 32.4 J; p < 0.01) and presented a lower ratio between the change in TCOL and the distance travelled (HIIT100%: 4.95 ± 0.42°C/km vs. HIIT85%: 4.33 ± 0.59°C/km vs. UN: 6.14 ± 1.03°C/km; p < 0.001) when compared to UN rats. The latter finding indicates better thermoregulatory efficiency in trained animals. No differences were observed between rats subjected to the two HIIT regimens. In conclusion, the two HIIT protocols induce greater thermoregulatory adaptations and performance improvements than passive heat exposure. These adaptations do not differ between the two training protocols investigated in the present study.
Collapse
Affiliation(s)
- Myla Aguiar Bittencourt
- Physical Effort Laboratory, Graduate Program in Physical Education, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Ana Cançado Kunstetter
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nicolas Henrique Santos Barbosa
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Carolina Leite Walker
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Victor Ribeiro Andrade
- Exercise Physiology Laboratory, Graduate Program in Sport Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tiago Turnes
- Physical Effort Laboratory, Graduate Program in Physical Education, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luiz Guilherme Antonacci Guglielmo
- Physical Effort Laboratory, Graduate Program in Physical Education, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
14
|
Qin R, Murakoshi N, Xu D, Tajiri K, Feng D, Stujanna EN, Yonebayashi S, Nakagawa Y, Shimano H, Nogami A, Koike A, Aonuma K, Ieda M. Exercise training reduces ventricular arrhythmias through restoring calcium handling and sympathetic tone in myocardial infarction mice. Physiol Rep 2019; 7:e13972. [PMID: 30806037 PMCID: PMC6389758 DOI: 10.14814/phy2.13972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022] Open
Abstract
Exercise can improve morbidity and mortality in heart failure patients; however, the underlying mechanisms remain to be fully investigated. Thus, we investigated the effects of exercise on cardiac function and ventricular arrhythmias in myocardial infarction (MI) induced heart failure mice. Wild-type male mice underwent sham-operation or permanent left coronary artery ligation to induce MI. MI mice were divided into a sedentary (MI-Sed) and two intervention groups: MI-Ex (underwent 6-week treadmill exercise training) and MI-βb (oral bisoprolol treatment (1 mg/kg/d) without exercise). Cardiac function and structure were assessed by echocardiography and histology. Exercise capacity and cardiopulmonary function was accepted as oxygen consumption at peak exercise (peak VO2 ). Autonomic nervous system function and the incidence of spontaneous ventricular arrhythmia were evaluated via telemetry recording. mRNA and protein expressions in the left ventricle (LV) were investigated by real-time PCR and Western blotting. There were no differences in survival rate, MI size, cardiac function and structure, while exercise training improved peak VO2 . Compared with MI-Sed, MI-Ex, and MI-βb showed decreased sympathetic tone and lower incidence of spontaneous ventricular arrhythmia. By Western blot, the hyperphosphorylation of CaMKII and RyR2 were restored by exercise and β-blocker treatment. Furthermore, elevated expression of miR-1 and decreased expression of its target protein PP2A were recovered by exercise and β-blocker treatment. Continuous intensive exercise training can suppress ventricular arrhythmias in subacute to chronic phase of MI through restoring autonomic imbalance and impaired calcium handling, similarly to that for β-blockers.
Collapse
Affiliation(s)
- Rujie Qin
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Nobuyuki Murakoshi
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - DongZhu Xu
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Kazuko Tajiri
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Duo Feng
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Endin N. Stujanna
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Saori Yonebayashi
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism)Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism)Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Akihiko Nogami
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Akira Koike
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
- Medical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Kazutaka Aonuma
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Masaki Ieda
- Department of CardiologyFaculty of MedicineGraduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
15
|
Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 127:246-259. [PMID: 30633874 DOI: 10.1016/j.yjmcc.2019.01.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is upregulated in diabetes and significantly contributes to cardiac remodeling with increased risk of cardiac arrhythmias. Diabetes is frequently associated with atrial fibrillation, coronary artery disease, and heart failure, which may further enhance CaMKII. Activation of CaMKII occurs downstream of neurohormonal stimulation (e.g. via G-protein coupled receptors) and involve various posttranslational modifications including autophosphorylation, oxidation, S-nitrosylation and O-GlcNAcylation. CaMKII signaling regulates diverse cellular processes in a spatiotemporal manner including excitation-contraction and excitation-transcription coupling, mechanics and energetics in cardiac myocytes. Chronic activation of CaMKII results in cellular remodeling and ultimately arrhythmogenic alterations in Ca2+ handling, ion channels, cell-to-cell coupling and metabolism. This review addresses the detrimental effects of the upregulated CaMKII signaling to enhance the arrhythmogenic substrate and trigger mechanisms in the heart. We also briefly summarize preclinical studies using kinase inhibitors and genetically modified mice targeting CaMKII in diabetes. The mechanistic understanding of CaMKII signaling, cardiac remodeling and arrhythmia mechanisms may reveal new therapeutic targets and ultimately better treatment in diabetes and heart disease in general.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
16
|
Exercise Training Has Contrasting Effects in Myocardial Infarction and Pressure Overload Due to Divergent Endothelial Nitric Oxide Synthase Regulation. Int J Mol Sci 2018; 19:ijms19071968. [PMID: 29986381 PMCID: PMC6073896 DOI: 10.3390/ijms19071968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
The beneficial effects of exercise training (EX) on cardiac pathology are well recognized. Previously, we found that the effects of EX on cardiac dysfunction in mice critically depend on the underlying etiology. EX exerted beneficial effects after myocardial infarction (MI); however, cardiac pathology following pressure overload produced by transverse aortic constriction (TAC) was aggravated by EX. In the presented study, we investigated whether the contrasting effects of EX on cardiac dysfunction can be explained by an etiology-specific response of endothelial nitric oxide (NO) synthase (eNOS) to EX, which divergently affects the balance between nitric oxide and superoxide. For this purpose, mice were exposed to eight weeks of voluntary wheel running or sedentary housing (SED), immediately after sham, MI, or TAC surgery. Left ventricular (LV) function was assessed using echocardiography and hemodynamic measurements. EX ameliorated LV dysfunction and remodeling after MI, but not following TAC, in which EX even aggravated fibrosis. Strikingly, EX attenuated superoxide levels after MI, but exacerbated NOS-dependent superoxide levels following TAC. Similarly, elevated eNOS S-glutathionylation and eNOS monomerization, which were observed in both MI and TAC, were corrected by EX in MI, but aggravated by EX after TAC. Additionally, EX reduced antioxidant activity in TAC, while it was maintained following EX in MI. In conclusion, the present study shows that EX mitigates cardiac dysfunction after MI, likely by attenuating eNOS uncoupling-mediated oxidative stress, whereas EX tends to aggravate cardiac dysfunction following TAC, likely due to exacerbating eNOS-mediated oxidative stress.
Collapse
|
17
|
Daniels LJ, Wallace RS, Nicholson OM, Wilson GA, McDonald FJ, Jones PP, Baldi JC, Lamberts RR, Erickson JR. Inhibition of calcium/calmodulin-dependent kinase II restores contraction and relaxation in isolated cardiac muscle from type 2 diabetic rats. Cardiovasc Diabetol 2018; 17:89. [PMID: 29903013 PMCID: PMC6001139 DOI: 10.1186/s12933-018-0732-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/06/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Calcium/calmodulin-dependent kinase II-delta (CaMKIIδ) activity is enhanced during hyperglycemia and has been shown to alter intracellular calcium handling in cardiomyocytes, ultimately leading to reduced cardiac performance. However, the effects of CaMKIIδ on cardiac contractility during type 2 diabetes are undefined. METHODS We examined the expression and activation of CaMKIIδ in right atrial appendages from non-diabetic and type 2 diabetic patients (n = 7 patients per group) with preserved ejection fraction, and also in right ventricular tissue from Zucker Diabetic Fatty rats (ZDF) (n = 5-10 animals per group) during early diabetic cardiac dysfunction, using immunoblot. We also measured whole heart function of ZDF and control rats using echocardiography. Then we measured contraction and relaxation parameters of isolated trabeculae from ZDF to control rats in the presence and absence of CaMKII inhibitors. RESULTS CaMKIIδ phosphorylation (at Thr287) was increased in both the diabetic human and animal tissue, indicating increased CaMKIIδ activation in the type 2 diabetic heart. Basal cardiac contractility and relaxation were impaired in the cardiac muscles from the diabetic rats, and CaMKII inhibition with KN93 partially restored contractility and relaxation. Autocamtide-2-related-inhibitor peptide (AIP), another CaMKII inhibitor that acts via a different mechanism than KN93, fully restored cardiac contractility and relaxation. CONCLUSIONS Our results indicate that CaMKIIδ plays a key role in modulating performance of the diabetic heart, and moreover, suggest a potential therapeutic role for CaMKII inhibitors in improving myocardial function during type 2 diabetes.
Collapse
Affiliation(s)
- Lorna J Daniels
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Rachel S Wallace
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Olivia M Nicholson
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Genevieve A Wilson
- Otago School of Medical Sciences, Department of Medicine and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Peter P Jones
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - J Chris Baldi
- Otago School of Medical Sciences, Department of Medicine and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Jeffrey R Erickson
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand.
| |
Collapse
|
18
|
Boudia D, Domergue V, Mateo P, Fazal L, Prud'homme M, Prigent H, Delcayre C, Cohen-Solal A, Garnier A, Ventura-Clapier R, Samuel JL. Beneficial effects of exercise training in heart failure are lost in male diabetic rats. J Appl Physiol (1985) 2017; 123:1579-1591. [PMID: 28883044 DOI: 10.1152/japplphysiol.00117.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training has been demonstrated to have beneficial effects in patients with heart failure (HF) or diabetes. However, it is unknown whether diabetic patients with HF will benefit from exercise training. Male Wistar rats were fed either a standard (Sham, n = 53) or high-fat, high-sucrose diet ( n = 66) for 6 mo. After 2 mo of diet, the rats were already diabetic. Rats were then randomly subjected to either myocardial infarction by coronary artery ligation (MI) or sham operation. Two months later, heart failure was documented by echocardiography and animals were randomly subjected to exercise training with treadmill for an additional 8 wk or remained sedentary. At the end, rats were euthanized and tissues were assayed by RT-PCR, immunoblotting, spectrophotometry, and immunohistology. MI induced a similar decrease in ejection fraction in diabetic and lean animals but a higher premature mortality in the diabetic group. Exercise for 8 wk resulted in a higher working power developed by MI animals with diabetes and improved glycaemia but not ejection fraction or pathological phenotype. In contrast, exercise improved the ejection fraction and increased adaptive hypertrophy after MI in the lean group. Trained diabetic rats with MI were nevertheless able to develop cardiomyocyte hypertrophy but without angiogenic responses. Exercise improved stress markers and cardiac energy metabolism in lean but not diabetic-MI rats. Hence, following HF, the benefits of exercise training on cardiac function are blunted in diabetic animals. In conclusion, exercise training only improved the myocardial profile of infarcted lean rats fed the standard diet. NEW & NOTEWORTHY Exercise training is beneficial in patients with heart failure (HF) or diabetes. However, less is known of the possible benefit of exercise training for HF patients with diabetes. Using a rat model where both diabetes and MI had been induced, we showed that 2 mo after MI, 8 wk of exercise training failed to improve cardiac function and metabolism in diabetic animals in contrast to lean animals.
Collapse
Affiliation(s)
- Dalila Boudia
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| | - Valérie Domergue
- UMS IPSIT Animex Platform, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Philippe Mateo
- UMR-S 1180 INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Loubina Fazal
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| | - Mathilde Prud'homme
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| | - Héloïse Prigent
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France.,Cardiology, Assistance Publique-Hópitaux de Paris (AP-HP), Ambroise Paré, Paris
| | - Claude Delcayre
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| | - Alain Cohen-Solal
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France.,Cardiology, Assistance Publique-Hópitaux de Paris (AP-HP), Ambroise Paré, Paris
| | - Anne Garnier
- UMR-S 1180 INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Renée Ventura-Clapier
- UMR-S 1180 INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jane-Lise Samuel
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| |
Collapse
|
19
|
Burgos JI, Yeves AM, Barrena JP, Portiansky EL, Vila-Petroff MG, Ennis IL. Nitric oxide and CaMKII: Critical steps in the cardiac contractile response To IGF-1 and swim training. J Mol Cell Cardiol 2017; 112:16-26. [DOI: 10.1016/j.yjmcc.2017.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
|
20
|
Morland C, Andersson KA, Haugen ØP, Hadzic A, Kleppa L, Gille A, Rinholm JE, Palibrk V, Diget EH, Kennedy LH, Stølen T, Hennestad E, Moldestad O, Cai Y, Puchades M, Offermanns S, Vervaeke K, Bjørås M, Wisløff U, Storm-Mathisen J, Bergersen LH. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun 2017; 8:15557. [PMID: 28534495 PMCID: PMC5457513 DOI: 10.1038/ncomms15557] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 04/07/2017] [Indexed: 12/13/2022] Open
Abstract
Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor.
Collapse
MESH Headings
- Animals
- Brain/blood supply
- Capillaries/cytology
- Capillaries/drug effects
- Capillaries/metabolism
- Injections, Subcutaneous
- Lactic Acid/administration & dosage
- Lactic Acid/blood
- Lactic Acid/metabolism
- Male
- Mice
- Mice, Knockout
- Models, Animal
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Neovascularization, Physiologic/physiology
- Pericytes/metabolism
- Physical Conditioning, Animal/physiology
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Cecilie Morland
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316 Oslo, Norway
- Institute for Behavioral Sciences, Faculty of Health Sciences, Oslo and Akershus University College, NO-0167 Oslo, Norway
- The Synaptic Neurochemistry Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Healthy Brain Ageing Centre, University of Oslo, NO-0317 Oslo, Norway
| | - Krister A. Andersson
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316 Oslo, Norway
- Institute for Behavioral Sciences, Faculty of Health Sciences, Oslo and Akershus University College, NO-0167 Oslo, Norway
- The Synaptic Neurochemistry Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Healthy Brain Ageing Centre, University of Oslo, NO-0317 Oslo, Norway
| | - Øyvind P. Haugen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316 Oslo, Norway
| | - Alena Hadzic
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316 Oslo, Norway
- Institute for Behavioral Sciences, Faculty of Health Sciences, Oslo and Akershus University College, NO-0167 Oslo, Norway
- The Synaptic Neurochemistry Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Healthy Brain Ageing Centre, University of Oslo, NO-0317 Oslo, Norway
| | - Liv Kleppa
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316 Oslo, Norway
- The Synaptic Neurochemistry Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Healthy Brain Ageing Centre, University of Oslo, NO-0317 Oslo, Norway
| | - Andreas Gille
- Institute for Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University, D-68169 Mannheim, Germany
| | - Johanne E. Rinholm
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316 Oslo, Norway
- The Synaptic Neurochemistry Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Healthy Brain Ageing Centre, University of Oslo, NO-0317 Oslo, Norway
| | - Vuk Palibrk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Elisabeth H. Diget
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316 Oslo, Norway
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Lauritz H. Kennedy
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316 Oslo, Norway
- The Synaptic Neurochemistry Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Healthy Brain Ageing Centre, University of Oslo, NO-0317 Oslo, Norway
| | - Tomas Stølen
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Eivind Hennestad
- Laboratory of Neural Computation, Department of Physiology, University of Oslo, NO-0317 Oslo, Norway
| | - Olve Moldestad
- Centre for Rare Disorders, Oslo University Hospital, Rikshospitalet, NO-0424 Oslo, Norway
| | - Yiqing Cai
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316 Oslo, Norway
| | - Maja Puchades
- The Synaptic Neurochemistry Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Healthy Brain Ageing Centre, University of Oslo, NO-0317 Oslo, Norway
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, D-61231 Bad Nauheim, Germany
| | - Koen Vervaeke
- Laboratory of Neural Computation, Department of Physiology, University of Oslo, NO-0317 Oslo, Norway
| | - Magnar Bjørås
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Ulrik Wisløff
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Jon Storm-Mathisen
- The Synaptic Neurochemistry Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Healthy Brain Ageing Centre, University of Oslo, NO-0317 Oslo, Norway
| | - Linda H. Bergersen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316 Oslo, Norway
- The Synaptic Neurochemistry Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Healthy Brain Ageing Centre, University of Oslo, NO-0317 Oslo, Norway
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
21
|
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) has emerged as key enzyme in many cardiac pathologies, especially heart failure (HF), myocardial infarction and cardiomyopathies, thus leading to contractile dysfunction and malignant arrhythmias. While many pathways leading to CaMKII activation have been elucidated in recent years, hardly any clinically viable compounds affecting CaMKII activity have progressed from basic in vitro science to in vivo studies. This review focuses on recent advances in anti-arrhythmic strategies involving CaMKII. Specifically, both inhibition of CaMKII itself to prevent arrhythmias, as well as anti-arrhythmic approaches affecting CaMKII activity via alterations in signaling cascades upstream and downstream of CaMKII will be discussed.
Collapse
Affiliation(s)
- Julian Mustroph
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Stefan Neef
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Lars S Maier
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany.
| |
Collapse
|