1
|
Vuorio A, Kovanen PT, Raal FJ. Coronary microcirculatory dysfunction in hypercholesterolemic patients with COVID-19: potential benefit from cholesterol-lowering treatment. Ann Med 2023; 55:2199218. [PMID: 37068045 PMCID: PMC10116911 DOI: 10.1080/07853890.2023.2199218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Patients with hypercholesterolemia often have coronary microvascular dysfunction (CMD). Viral infections, such as the SARS-CoV-2 infection, may also result in CMD. Three non-randomized studies have shown significant beneficial effects of statins on CMD in non-infected patients. Similarly, in SARS-CoV-2 - infected patients one beneficial mechanism of action of statins may be the amelioration of endothelial dysfunction, which is a major driver of CMD. Apart from statins, lipoprotein apheresis and PCSK9 inhibitors can also improve or even reverse CMD. The potential reversal of CMD by using effective cholesterol-lowering medications during and after COVID-19 infection, especially in hypercholesterolemic COVID-19 patients, is important.KEY MESSAGESCoronary microvascular dysfunction (CMD) is common in patients hospitalized with SARS-CoV-2 infectionThree nonrandomized studies in non-infected patients are showing the beneficial effects of statin treatment on CMDEffective cholesterol-lowering medication during and after SARS-CoV-2 infection, especially in hypercholesterolemic COVID-19 patients, is of great significance.
Collapse
Affiliation(s)
- Alpo Vuorio
- Forensic Medicine, Mehiläinen Airport Health Centre, Vantaa, Finland
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Frederick J Raal
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Vuorio A, Raal F, Kovanen PT. Familial hypercholesterolemia: The nexus of endothelial dysfunction and lipoprotein metabolism in COVID-19. Curr Opin Lipidol 2023; 34:119-125. [PMID: 36924390 DOI: 10.1097/mol.0000000000000876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
PURPOSE OF REVIEW Patients with heterozygous familial hypercholesterolemia (HeFH) are at increased risk for COVID-19 cardiovascular complications in the acute phase of the infection. Elevated levels of LDL-C and often lipoprotein(a) are present from birth and lead to endothelial dysfunction, which is aggravated by a direct viral attack of the endothelial cells and their exposure to the toxic levels of circulating proinflammatory and prothrombotic mediators during the hyperinflammatory reaction typical of COVID-19. RECENT FINDINGS Evidence to date shows the benefit of lipid-lowering therapy in patients with COVID-19. In HeFH patients who are at much higher cardiovascular risk, the focus should, therefore, be on the effective lowering of LDL-C levels, the root cause of the greater cardiovascular vulnerability to COVID-19 infection in these patients. The ongoing use of statins and other lipid-lowering therapies should be encouraged during the ongoing COVID pandemic to mitigate the risk of cardiovascular complications from COVID-19, particularly in HeFH patients. SUMMARY Epidemiologic registry data show that the incidence of myocardial infarction is increased in SARS-CoV-2-infected HeFH patients. There is a need to study whether the risk for acute cardiovascular events is increased in the long-term and if there are changes in lipid metabolism after SARS-CoV infection(s) in patients with HeFH.
Collapse
Affiliation(s)
- Alpo Vuorio
- Mehiläinen Airport Health Centre, Vantaa
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Frederick Raal
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Petri T Kovanen
- Wihuri Research Institute, Atherosclerosis Research Laboratory, Helsinki, Finland
| |
Collapse
|
3
|
Warne CM, Essajee SI, Tucker SM, Figueroa CA, Beard DA, Dick GM, Tune JD. Oxygen-sensing pathways below autoregulatory threshold act to sustain myocardial oxygen delivery during reductions in perfusion pressure. Basic Res Cardiol 2023; 118:12. [PMID: 36988670 PMCID: PMC10797605 DOI: 10.1007/s00395-023-00985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
The coronary circulation has an innate ability to maintain constant blood flow over a wide range of perfusion pressures. However, the mechanisms responsible for coronary autoregulation remain a fundamental and highly contested question. This study interrogated the local metabolic hypothesis of autoregulation by testing the hypothesis that hypoxemia-induced exaggeration of the metabolic error signal improves the autoregulatory response. Experiments were performed on open-chest anesthetized swine during stepwise changes in coronary perfusion pressure (CPP) from 140 to 40 mmHg under normoxic (n = 15) and hypoxemic (n = 8) conditions, in the absence and presence of dobutamine-induced increases in myocardial oxygen consumption (MVO2) (n = 5-7). Hypoxemia (PaO2 < 40 mmHg) decreased coronary venous PO2 (CvPO2) ~ 30% (P < 0.001) and increased coronary blood flow ~ 100% (P < 0.001), sufficient to maintain myocardial oxygen delivery (P = 0.14) over a wide range of CPPs. Autoregulatory responsiveness during hypoxemia-induced reductions in CvPO2 were associated with increases of autoregulatory gain (Gc; P = 0.033) but not slope (P = 0.585) over a CPP range of 120 to 60 mmHg. Preservation of autoregulatory Gc (P = 0.069) and slope (P = 0.264) was observed during dobutamine administration ± hypoxemia. Reductions in coronary resistance in response to decreases in CPP predominantly occurred below CvPO2 values of ~ 25 mmHg, irrespective of underlying vasomotor reserve. These findings support the presence of an autoregulatory threshold under which oxygen-sensing pathway(s) act to preserve sufficient myocardial oxygen delivery as CPP is reduced during increases in MVO2 and/or reductions in arterial oxygen content.
Collapse
Affiliation(s)
- Cooper M Warne
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., TX, 76107, Fort Worth, USA
| | - Salman I Essajee
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., TX, 76107, Fort Worth, USA
| | - Selina M Tucker
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., TX, 76107, Fort Worth, USA
| | - C Alberto Figueroa
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Gregory M Dick
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., TX, 76107, Fort Worth, USA
| | - Johnathan D Tune
- Department of Physiology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., TX, 76107, Fort Worth, USA.
| |
Collapse
|
4
|
Lu X, Yao J, Li C, Cui L, Liu Y, Liu X, Wang G, Dong J, Deng Q, Hu Y, Guo D, Wang W, Li C. Shexiang Tongxin Dropping Pills Promote Macrophage Polarization-Induced Angiogenesis Against Coronary Microvascular Dysfunction via PI3K/Akt/mTORC1 Pathway. Front Pharmacol 2022; 13:840521. [PMID: 35401214 PMCID: PMC8984141 DOI: 10.3389/fphar.2022.840521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Accumulating evidence suggests that coronary microvascular dysfunction (CMD) is one of the important causes of coronary artery diseases. Angiogenesis can effectively improve CMD by increasing blood supply capacity, recovering cardiac function and poor hemodynamics. Clinical studies have approved Shexiang Tongxin dropping pill (STDP), which has exerted remarkable roles on ameliorating CMD, but the effects and mechanisms of STDPs on angiogenesis have not been clarified. Purpose: The purpose of this study was to elucidate the effects and potential mechanisms of STDPs on macrophage polarization-induced angiogenesis against CMD. Methods: Echocardiography, optical microangiography (OMAG), and histological examination were applied to evaluate cardioprotection and proangiogenic effects of STDPs on left anterior descending (LAD) ligation-induced CMD rats. In vitro, oxygen-glucose deprivation-reperfusion (OGD/R)-induced HUVEC model and LPS-stimulated bone marrow-derived macrophage (BMDM) model were established to observe the effects of STDPs on angiogenesis and M2 macrophage polarization. Results: STDPs improved cardiac function, increased microvascular density, and the number of M2 macrophages in the heart of CMD rats. In vitro, STDPs accelerated the proliferation, migration, and tube formation in OGD/R-induced HUVECs similar to the effects of VEGF-A. Furthermore, in LPS-stimulated BMDMs model, STDPs modulated M2 macrophage polarization and increased VEGF-A release via the PI3K/AKT/mTORC1 pathway. Conclusion: STDPs promoted macrophage polarization-induced angiogenesis against CMD via the PI3K/Akt/mTORC1 pathway. Our results demonstrated that the phenotype transformation of macrophages and stimulating the secretion of VEGF-A may be applied as novel cardioprotective targets for the treatment of CMD.
Collapse
Affiliation(s)
- Xiangyu Lu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Junkai Yao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lingwen Cui
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Yizhou Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangning Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Gang Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianteng Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiong Deng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyao Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dongqing Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Brandt MM, Cheng C, Merkus D, Duncker DJ, Sorop O. Mechanobiology of Microvascular Function and Structure in Health and Disease: Focus on the Coronary Circulation. Front Physiol 2022; 12:771960. [PMID: 35002759 PMCID: PMC8733629 DOI: 10.3389/fphys.2021.771960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
The coronary microvasculature plays a key role in regulating the tight coupling between myocardial perfusion and myocardial oxygen demand across a wide range of cardiac activity. Short-term regulation of coronary blood flow in response to metabolic stimuli is achieved via adjustment of vascular diameter in different segments of the microvasculature in conjunction with mechanical forces eliciting myogenic and flow-mediated vasodilation. In contrast, chronic adjustments in flow regulation also involve microvascular structural modifications, termed remodeling. Vascular remodeling encompasses changes in microvascular diameter and/or density being largely modulated by mechanical forces acting on the endothelium and vascular smooth muscle cells. Whereas in recent years, substantial knowledge has been gathered regarding the molecular mechanisms controlling microvascular tone and how these are altered in various diseases, the structural adaptations in response to pathologic situations are less well understood. In this article, we review the factors involved in coronary microvascular functional and structural alterations in obstructive and non-obstructive coronary artery disease and the molecular mechanisms involved therein with a focus on mechanobiology. Cardiovascular risk factors including metabolic dysregulation, hypercholesterolemia, hypertension and aging have been shown to induce microvascular (endothelial) dysfunction and vascular remodeling. Additionally, alterations in biomechanical forces produced by a coronary artery stenosis are associated with microvascular functional and structural alterations. Future studies should be directed at further unraveling the mechanisms underlying the coronary microvascular functional and structural alterations in disease; a deeper understanding of these mechanisms is critical for the identification of potential new targets for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Maarten M Brandt
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
6
|
van de Wouw J, Sorop O, van Drie RWA, Joles JA, Danser AHJ, Verhaar MC, Merkus D, Duncker DJ. Reduced nitric oxide bioavailability impairs myocardial oxygen balance during exercise in swine with multiple risk factors. Basic Res Cardiol 2021; 116:50. [PMID: 34435256 PMCID: PMC8387273 DOI: 10.1007/s00395-021-00890-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/20/2021] [Indexed: 10/28/2022]
Abstract
In the present study, we tested the hypothesis that multiple risk factors, including diabetes mellitus (DM), dyslipidaemia and chronic kidney disease (CKD) result in a loss of nitric oxide (NO) signalling, thereby contributing to coronary microvascular dysfunction. Risk factors were induced in 12 female swine by intravenous streptozotocin injections (DM), a high fat diet (HFD) and renal artery embolization (CKD). Female healthy swine (n = 13) on normal diet served as controls (Normal). After 5 months, swine were chronically instrumented and studied at rest and during exercise. DM + HFD + CKD swine demonstrated significant hyperglycaemia, dyslipidaemia and impaired kidney function compared to Normal swine. These risk factors were accompanied by coronary microvascular endothelial dysfunction both in vivo and in isolated small arteries, due to a reduced NO bioavailability, associated with perturbations in myocardial oxygen balance at rest and during exercise. NO synthase inhibition caused coronary microvascular constriction in exercising Normal swine, but had no effect in DM + HFD + CKD animals, while inhibition of phosphodiesterase 5 produced similar vasodilator responses in both groups, indicating that loss of NO bioavailability was principally responsible for the observed coronary microvascular dysfunction. This was associated with an increase in myocardial 8-isoprostane levels and a decrease in antioxidant capacity, while antioxidants restored the vasodilation to bradykinin in isolated coronary small arteries, suggesting that oxidative stress was principally responsible for the reduced NO bioavailability. In conclusion, five months of combined exposure to DM + HFD + CKD produces coronary endothelial dysfunction due to impaired NO bioavailability, resulting in impaired myocardial perfusion at rest and during exercise.
Collapse
Affiliation(s)
- Jens van de Wouw
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Oana Sorop
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Ruben W A van Drie
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne Merkus
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377, LMU Munich, Germany.,German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany
| | - Dirk J Duncker
- Department of Cardiology, Division of Experimental Cardiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, Netherlands.
| |
Collapse
|
7
|
King O, Sunyovszki I, Terracciano CM. Vascularisation of pluripotent stem cell-derived myocardium: biomechanical insights for physiological relevance in cardiac tissue engineering. Pflugers Arch 2021; 473:1117-1136. [PMID: 33855631 PMCID: PMC8245389 DOI: 10.1007/s00424-021-02557-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/22/2022]
Abstract
The myocardium is a diverse environment, requiring coordination between a variety of specialised cell types. Biochemical crosstalk between cardiomyocytes (CM) and microvascular endothelial cells (MVEC) is essential to maintain contractility and healthy tissue homeostasis. Yet, as myocytes beat, heterocellular communication occurs also through constantly fluctuating biomechanical stimuli, namely (1) compressive and tensile forces generated directly by the beating myocardium, and (2) pulsatile shear stress caused by intra-microvascular flow. Despite endothelial cells (EC) being highly mechanosensitive, the role of biomechanical stimuli from beating CM as a regulatory mode of myocardial-microvascular crosstalk is relatively unexplored. Given that cardiac biomechanics are dramatically altered during disease, and disruption of myocardial-microvascular communication is a known driver of pathological remodelling, understanding the biomechanical context necessary for healthy myocardial-microvascular interaction is of high importance. The current gap in understanding can largely be attributed to technical limitations associated with reproducing dynamic physiological biomechanics in multicellular in vitro platforms, coupled with limited in vitro viability of primary cardiac tissue. However, differentiation of CM from human pluripotent stem cells (hPSC) has provided an unlimited source of human myocytes suitable for designing in vitro models. This technology is now converging with the diverse field of tissue engineering, which utilises in vitro techniques designed to enhance physiological relevance, such as biomimetic extracellular matrix (ECM) as 3D scaffolds, microfluidic perfusion of vascularised networks, and complex multicellular architectures generated via 3D bioprinting. These strategies are now allowing researchers to design in vitro platforms which emulate the cell composition, architectures, and biomechanics specific to the myocardial-microvascular microenvironment. Inclusion of physiological multicellularity and biomechanics may also induce a more mature phenotype in stem cell-derived CM, further enhancing their value. This review aims to highlight the importance of biomechanical stimuli as determinants of CM-EC crosstalk in cardiac health and disease, and to explore emerging tissue engineering and hPSC technologies which can recapitulate physiological dynamics to enhance the value of in vitro cardiac experimentation.
Collapse
Affiliation(s)
- Oisín King
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK.
| | - Ilona Sunyovszki
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK
| | - Cesare M Terracciano
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
8
|
Kunadian V, Chieffo A, Camici PG, Berry C, Escaned J, Maas AHEM, Prescott E, Karam N, Appelman Y, Fraccaro C, Louise Buchanan G, Manzo-Silberman S, Al-Lamee R, Regar E, Lansky A, Abbott JD, Badimon L, Duncker DJ, Mehran R, Capodanno D, Baumbach A. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur Heart J 2021; 41:3504-3520. [PMID: 32626906 DOI: 10.1093/eurheartj/ehaa503] [Citation(s) in RCA: 420] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
This consensus document, a summary of the views of an expert panel organized by the European Association of Percutaneous Cardiovascular Interventions (EAPCI), appraises the importance of ischaemia with non-obstructive coronary arteries (INOCA). Angina pectoris affects approximately 112 million people globally. Up to 70% of patients undergoing invasive angiography do not have obstructive coronary artery disease, more common in women than in men, and a large proportion have INOCA as a cause of their symptoms. INOCA patients present with a wide spectrum of symptoms and signs that are often misdiagnosed as non-cardiac leading to under-diagnosis/investigation and under-treatment. INOCA can result from heterogeneous mechanism including coronary vasospasm and microvascular dysfunction and is not a benign condition. Compared to asymptomatic individuals, INOCA is associated with increased incidence of cardiovascular events, repeated hospital admissions, as well as impaired quality of life and associated increased health care costs. This consensus document provides a definition of INOCA and guidance to the community on the diagnostic approach and management of INOCA based on existing evidence from research and best available clinical practice; noting gaps in knowledge and potential areas for further investigation.
Collapse
Affiliation(s)
- Vijay Kunadian
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University and Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, M4:146 4th Floor William Leech Building, Newcastle upon Tyne NE2 4HH, UK
| | | | - Paolo G Camici
- Vita Salute University and San Raffaele Hospital, Milan, Italy
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Javier Escaned
- Hospital Clinico San Carlos IDISSC, Complutense University, Madrid, Spain
| | - Angela H E M Maas
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eva Prescott
- Department of Cardiology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Nicole Karam
- European Hospital Georges Pompidou (Cardiology Department), Paris University and Paris Cardiovascular Research Center (INSERMU970), Paris, France
| | - Yolande Appelman
- Department of Cardiology, Amsterdam UMC, Location VU University Medical Center, Amsterdam, the Netherlands
| | - Chiara Fraccaro
- Department of Cardiac, Thoracic and Vascular Science and Public Health, Padova, Italy
| | | | | | - Rasha Al-Lamee
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Alexandra Lansky
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA.,Bart's Heart Centre, St Bartholomew's Hospital, West Smithfield, London, UK
| | - J Dawn Abbott
- Lifespan Cardiovascular Institute and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Lina Badimon
- Cardiovascular Program-ICCC, IR-Hospital de la Santa Creu i Sant Pau, CiberCV, Barcelona, Spain
| | - Dirk J Duncker
- Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Roxana Mehran
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Hospital, New York, NY, USA
| | - Davide Capodanno
- CardioThoracic-Vascular and Transplant Department, A.O.U. 'Policlinico-Vittorio Emanuele', University of Catania, Catania, Italy
| | - Andreas Baumbach
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London and Barts Heart Centre, London, UK.,Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Keulards DCJ, Bouwmeester S, de Vos AMJ, Dekker LRC, Pijls NHJ, Houthuizen P. High microvascular resistance and reduced left atrial strain in patients with coronary microvascular dysfunction: The micro-strain study. Int J Cardiol 2021; 333:21-28. [PMID: 33675889 DOI: 10.1016/j.ijcard.2021.02.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND It is already known that high coronary microvascular resistance (Rμ) is linked to altered left ventricular stiffness and might be an early indicator of heart failure with preserved ejection fraction (HFpEF). Left atrial dysfunction, on the other hand, varies according to the grade of left ventricular diastolic dysfunction. This is the first study to use the latest development for invasive assessment of Rμ and to combine it with echocardiographic assessment of left atrial strain during reservoir phase (LASr) by speckle tracking in relation to left ventricular (LV) diastolic function. METHODS AND RESULTS An invasive angiogram was performed in 97 patients because of suspected ANOCA. All patients underwent comprehensive echocardiography, yet image quality was poor in 15 patients leaving 82 patients to include in the final analysis. In order to compare Rμ with LASr values, patients were divided into 4 groups based upon normal values of Rμ as defined by Fournier et al. The mean LASr was plotted against the four resistance groups. The LASr was 48.6% in the lowest resistance group, and 40.1%, 36.3% and 30.1% in the low intermediate, high intermediate and high resistance group respectively. These differences were significant compared to the lowest resistance group (p < 0.05). Although higher Rμ groups showed more diastolic dysfunction, LASr was already decreased irrespective of the severity of diastolic dysfunction. CONCLUSION This study shows a relationship between increased Rμ and reduced LASr, that seems to precede conventional measures of left ventricular diastolic dysfunction. This suggests that microvascular dysfunction might be an early indicator for the development of impaired LA function.
Collapse
Affiliation(s)
| | | | | | - Lukas R C Dekker
- Catharina Hospital, Eindhoven, the Netherlands; Eindhoven University of Technology, the Netherlands
| | - Nico H J Pijls
- Catharina Hospital, Eindhoven, the Netherlands; Eindhoven University of Technology, the Netherlands
| | | |
Collapse
|
10
|
Kunadian V, Chieffo A, Camici P, Berry C, Escaned J, Maas A, Prescott E, Karam N, Appelman Y, Fraccaro C, Buchanan G, Manzo-Silberman S, Al-Lamee R, Regar E, Lansky A, Abbott J, Badimon L, Duncker D, Mehran R, Capodanno D, Baumbach A. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. EUROINTERVENTION 2021; 16:1049-1069. [PMID: 32624456 PMCID: PMC9707543 DOI: 10.4244/eijy20m07_01] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/01/2020] [Indexed: 11/23/2022]
Abstract
This consensus document, a summary of the views of an expert panel organized by the European Association of Percutaneous Cardiovascular Interventions (EAPCI), appraises the importance of ischaemia with non-obstructive coronary arteries (INOCA). Angina pectoris affects approximately 112 million people globally. Up to 70% of patients undergoing invasive angiography do not have obstructive coronary artery disease, more common in women than in men, and a large proportion have INOCA as a cause of their symptoms. INOCA patients present with a wide spectrum of symptoms and signs that are often misdiagnosed as non-cardiac leading to under-diagnosis/investigation and under-treatment. INOCA can result from heterogeneous mechanism including coronary vasospasm and microvascular dysfunction and is not a benign condition. Compared to asymptomatic individuals, INOCA is associated with increased incidence of cardiovascular events, repeated hospital admissions, as well as impaired quality of life and associated increased health care costs. This consensus document provides a definition of INOCA and guidance to the community on the diagnostic approach and management of INOCA based on existing evidence from research and best available clinical practice; noting gaps in knowledge and potential areas for further investigation.
Collapse
Affiliation(s)
- Vijay Kunadian
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University and Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | | | - Paolo Camici
- Vita Salute University and San Raffaele Hospital, Milan, Italy
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Javier Escaned
- Hospital Clinico San Carlos IDISSC, Complutense University, Madrid, Spain
| | - Angela Maas
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eva Prescott
- Department of Cardiology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Nicole Karam
- European Hospital Georges Pompidou (Cardiology Department), Paris University and Paris Cardiovascular Research Center (INSERMU970), Paris, France
| | - Yolande Appelman
- Department of Cardiology, Amsterdam UMC, Location VU University Medical Center, Amsterdam, the Netherlands
| | - Chiara Fraccaro
- Department of Cardiac, Thoracic and Vascular Science and Public Health, Padova, Italy
| | - Gill Buchanan
- North Cumbria Integrated Care NHS Foundation Trust, Cumbria, United Kingdom
| | | | - Rasha Al-Lamee
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Alexandra Lansky
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
- Bart’s Heart Centre, St Bartholomew’s Hospital, West Smithfield, London, United Kingdom
| | - J. Abbott
- Lifespan Cardiovascular Institute and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Lina Badimon
- Cardiovascular Program-ICCC, IR-Hospital de la Santa Creu i Sant Pau, CiberCV, Barcelona, Spain
| | - Dirk Duncker
- Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Roxana Mehran
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Hospital, New York, NY, USA
| | - Davide Capodanno
- CardioThoracic-Vascular and Transplant Department, A.O.U. ‘Policlinico-Vittorio Emanuele’, University of Catania, Catania, Italy
| | - Andreas Baumbach
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London and Barts Heart Centre, London, United Kingdom
- Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Padro T, Manfrini O, Bugiardini R, Canty J, Cenko E, De Luca G, Duncker DJ, Eringa EC, Koller A, Tousoulis D, Trifunovic D, Vavlukis M, de Wit C, Badimon L. ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on 'coronary microvascular dysfunction in cardiovascular disease'. Cardiovasc Res 2020; 116:741-755. [PMID: 32034397 DOI: 10.1093/cvr/cvaa003] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/29/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Although myocardial ischaemia usually manifests as a consequence of atherosclerosis-dependent obstructive epicardial coronary artery disease, a significant percentage of patients suffer ischaemic events in the absence of epicardial coronary artery obstruction. Experimental and clinical evidence highlight the abnormalities of the coronary microcirculation as a main cause of myocardial ischaemia in patients with 'normal or near normal' coronary arteries on angiography. Coronary microvascular disturbances have been associated with early stages of atherosclerosis even prior to any angiographic evidence of epicardial coronary stenosis, as well as to other cardiac pathologies such as myocardial hypertrophy and heart failure. The main objectives of the manuscript are (i) to provide updated evidence in our current understanding of the pathophysiological consequences of microvascular dysfunction in the heart; (ii) to report on the current knowledge on the relevance of cardiovascular risk factors and comorbid conditions for microcirculatory dysfunction; and (iii) to evidence the relevance of the clinical consequences of microvascular dysfunction. Highlighting the clinical importance of coronary microvascular dysfunction will open the field for research and the development of novel strategies for intervention will encourage early detection of subclinical disease and will help in the stratification of cardiovascular risk in agreement with the new concept of precision medicine.
Collapse
Affiliation(s)
- Teresa Padro
- Cardiovascular Program-ICCC, Research Institute Hospital Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair, Autonomous University Barcelona (UAB), Barcelona, Spain
| | - Olivia Manfrini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Raffaele Bugiardini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - John Canty
- Division of Cardiology, Department of Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - Edina Cenko
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Giuseppe De Luca
- Division of Cardiology, Maggiore della Carità Hospital, Eastern Piedmont University, Novara, Italy
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research Institute COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam Cardiovascular Science Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Akos Koller
- Department of Translational Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Dimitris Tousoulis
- First Department of Cardiology, Hippokration Hospital, University of Athens Medical School, Athens, Greece
| | - Danijela Trifunovic
- Department of Cardiology, University Clinical Center of Serbia; and School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Vavlukis
- University Clinic of Cardiology, Medical Faculty, Ss' Cyril and Methodius University, Skopje, Republic of Macedonia
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute Hospital Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV) Instituto de Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair, Autonomous University Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
12
|
Microvascular and lymphatic dysfunction in HFpEF and its associated comorbidities. Basic Res Cardiol 2020; 115:39. [PMID: 32451732 PMCID: PMC7248044 DOI: 10.1007/s00395-020-0798-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex heterogeneous disease for which our pathophysiological understanding is still limited and specific prevention and treatment strategies are lacking. HFpEF is characterised by diastolic dysfunction and cardiac remodelling (fibrosis, inflammation, and hypertrophy). Recently, microvascular dysfunction and chronic low-grade inflammation have been proposed to participate in HFpEF development. Furthermore, several recent studies demonstrated the occurrence of generalized lymphatic dysfunction in experimental models of risk factors for HFpEF, including obesity, hypercholesterolaemia, type 2 diabetes mellitus (T2DM), hypertension, and aging. Here, we review the evidence for a combined role of coronary (micro)vascular dysfunction and lymphatic vessel alterations in mediating key pathological steps in HFpEF, including reduced cardiac perfusion, chronic low-grade inflammation, and myocardial oedema, and their impact on cardiac metabolic alterations (oxygen and nutrient supply/demand imbalance), fibrosis, and cardiomyocyte stiffness. We focus primarily on HFpEF caused by metabolic risk factors, such as obesity, T2DM, hypertension, and aging.
Collapse
|
13
|
Sorop O, van de Wouw J, Chandler S, Ohanyan V, Tune JD, Chilian WM, Merkus D, Bender SB, Duncker DJ. Experimental animal models of coronary microvascular dysfunction. Cardiovasc Res 2020; 116:756-770. [PMID: 31926020 PMCID: PMC7061277 DOI: 10.1093/cvr/cvaa002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Coronary microvascular dysfunction (CMD) is commonly present in patients with metabolic derangements and is increasingly recognized as an important contributor to myocardial ischaemia, both in the presence and absence of epicardial coronary atherosclerosis. The latter condition is termed 'ischaemia and no obstructive coronary artery disease' (INOCA). Notwithstanding the high prevalence of INOCA, effective treatment remains elusive. Although to date there is no animal model for INOCA, animal models of CMD, one of the hallmarks of INOCA, offer excellent test models for enhancing our understanding of the pathophysiology of CMD and for investigating novel therapies. This article presents an overview of currently available experimental models of CMD-with an emphasis on metabolic derangements as risk factors-in dogs, swine, rabbits, rats, and mice. In all available animal models, metabolic derangements are most often induced by a high-fat diet (HFD) and/or diabetes mellitus via injection of alloxan or streptozotocin, but there is also a wide variety of spontaneous as well as transgenic animal models which develop metabolic derangements. Depending on the number, severity, and duration of exposure to risk factors-all these animal models show perturbations in coronary microvascular (endothelial) function and structure, similar to what has been observed in patients with INOCA and comorbid conditions. The use of these animal models will be instrumental in identifying novel therapeutic targets and for the subsequent development and testing of novel therapeutic interventions to combat ischaemic heart disease, the number one cause of death worldwide.
Collapse
Affiliation(s)
- Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jens van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Selena Chandler
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Johnathan D Tune
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistr. 27, 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 81377 Munich, Germany
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
14
|
van de Wouw J, Sorop O, van Drie RWA, van Duin RWB, Nguyen ITN, Joles JA, Verhaar MC, Merkus D, Duncker DJ. Perturbations in myocardial perfusion and oxygen balance in swine with multiple risk factors: a novel model of ischemia and no obstructive coronary artery disease. Basic Res Cardiol 2020; 115:21. [PMID: 32100119 PMCID: PMC7042191 DOI: 10.1007/s00395-020-0778-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Comorbidities of ischemic heart disease, including diabetes mellitus (DM), hypercholesterolemia (HC) and chronic kidney disease (CKD), are associated with coronary microvascular dysfunction (CMD). Increasing evidence suggests that CMD may contribute to myocardial ‘Ischemia and No Obstructive Coronary Artery disease’ (INOCA). In the present study, we tested the hypothesis that CMD results in perturbations in myocardial perfusion and oxygen delivery using a novel swine model with multiple comorbidities. DM (streptozotocin), HC (high-fat diet) and CKD (renal embolization) were induced in 10 female swine (DM + HC + CKD), while 12 healthy female swine on a normal diet served as controls (Normal). After 5 months, at a time when coronary atherosclerosis was still negligible, myocardial perfusion, metabolism, and function were studied at rest and during treadmill exercise. DM + HC + CKD animals showed hyperglycemia, hypercholesterolemia, and impaired kidney function. During exercise, DM + HC + CKD swine demonstrated perturbations in myocardial blood flow and oxygen delivery, necessitating a higher myocardial oxygen extraction—achieved despite reduced capillary density—resulting in lower coronary venous oxygen levels. Moreover, myocardial efficiency was lower, requiring higher oxygen consumption for a given level of myocardial work. These perturbations in myocardial oxygen balance were associated with lower myocardial lactate consumption, stroke volume, and LVdP/dtmax, suggestive of myocardial ischemia and dysfunction. Further analyses showed a reduction in adenosine-recruitable coronary flow reserve, but this was exclusively the result of an increase in basal coronary blood flow, while maximal coronary flow per gram of myocardium was maintained; the latter was consistent with the unchanged arteriolar wall/lumen ratio, arteriolar density and peri-arteriolar collagen content. However, isolated small arteries displayed selective blunting of endothelium-dependent vasodilation in response to bradykinin in DM + HC + CKD swine, suggesting that changes in coronary microvascular function rather than in structure contributed to the perturbations in myocardial oxygen delivery. In conclusion, common comorbidities in swine result in CMD, in the absence of appreciable atherosclerosis, which is severe enough to produce perturbations in myocardial oxygen balance, particularly during exercise, resembling key features of INOCA.
Collapse
Affiliation(s)
- Jens van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Ruben W A van Drie
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Richard W B van Duin
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Isabel T N Nguyen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, 81377, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 81377, Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
|
16
|
Sorop O, van de Wouw J, Merkus D, Duncker DJ. Coronary Microvascular Dysfunction in Cardiovascular Disease: Lessons from Large Animal Models. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Tune JD, Goodwill AG, Kiel AM, Baker HE, Bender SB, Merkus D, Duncker DJ. Disentangling the Gordian knot of local metabolic control of coronary blood flow. Am J Physiol Heart Circ Physiol 2019; 318:H11-H24. [PMID: 31702972 DOI: 10.1152/ajpheart.00325.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recognition that coronary blood flow is tightly coupled with myocardial metabolism has been appreciated for well over half a century. However, exactly how coronary microvascular resistance is tightly coupled with myocardial oxygen consumption (MV̇o2) remains one of the most highly contested mysteries of the coronary circulation to this day. Understanding the mechanisms responsible for local metabolic control of coronary blood flow has been confounded by continued debate regarding both anticipated experimental outcomes and data interpretation. For a number of years, coronary venous Po2 has been generally accepted as a measure of myocardial tissue oxygenation and thus the classically proposed error signal for the generation of vasodilator metabolites in the heart. However, interpretation of changes in coronary venous Po2 relative to MV̇o2 are quite nuanced, inherently circular in nature, and subject to confounding influences that remain largely unaccounted for. The purpose of this review is to highlight difficulties in interpreting the complex interrelationship between key coronary outcome variables and the arguments that emerge from prior studies performed during exercise, hemodilution, hypoxemia, and alterations in perfusion pressure. Furthermore, potential paths forward are proposed to help to facilitate further dialogue and study to ultimately unravel what has become the Gordian knot of the coronary circulation.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexander M Kiel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Hana E Baker
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School Erasmus University Rotterdam, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Walter-Brendel Center of Experimental Medicine, University Hospital, Ludwig Maximilian University Munich, Munich, Germany.,German Centre for Cardiovascular Research, Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School Erasmus University Rotterdam, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Aragonez CG, de Beer VJ, Tharp DL, Bowles DK, Laughlin MH, Merkus D, Duncker DJ, Bender SB. Differential impact of severe familial hypercholesterolemia on regional skeletal muscle and organ blood flows during exercise: Effects of PDE5 inhibition. Microcirculation 2019; 26:e12539. [PMID: 30821858 DOI: 10.1111/micc.12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/22/2019] [Accepted: 02/25/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Swine with familial hypercholesterolemia (FH) exhibit attenuated exercise-induced systemic vasodilation that is restored by phosphodiesterase 5 (PDE5) inhibition. Whether the impacts of FH and PDE5 inhibition to impair and restore exercise-induced vasodilation, respectively, results from tissue-specific or generalized effects remains unclear. Thus, we hypothesized that FH induces generalized impairment of skeletal muscle vasodilation that would be alleviated by PDE5 inhibition. METHODS Systemic vascular responses to exercise were assessed in chronically instrumented normal and FH swine before and after PDE5 inhibition with EMD360527. Skeletal muscle and organ blood flows and conductances were determined via the microsphere technique. RESULTS As previously reported, vs normal swine, FH swine have pronounced elevation of total cholesterol and impaired exercise-induced vasodilation that is restored by PDE5 inhibition. Blood flows to several, not all, skeletal muscle vascular beds were severely impaired by FH associated with reduced blood flow to many visceral organs. PDE5 inhibition differentially impacted skeletal muscle and organ blood flows in normal and FH swine. CONCLUSIONS These data indicate that FH induces regional, not generalized, vasomotor dysfunction and that FH and normal swine exhibit unique tissue blood flow responses to PDE5 inhibition thereby adding to accumulating evidence of vascular bed-specific dysfunction in co-morbid conditions.
Collapse
Affiliation(s)
- Christian G Aragonez
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Vincent J de Beer
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Darla L Tharp
- Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Douglas K Bowles
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - M Harold Laughlin
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
19
|
Tharp DL, Masseau I, Ivey J, Laughlin MH, Bowles DK. Endurance exercise training does not limit coronary atherosclerosis in familial hypercholesterolemic swine. Physiol Rep 2019; 7:e14008. [PMID: 30809955 PMCID: PMC6391583 DOI: 10.14814/phy2.14008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/02/2023] Open
Abstract
Human studies demonstrate that physical activity reduces both morbidity and mortality of coronary heart disease (CHD) including decreased progression and/or regression of CHD with life-style modification which includes exercise. However, evidence supporting an intrinsic, direct effect of exercise in attenuating the development of CHD is equivocal. One limitation has been the lack of a large animal model with clinically evident CHD disease. Thus, we examined the role of endurance exercise in CHD development in a swine model of familial hypercholesterolemia (FH) that exhibits robust, complex atherosclerosis. FH swine were randomly assigned to either sedentary (Sed) or exercise trained (Ex) groups. At 10 months of age, Ex pigs began a 10 months, moderate-intensity treadmill-training intervention. At 14 months, all pigs were switched to a high-fat, high-cholesterol diet. CHD was assessed by intravascular ultrasound (IVUS) both prior to and after completion of 6 months on the HFC diet. Prior to HFC diet, Ex resulted in a greater coronary artery size in the proximal and mid sections of the LCX compared to SED, with no effect in the LAD. After 6 months on HFC diet, there was a 5-6 fold increase in absolute plaque volume in all segments of the LCX and LAD in both groups. At 20 months, there was no difference in vessel volume, lumen volume, absolute or relative plaque volume in either the LCX or LAD between Sed and Ex animals. These findings fail to support an independent, direct effect of exercise in limiting CHD progression in familial hypercholesterolemia.
Collapse
Affiliation(s)
- Darla L. Tharp
- Department of Biomedical SciencesUniversity of MissouriColumbiaMissouri
| | - Isabelle Masseau
- Department of Clinical SciencesUniversité de MontrealSt‐HyacintheCanada
| | - Jan Ivey
- Department of Biomedical SciencesUniversity of MissouriColumbiaMissouri
| | - Maurice Harold Laughlin
- Department of Biomedical SciencesUniversity of MissouriColumbiaMissouri
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouri
| | - Douglas K. Bowles
- Department of Biomedical SciencesUniversity of MissouriColumbiaMissouri
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouri
| |
Collapse
|
20
|
Lipoprotein Apheresis Acutely Reverses Coronary Microvascular Dysfunction in Patients With Severe Hypercholesterolemia. JACC Cardiovasc Imaging 2018; 12:1430-1440. [PMID: 29909101 DOI: 10.1016/j.jcmg.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 01/18/2023]
Abstract
OBJECTIVES This study evaluated whether lipoprotein apheresis produces immediate changes in resting perfusion in subjects with severe hypercholesterolemia, and whether there is a difference in the response between peripheral and coronary microcirculations. BACKGROUND Lipoprotein apheresis is used in patients with severe hypercholesterolemia to reduce plasma levels of low-density lipoprotein cholesterol. METHODS Quantitative contrast-enhanced ultrasound perfusion imaging of the myocardium at rest and skeletal muscle at rest and during calibrated contractile exercise was performed before and immediately after lipoprotein apheresis in 8 subjects with severe hypercholesterolemia, 7 of whom had a diagnosis of familial hypercholesterolemia. Myocardial perfusion imaging was also performed in 14 normal control subjects. Changes in myocardial work and left ventricular function were assessed by echocardiography. Ex vivo ovine coronary and femoral artery ring tension assays were assessed in the presence of pre- and post-apheresis plasma. RESULTS Apheresis acutely decreased low-density lipoprotein cholesterol (234.9 ± 103.2 mg/dl vs. 67.1 ± 49.5 mg/dl; p < 0.01) and oxidized phospholipid on apolipoprotein B-100 (60.2 ± 55.2 nmol/l vs. 47.0 ± 24.5 nmol/l; p = 0.01), and acutely increased resting myocardial perfusion (55.1 [95% confidence interval: 77.2 to 73.1] IU/s vs. 135 [95% confidence interval: 81.2 to 189.6] IU/s; p = 0.01), without changes in myocardial work. Myocardial longitudinal strain improved in those subjects with reduced pre-apheresis function. Skeletal muscle perfusion at rest and during contractile exercise was unchanged by apheresis. Acetylcholine-mediated dilation of ex vivo ovine coronary but not femoral arteries was impaired in pre-apheresis plasma and was completely reversed in post-apheresis plasma. CONCLUSIONS Lipoprotein apheresis produces an immediate improvement in coronary microvascular function, which increases myocardial perfusion and normalizes endothelial-dependent vasodilation. These changes are not observed in the periphery. (Acute Microvascular Changes With LDL Apheresis; NCT02388633).
Collapse
|
21
|
Long-term spironolactone treatment reduces coronary TRPC expression, vasoconstriction, and atherosclerosis in metabolic syndrome pigs. Basic Res Cardiol 2017; 112:54. [PMID: 28756533 PMCID: PMC5534204 DOI: 10.1007/s00395-017-0643-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022]
Abstract
Coronary transient receptor potential canonical (TRPC) channel expression is elevated in metabolic syndrome (MetS). However, differential contribution of TRPCs to coronary pathology in MetS is not fully elucidated. We investigated the roles of TRPC1 and TRPC6 isoforms in coronary arteries of MetS pigs and determined whether long-term treatment with a mineralocorticoid receptor inhibitor, spironolactone, attenuates coronary TRPC expression and associated dysfunctions. MetS coronary arteries exhibited significant atherosclerosis, endothelial dysfunction, and increased histamine-induced contractions. Immunohistochemical studies revealed that TRPC6 immunostaining was significantly greater in the medial layer of MetS pig coronary arteries compared to that in Lean pigs, whereas little TRPC6 immunostaining was found in atheromas. Conversely, TRPC1 immunostaining was weak in the medial layer but strong in MetS atheromas, where it was predominantly localized to macrophages. Spironolactone treatment significantly decreased coronary TRPC expression and dysfunctions in MetS pigs. In vivo targeted delivery of the dominant-negative (DN)-TRPC6 cDNA to the coronary wall reduced histamine-induced calcium transients in the MetS coronary artery medial layer, implying a role for TRPC6 in mediating calcium influx in MetS coronary smooth muscles. Monocyte adhesion was increased in Lean pig coronary arteries cultured in the presence of aldosterone; and spironolactone antagonized this effect, suggesting that coronary mineralocorticoid receptor activation may regulate macrophage infiltration. TRPC1 expression in atheroma macrophages was associated with advanced atherosclerosis, whereas medial TRPC6 upregulation correlated with increased histamine-induced calcium transients and coronary contractility. We propose that long-term spironolactone treatment may be a therapeutic strategy to decrease TRPC expression and coronary pathology associated with MetS.
Collapse
|
22
|
Sorop O, Olver TD, van de Wouw J, Heinonen I, van Duin RW, Duncker DJ, Merkus D. The microcirculation: a key player in obesity-associated cardiovascular disease. Cardiovasc Res 2017; 113:1035-1045. [DOI: 10.1093/cvr/cvx093] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022] Open
|