1
|
Sweeney M, O'Fee K, Villanueva-Hayes C, Rahman E, Lee M, Tam CN, Pascual-Navarro E, Maatz H, Lindberg EL, Vanezis K, Ramachandra CJ, Andrew I, Jennings ER, Lim WW, Widjaja AA, Carling D, Hausenloy DJ, Hübner N, Barton PJR, Cook SA. Interleukin 11 therapy causes acute left ventricular dysfunction. Cardiovasc Res 2024; 120:2220-2235. [PMID: 39383190 DOI: 10.1093/cvr/cvae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 09/15/2024] [Indexed: 10/11/2024] Open
Abstract
AIMS Interleukin 11 (IL11) was initially thought important for platelet production, which led to recombinant IL11 being developed as a drug to treat thrombocytopenia. IL11 was later found to be redundant for haematopoiesis, and its use in patients is associated with unexplained and severe cardiac side effects. Here, we aim to identify, for the first time, direct cardiomyocyte toxicities associated with IL11, which was previously believed cardioprotective. METHODS AND RESULTS We injected recombinant mouse lL11 (rmIL11) into mice and studied its molecular effects in the heart using immunoblotting, qRT-PCR, bulk RNA-seq, single nuclei RNA-seq (snRNA-seq), and assay for transposase-accessible chromatin with sequencing (ATAC-seq). The physiological impact of IL11 was assessed by echocardiography in vivo and using cardiomyocyte contractility assays in vitro. To determine the activity of IL11 specifically in cardiomyocytes, we made two cardiomyocyte-specific Il11ra1 knockout (CMKO) mouse models using either AAV9-mediated and Tnnt2-restricted (vCMKO) or Myh6 (m6CMKO) Cre expression and an Il11ra1 floxed mouse strain. In pharmacologic studies, we studied the effects of JAK/STAT inhibition on rmIL11-induced cardiac toxicities. Injection of rmIL11 caused acute and dose-dependent impairment of left ventricular ejection fraction (saline: 62.4% ± 1.9; rmIL11: 32.6% ± 2.9, P < 0.001, n = 5). Following rmIL11 injection, myocardial STAT3 and JNK phosphorylation were increased and bulk RNA-seq revealed up-regulation of pro-inflammatory pathways (TNFα, NFκB, and JAK/STAT) and perturbed calcium handling. snRNA-seq showed rmIL11-induced expression of stress factors (Ankrd1, Ankrd23, Xirp2), activator protein-1 (AP-1) transcription factor genes, and Nppb in the cardiomyocyte compartment. Following rmIL11 injection, ATAC-seq identified the Ankrd1 and Nppb genes and loci enriched for stress-responsive, AP-1 transcription factor binding sites. Cardiomyocyte-specific effects were examined in vCMKO and m6CMKO mice, which were both protected from rmIL11-induced left ventricular impairment and molecular pathobiologies. In mechanistic studies, inhibition of JAK/STAT signalling with either ruxolitinib or tofacitinib prevented rmIL11-induced cardiac dysfunction. CONCLUSIONS Injection of IL11 directly activates IL11RA/JAK/STAT3 in cardiomyocytes to cause acute heart failure. Our data overturn the earlier assumption that IL11 is cardioprotective and explain the serious cardiac side effects associated with IL11 therapy.
Collapse
MESH Headings
- Animals
- Interleukin-11/metabolism
- Interleukin-11/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Ventricular Function, Left/drug effects
- Mice, Knockout
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/chemically induced
- Ventricular Dysfunction, Left/prevention & control
- Signal Transduction
- Disease Models, Animal
- Mice, Inbred C57BL
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Janus Kinases/metabolism
- Janus Kinase Inhibitors/pharmacology
- Acute Disease
- Male
- Myocardial Contraction/drug effects
- Nitriles/pharmacology
- Recombinant Proteins/metabolism
- Cells, Cultured
- Pyrimidines/pharmacology
- Pyrazoles/pharmacology
- Phosphorylation
- Mice
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Mark Sweeney
- MRC-Laboratory of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Katie O'Fee
- MRC-Laboratory of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Chelsie Villanueva-Hayes
- MRC-Laboratory of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Ekhlas Rahman
- MRC-Laboratory of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Chung Nga Tam
- MRC-Laboratory of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Eneko Pascual-Navarro
- MRC-Laboratory of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Henrike Maatz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13092 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Eric L Lindberg
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13092 Berlin, Germany
| | - Konstantinos Vanezis
- MRC-Laboratory of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Chrishan J Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Ivan Andrew
- MRC-Laboratory of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Emma R Jennings
- MRC-Laboratory of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Wei-Wen Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - David Carling
- MRC-Laboratory of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13092 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charite, Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Paul J R Barton
- MRC-Laboratory of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Stuart A Cook
- MRC-Laboratory of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| |
Collapse
|
2
|
Kerli Fernandes E, Türck P, Campos Carraro C, Tasca S, Teixeira Proença IC, Palma VDM, Visioli F, Torres ILDS, Belló-Klein A, Luz De Castro A, Da Rosa Araujo AS. Boldine reduces left ventricle oxidative stress in isoproterenol-induced adrenergic overload experimental model. Arch Physiol Biochem 2024:1-10. [PMID: 39709619 DOI: 10.1080/13813455.2024.2441363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/28/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024]
Abstract
Sustained adrenergic overload in the heart causes maladaptive cardiac remodelling, which involves oxidative stress. Boldine (BOL) has antioxidant activity and represents a novel therapeutic approach. This study explored the cardioprotective role of BOL in adverse left ventricular remodelling induced by isoproterenol. The rats were divided into four groups: control; BOL (25 mg/kg daily); isoproterenol (ISO) (5 mg/kg daily), and ISO + BOL. Morphometric, echocardiographic, and oxidative stress parameters were evaluated. BOL attenuated both cardiac hypertrophy and increased diastolic volume caused by adrenergic overstimulation (P < 0.05). BOL treatment reduced lipid peroxidation induced by ISO (ISO vs. ISO + BOL; P < 0.05), and this effect was associated with increased superoxide dismutase (SOD) (ISO vs. ISO + BOL; P < 0.05) and glutathione-S-transferase levels (GST) (ISO vs. ISO + BOL; P < 0.05). This data suggest that BOL may improve cardiac oxidative stress and attenuate some parameters of adverse cardiac remodelling.
Collapse
Affiliation(s)
- Elissa Kerli Fernandes
- Laboratory of Cardiovascular Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Patrick Türck
- Laboratory of Cardiovascular Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Cristina Campos Carraro
- Laboratory of Cardiovascular Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Silvio Tasca
- Laboratory of Cardiovascular Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | - Victor De Mello Palma
- Oral Pathology Laboratory of the Faculty of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Fernanda Visioli
- Oral Pathology Laboratory of the Faculty of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Alexandre Luz De Castro
- Laboratory of Cardiovascular Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Alex Sander Da Rosa Araujo
- Laboratory of Cardiovascular Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| |
Collapse
|
3
|
Kimball TH, Gromova T, Gehred ND, Chapski DJ, Wang K, Vaseghi M, Fischer MA, Lefer DJ, Vondriska TM. Rapid onset fibrotic remodeling and ventricular dysfunction induced by phenylephrine involve targeted reprogramming of myocyte and fibroblast transcriptomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617933. [PMID: 39464022 PMCID: PMC11507669 DOI: 10.1101/2024.10.11.617933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Catecholamine dysregulation is a common feature of multiple acute and chronic cardiac conditions, including heart failure. To investigate the role of altered α-adrenergic stimulation on cardiac function, we developed a short-term exposure model, administering phenylephrine subcutaneously to mice for one week. Compared to vehicle-injected controls, phenylephrine-treated animals exhibited increased ejection fraction, decreased chamber size, diastolic dysfunction and ventricular hypertrophy in the absence of hypertension. Remarkably, these animals developed extensive fibrotic remodeling of the tissue that plateaued at 24 hours and myocyte hypertrophy localized to regions of fibrotic deposition after 3 days of treatment. Transcriptome analyses of purified myocyte and fibroblast populations from these hearts revealed an unexpected role for myocytes in the production of extracellular matrix. Comparison with other models of cardiac stress, including pressure overload hypertrophy and cytokine activation of fibroblasts, identified stimulus-specific transcriptional circuits associated with cardiac pathology. Given the rapid, robust fibrotic response that preceded myocyte hypertrophy, intercellular communication analyses were conducted to investigate fibroblast to myocyte signaling, identifying potential crosstalk between these cells. These studies thoroughly describe and phenotypically characterize a new model of short-term catecholamine stress and provide an atlas of transcriptional remodeling in myocytes and fibroblasts.
Collapse
Affiliation(s)
- Todd H. Kimball
- Departments of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine
| | - Tatiana Gromova
- Departments of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine
| | - Natalie D. Gehred
- Departments of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine
| | - Douglas J. Chapski
- Departments of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine
| | - Ke Wang
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Marmar Vaseghi
- Cardiac Arrhythmia Center, Division of Cardiology, Department of Medicine, University of California, Los Angeles
| | - Matthew A. Fischer
- Departments of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine
| | - David J. Lefer
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Thomas M. Vondriska
- Departments of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine
- Physiology, David Geffen School of Medicine
- Medicine, David Geffen School of Medicine
- Molecular Biology Institute, University of California, Los Angeles
| |
Collapse
|
4
|
Asiwe JN, Ajayi AM, Ben-Azu B, Fasanmade AA. Vincristine attenuates isoprenaline-induced cardiac hypertrophy in male Wistar rats via suppression of ROS/NO/NF-қB signalling pathways. Microvasc Res 2024; 155:104710. [PMID: 38880384 DOI: 10.1016/j.mvr.2024.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Vincristine (VCR), a vinca alkaloid with anti-tumor and anti-oxidant properties, is acclaimed to possess cardioprotective action. However, the molecular mechanism underlying this protective effect remains unknown. This study investigated the effects of VCR on isoprenaline (ISO), a beta-adrenergic receptor agonist, induced cardiac hypertrophy in male Wistar rats. Animals were pre-treated with ISO (1 mg/kg) intraperitoneally for 14 days before VCR (25 μg/kg) intraperitoneal injection from days 1 to 28. Thereafter, mechanical, and electrical activities of the hearts of the rats were measured using a non-invasive blood pressure monitor and an electrocardiograph, respectively. After which, the heart was homogenized, and supernatants were assayed for contractile proteins: endothelin-1, cardiac troponin-1, angiotensin-II, and creatine kinase-MB, with markers of oxidative/nitrergic stress (SOD, CAT, MDA, GSH, and NO), inflammation (TNF-a and IL-6, NF-kB), and caspase-3 indicative of VCR reduced elevated blood pressure and reversed the abnormal electrocardiogram. ISO-induced increased endothelin-1, cardiac troponin-1, angiotensin-II, and creatine phosphokinase-MB, which were reversed by VCR. ISO also increased TNF-α, IL-6, NF-kB expression with increased caspase-3-mediated apoptosis in the heart. However, VCR reduced ISO-induced inflammation and apoptosis, with improved endogenous antioxidant agents (GSH, SOD, CAT) relative to ISO controls. Moreso, VCR, protected against ISO-induced histoarchitectural degeneration of cardiac myofibre. The result of this study revealed that VCR treatment significantly reverses ISO-induced cardiac hypertrophic phenotypes, via mechanisms connected to improved levels of proteins involved in excitation-contraction, and suppression of oxido-inflammatory and apoptotic pathways.
Collapse
Affiliation(s)
- Jerome Ndudi Asiwe
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - Abayomi M Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | | |
Collapse
|
5
|
Hamaguchi S, Agata N, Seki M, Namekata I, Tanaka H. Developmental Changes in the Excitation-Contraction Mechanisms of the Ventricular Myocardium and Their Sympathetic Regulation in Small Experimental Animals. J Cardiovasc Dev Dis 2024; 11:267. [PMID: 39330325 PMCID: PMC11432613 DOI: 10.3390/jcdd11090267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 09/28/2024] Open
Abstract
The developmental changes in the excitation-contraction mechanisms of the ventricular myocardium of small animals (guinea pig, rat, mouse) and their sympathetic regulation will be summarized. The action potential duration monotonically decreases during pre- and postnatal development in the rat and mouse, while in the guinea pig it decreases during the fetal stage but turns into an increase just before birth. Such changes can be attributed to changes in the repolarizing potassium currents. The T-tubule and the sarcoplasmic reticulum are scarcely present in the fetal cardiomyocyte, but increase during postnatal development. This causes a developmental shift in the Ca2+ handling from a sarcolemma-dependent mechanism to a sarcoplasmic reticulum-dependent mechanism. The sensitivity for beta-adrenoceptor-mediated positive inotropy decreases during early postnatal development, which parallels the increase in sympathetic nerve innervation. The alpha-adrenoceptor-mediated inotropy in the mouse changes from positive in the neonate to negative in the adult. This can be explained by the change in the excitation-contraction mechanism mentioned above. The shortening of the action potential duration enhances trans-sarcolemmal Ca2+ extrusion by the Na+-Ca2+ exchanger. The sarcoplasmic reticulum-dependent mechanism of contraction in the adult allows Na+-Ca2+ exchanger activity to cause negative inotropy, a mechanism not observed in neonatal myocardium. Such developmental studies would provide clues towards a more comprehensive understanding of cardiac function.
Collapse
Affiliation(s)
| | | | | | | | - Hikaru Tanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi 274-8510, Japan; (S.H.); (N.A.); (M.S.); (I.N.)
| |
Collapse
|
6
|
Zhou R, Guo J, Jin Z. Advancing osteoarthritis therapy with GMOCS hydrogel-loaded BMSCs-exos. J Nanobiotechnology 2024; 22:493. [PMID: 39160590 PMCID: PMC11334447 DOI: 10.1186/s12951-024-02713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
This study investigated the mechanism of the extracellular matrix-mimicking hydrogel-mediated TGFB1/Nrf2 signaling pathway in osteoarthritis using bone marrow mesenchymal stem cell-derived exosomes (BMSCs-Exos). A GMOCS-Exos hydrogel was synthesized and evaluated for its impact on chondrocyte viability and neutrophil extracellular traps (NETs) formation. In an OA rat model, GMOCS-Exos promoted cartilage regeneration and inhibited NETs formation. Transcriptome sequencing identified TGFB1 as a key gene, with GMOCS-Exos activating Nrf2 signaling through TGFB1. Depletion of TGFB1 hindered the cartilage-protective effect of GMOCS-Exos. This study sheds light on a promising therapeutic strategy for osteoarthritis through GMOCS-Exos-mediated TGFB1/Nrf2 pathway modulation.
Collapse
Affiliation(s)
- Renyi Zhou
- Department of Orthopedics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Jiarong Guo
- Department of Orthopedics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Zhe Jin
- Department of Orthopedics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
7
|
Gjerga E, Dewenter M, Britto-Borges T, Grosso J, Stein F, Eschenbach J, Rettel M, Backs J, Dieterich C. Transverse aortic constriction multi-omics analysis uncovers pathophysiological cardiac molecular mechanisms. Database (Oxford) 2024; 2024:baae060. [PMID: 39051433 PMCID: PMC11270014 DOI: 10.1093/database/baae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/03/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Time-course multi-omics data of a murine model of progressive heart failure (HF) induced by transverse aortic constriction (TAC) provide insights into the molecular mechanisms that are causatively involved in contractile failure and structural cardiac remodelling. We employ Illumina-based transcriptomics, Nanopore sequencing and mass spectrometry-based proteomics on samples from the left ventricle (LV) and right ventricle (RV, RNA only) of the heart at 1, 7, 21 and 56 days following TAC and Sham surgery. Here, we present Transverse Aortic COnstriction Multi-omics Analysis (TACOMA), as an interactive web application that integrates and visualizes transcriptomics and proteomics data collected in a TAC time-course experiment. TACOMA enables users to visualize the expression profile of known and novel genes and protein products thereof. Importantly, we capture alternative splicing events by assessing differential transcript and exon usage as well. Co-expression-based clustering algorithms and functional enrichment analysis revealed overrepresented annotations of biological processes and molecular functions at the protein and gene levels. To enhance data integration, TACOMA synchronizes transcriptomics and proteomics profiles, enabling cross-omics comparisons. With TACOMA (https://shiny.dieterichlab.org/app/tacoma), we offer a rich web-based resource to uncover molecular events and biological processes implicated in contractile failure and cardiac hypertrophy. For example, we highlight: (i) changes in metabolic genes and proteins in the time course of hypertrophic growth and contractile impairment; (ii) identification of RNA splicing changes in the expression of Tpm2 isoforms between RV and LV; and (iii) novel transcripts and genes likely contributing to the pathogenesis of HF. We plan to extend these data with additional environmental and genetic models of HF to decipher common and distinct molecular changes in heart diseases of different aetiologies. Database URL: https://shiny.dieterichlab.org/app/tacoma.
Collapse
Affiliation(s)
- Enio Gjerga
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, INF 669, Heidelberg 69120, Germany
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, INF 669, Heidelberg 69120, Germany
- German Centre for Cardiovascular Research (DZHK)—Partner Site Heidelberg/Mannheim, Heidelberg 69120, Germany
| | - Matthias Dewenter
- German Centre for Cardiovascular Research (DZHK)—Partner Site Heidelberg/Mannheim, Heidelberg 69120, Germany
- Institute of Experimental Cardiology, Medical Faculty Heidelberg, Heidelberg University, INF 669, Heidelberg 69120, Germany
- Internal Medicine VIII, Heidelberg University Hospital, INF 669, Heidelberg 69120, Germany
| | - Thiago Britto-Borges
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, INF 669, Heidelberg 69120, Germany
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, INF 669, Heidelberg 69120, Germany
- German Centre for Cardiovascular Research (DZHK)—Partner Site Heidelberg/Mannheim, Heidelberg 69120, Germany
| | - Johannes Grosso
- German Centre for Cardiovascular Research (DZHK)—Partner Site Heidelberg/Mannheim, Heidelberg 69120, Germany
- Institute of Experimental Cardiology, Medical Faculty Heidelberg, Heidelberg University, INF 669, Heidelberg 69120, Germany
| | - Frank Stein
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
- Proteomics Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Jessica Eschenbach
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, INF 669, Heidelberg 69120, Germany
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, INF 669, Heidelberg 69120, Germany
- German Centre for Cardiovascular Research (DZHK)—Partner Site Heidelberg/Mannheim, Heidelberg 69120, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Johannes Backs
- German Centre for Cardiovascular Research (DZHK)—Partner Site Heidelberg/Mannheim, Heidelberg 69120, Germany
- Institute of Experimental Cardiology, Medical Faculty Heidelberg, Heidelberg University, INF 669, Heidelberg 69120, Germany
- Internal Medicine VIII, Heidelberg University Hospital, INF 669, Heidelberg 69120, Germany
- Helmholtz Institute for Translational AngioCardioScience (HI-TAC), MDC at Heidelberg University, Heidelberg 69120, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, INF 669, Heidelberg 69120, Germany
- Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, INF 669, Heidelberg 69120, Germany
- German Centre for Cardiovascular Research (DZHK)—Partner Site Heidelberg/Mannheim, Heidelberg 69120, Germany
| |
Collapse
|
8
|
Perez-Bonilla P, LaViolette B, Bhandary B, Ullas S, Chen X, Hirenallur-Shanthappa D. Isoproterenol induced cardiac hypertrophy: A comparison of three doses and two delivery methods in C57BL/6J mice. PLoS One 2024; 19:e0307467. [PMID: 39038017 PMCID: PMC11262646 DOI: 10.1371/journal.pone.0307467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
Heart Failure (HF) continues to be a complex public health issue with increasing world population prevalence. Although overall mortality has decreased for HF and hypertrophic cardiomyopathy (HCM), a precursor for HF, their prevalence continues to increase annually. Because the etiology of HF and HCM is heterogeneous, it has been difficult to identify novel therapies to combat these diseases. Isoproterenol (ISP), a non-selective β-adrenoreceptor agonist, is commonly used to induce cardiotoxicity and cause acute and chronic HCM and HF in mice. However, the variability in dose and duration of ISP treatment used in studies has made it difficult to determine the optimal combination of ISP dose and delivery method to develop a reliable ISP-induced mouse model for disease. Here we examined cardiac effects induced by ISP via subcutaneous (SQ) and SQ-minipump (SMP) infusions across 3 doses (2, 4, and 10mg/kg/day) over 2 weeks to determine whether SQ and SMP ISP delivery induced comparable disease severity in C57BL/6J mice. To assess disease, we measured body and heart weight, surface electrocardiogram (ECG), and echocardiography recordings. We found all 3 ISP doses comparably increase heart weight, but these increases are more pronounced when ISP was administered via SMP. We also found that the combination of ISP treatment and delivery method induces contrasting heart rate, RR interval, and R and S amplitudes that may place SMP treated mice at higher risk for sustained disease burden. Mice treated via SMP also had increased heart wall thickness and LV Mass, but mice treated via SQ showed greater increase in gene markers for hypertrophy and fibrosis. Overall, these data suggest that at 2 weeks, mice treated with 2, 4, or 10mg/kg/day ISP via SQ and SMP routes cause similar pathological heart phenotypes but highlight the importance of drug delivery method to induce differing disease pathways.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Brianna LaViolette
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Bidur Bhandary
- Rare Diseases Research Unit, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Soumya Ullas
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Xian Chen
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| | - Dinesh Hirenallur-Shanthappa
- Global Discovery, Investigative & Translational Sciences–Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America
| |
Collapse
|
9
|
Bode C, Preissl S, Hein L, Lother A. Catecholamine treatment induces reversible heart injury and cardiomyocyte gene expression. Intensive Care Med Exp 2024; 12:48. [PMID: 38733526 PMCID: PMC11088585 DOI: 10.1186/s40635-024-00632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Catecholamines are commonly used as therapeutic drugs in intensive care medicine to maintain sufficient organ perfusion during shock. However, excessive or sustained adrenergic activation drives detrimental cardiac remodeling and may lead to heart failure. Whether catecholamine treatment in absence of heart failure causes persistent cardiac injury, is uncertain. In this experimental study, we assessed the course of cardiac remodeling and recovery during and after prolonged catecholamine treatment and investigated the molecular mechanisms involved. RESULTS C57BL/6N wild-type mice were assigned to 14 days catecholamine treatment with isoprenaline and phenylephrine (IsoPE), treatment with IsoPE and subsequent recovery, or healthy control groups. IsoPE improved left ventricular contractility but caused substantial cardiac fibrosis and hypertrophy. However, after discontinuation of catecholamine treatment, these alterations were largely reversible. To uncover the molecular mechanisms involved, we performed RNA sequencing from isolated cardiomyocyte nuclei. IsoPE treatment resulted in a transient upregulation of genes related to extracellular matrix formation and transforming growth factor signaling. While components of adrenergic receptor signaling were downregulated during catecholamine treatment, we observed an upregulation of endothelin-1 and its receptors in cardiomyocytes, indicating crosstalk between both signaling pathways. To follow this finding, we treated mice with endothelin-1. Compared to IsoPE, treatment with endothelin-1 induced minor but longer lasting changes in cardiomyocyte gene expression. DNA methylation-guided analysis of enhancer regions identified immediate early transcription factors such as AP-1 family members Jun and Fos as key drivers of pathological gene expression following catecholamine treatment. CONCLUSIONS The results from this study show that prolonged catecholamine exposure induces adverse cardiac remodeling and gene expression before the onset of left ventricular dysfunction which has implications for clinical practice. The observed changes depend on the type of stimulus and are largely reversible after discontinuation of catecholamine treatment. Crosstalk with endothelin signaling and the downstream transcription factors identified in this study provide new opportunities for more targeted therapeutic approaches that may help to separate desired from undesired effects of catecholamine treatment.
Collapse
Affiliation(s)
- Christine Bode
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Preissl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Interdisciplinary Medical Intensive Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Deng L, Pollmeier L, Bednarz R, Cao C, Laurette P, Wirth L, Mamazhakypov A, Bode C, Hein L, Gilsbach R, Lother A. Atlas of cardiac endothelial cell enhancer elements linking the mineralocorticoid receptor to pathological gene expression. SCIENCE ADVANCES 2024; 10:eadj5101. [PMID: 38446896 PMCID: PMC10917356 DOI: 10.1126/sciadv.adj5101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Endothelial cells play crucial roles in physiology and are increasingly recognized as therapeutic targets in cardiovascular disease. Here, we analyzed the regulatory landscape of cardiac endothelial cells by assessing chromatin accessibility, histone modifications, and 3D chromatin organization and confirmed the functional relevance of enhancer-promoter interactions by CRISPRi-mediated enhancer silencing. We used this dataset to explore mechanisms of transcriptional regulation in cardiovascular disease and compared six different experimental models of heart failure, hypertension, or diabetes. Enhancers that regulate gene expression in diseased endothelial cells were enriched with binding sites for a distinct set of transcription factors, including the mineralocorticoid receptor (MR), a known drug target in heart failure and hypertension. For proof of concept, we applied endothelial cell-specific MR deletion in mice to confirm MR-dependent gene expression and predicted direct MR target genes. Overall, we have compiled here a comprehensive atlas of cardiac endothelial cell enhancer elements that provides insight into the role of transcription factors in cardiovascular disease.
Collapse
Affiliation(s)
- Lisa Deng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Cardiovascular Research Track, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Luisa Pollmeier
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rebecca Bednarz
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Can Cao
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Patrick Laurette
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Luisa Wirth
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Argen Mamazhakypov
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christine Bode
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Interdisciplinary Medical Intensive Care, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Wang Q, Liang S, Qian J, Xu J, Zheng Q, Wang M, Guo X, Min J, Wu G, Zhuang Z, Luo W, Liang G. OTUD1 promotes isoprenaline- and myocardial infarction-induced heart failure by targeting PDE5A in cardiomyocytes. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167018. [PMID: 38185350 DOI: 10.1016/j.bbadis.2024.167018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Heart failure represents a major cause of death worldwide. Recent research has emphasized the potential role of protein ubiquitination/deubiquitination protein modification in cardiac pathology. Here, we investigate the role of the ovarian tumor deubiquitinase 1 (OTUD1) in isoprenaline (ISO)- and myocardial infarction (MI)-induced heart failure and its molecular mechanism. OTUD1 protein levels were raised markedly in murine cardiomyocytes after MI and ISO treatment. OTUD1 deficiency attenuated myocardial hypertrophy and cardiac dysfunction induced by ISO infusion or MI operation. In vitro, OTUD1 knockdown in neonatal rat ventricular myocytes (NRVMs) attenuated ISO-induced injuries, while OTUD1 overexpression aggravated the pathological changes. Mechanistically, LC-MS/MS and Co-IP studies showed that OTUD1 bound directly to the GAF1 and PDEase domains of PDE5A. OTUD1 was found to reverse K48 ubiquitin chain in PDE5A through cysteine at position 320 of OTUD1, preventing its proteasomal degradation. PDE5A could inactivates the cGMP-PKG-SERCA2a signaling axis which dysregulate the calcium handling in cardiomyocytes, and leading to the cardiomyocyte injuries. In conclusion, OTUD1 promotes heart failure by deubiquitinating and stabilizing PDE5A in cardiomyocytes. These findings have identified PDE5A as a new target of OTUD1 and emphasize the potential of OTUD1 as a target for treating heart failure.
Collapse
Affiliation(s)
- Qinyan Wang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shiqi Liang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinfu Qian
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiachen Xu
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qingsong Zheng
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Mengyang Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | - Xiaochen Guo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Julian Min
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zaishou Zhuang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Wu Luo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
12
|
Nanda D, Pant P, Machha P, Sowpati DT, Kumarswamy R. Transcriptional changes during isoproterenol-induced cardiac fibrosis in mice. Front Mol Biosci 2023; 10:1263913. [PMID: 38178867 PMCID: PMC10765171 DOI: 10.3389/fmolb.2023.1263913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/23/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction: β-adrenergic stimulation using β-agonists such as isoproterenol has been routinely used to induce cardiac fibrosis in experimental animal models. Although transcriptome changes in surgical models of cardiac fibrosis such as transverse aortic constriction (TAC) and coronary artery ligation (CAL) are well-studied, transcriptional changes during isoproterenol-induced cardiac fibrosis are not well-explored. Methods: Cardiac fibrosis was induced in male C57BL6 mice by administration of isoproterenol for 4, 8, or 11 days at 50 mg/kg/day dose. Temporal changes in gene expression were studied by RNA sequencing. Results and discussion: We observed a significant alteration in the transcriptome profile across the different experimental groups compared to the saline group. Isoproterenol treatment caused upregulation of genes associated with ECM organization, cell-cell contact, three-dimensional structure, and cell growth, while genes associated with fatty acid oxidation, sarcoplasmic reticulum calcium ion transport, and cardiac muscle contraction are downregulated. A number of known long non-coding RNAs (lncRNAs) and putative novel lncRNAs exhibited differential regulation. In conclusion, our study shows that isoproterenol administration leads to the dysregulation of genes relevant to ECM deposition and cardiac contraction, and serves as an excellent alternate model to the surgical models of heart failure.
Collapse
Affiliation(s)
- Disha Nanda
- Council of Scientific and Industrial Research (CSIR)–Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka Pant
- Council of Scientific and Industrial Research (CSIR)–Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pratheusa Machha
- Council of Scientific and Industrial Research (CSIR)–Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Tej Sowpati
- Council of Scientific and Industrial Research (CSIR)–Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Regalla Kumarswamy
- Council of Scientific and Industrial Research (CSIR)–Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
Li W, Zhu Y, Wang W, He D, Feng L, Li Z. Src tyrosine kinase promotes cardiac remodeling induced by chronic sympathetic activation. Biosci Rep 2023; 43:BSR20231097. [PMID: 37650260 PMCID: PMC10611920 DOI: 10.1042/bsr20231097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Cardiac remodeling serves as the underlying pathological basis for numerous cardiovascular diseases and represents a pivotal stage for intervention. The excessive activation of β-adrenergic receptors (β-ARs) assumes a crucial role in cardiac remodeling. Nonetheless, the underlying molecular mechanisms governing β-AR-induced cardiac remodeling remain largely unresolved. In the present study, we identified Src tyrosine kinase as a key player in the cardiac remodeling triggered by excessive β-AR activation. Our findings demonstrated that Src mediates isoproterenol (ISO)-induced cardiac hypertrophy, fibrosis, and inflammation in vivo. Furthermore, Src facilitates β-AR-mediated proliferation and transdifferentiation of cardiac fibroblasts, and hypertrophy and cardiomyocytes in vitro. Subsequent investigations have substantiated that Src mediates β-AR induced the extracellular signal-regulated protein kinase (ERK1/2) signaling pathway activated by β-AR. Our research presents compelling evidence that Src promotes β-AR-induced cardiac remodeling in both in vivo and in vitro settings. It establishes the promoting effect of the β-AR/Src/ERK signaling pathway on overall cardiac remodeling in cardiac fibroblasts and underscores the potential of Src as a therapeutic target for cardiac remodeling.
Collapse
Affiliation(s)
- Wenqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuzhong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenjing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences. Beijing 100191, China
| | - Dan He
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences. Beijing 100191, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Beijing Key Laboratory of Cardiovascular Receptors Research; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences. Beijing 100191, China
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Zhang D, Zhao MM, Wu JM, Wang R, Xue G, Xue YB, Shao JQ, Zhang YY, Dong ED, Li ZY, Xiao H. Dual-omics reveals temporal differences in acute sympathetic stress-induced cardiac inflammation following α 1 and β-adrenergic receptors activation. Acta Pharmacol Sin 2023; 44:1350-1365. [PMID: 36737635 PMCID: PMC10310713 DOI: 10.1038/s41401-022-01048-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Sympathetic stress is prevalent in cardiovascular diseases. Sympathetic overactivation under strong acute stresses triggers acute cardiovascular events including myocardial infarction (MI), sudden cardiac death, and stress cardiomyopathy. α1-ARs and β-ARs, two dominant subtypes of adrenergic receptors in the heart, play a significant role in the physiological and pathologic regulation of these processes. However, little is known about the functional similarities and differences between α1- and β-ARs activated temporal responses in stress-induced cardiac pathology. In this work, we systematically compared the cardiac temporal genome-wide profiles of acute α1-AR and β-AR activation in the mice model by integrating transcriptome and proteome. We found that α1- and β-AR activations induced sustained and transient inflammatory gene expression, respectively. Particularly, the overactivation of α1-AR but not β-AR led to neutrophil infiltration at one day, which was closely associated with the up-regulation of chemokines, activation of NF-κB pathway, and sustained inflammatory response. Furthermore, there are more metabolic disorders under α1-AR overactivation compared with β-AR overactivation. These findings provide a new therapeutic strategy that, besides using β-blocker as soon as possible, blocking α1-AR within one day should also be considered in the treatment of acute stress-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ming-Ming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
| | - Ji-Min Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
| | - Rui Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
| | - Gang Xue
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan-Bo Xue
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ji-Qi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - You-Yi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
| | - Er-Dan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China.
| | - Zhi-Yuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China.
| |
Collapse
|
15
|
de Moura AL, Brum PC, de Carvalho AETS, Spadari RC. Effect of stress on the chronotropic and inotropic responses to β-adrenergic agonists in isolated atria of KOβ2 mice. Life Sci 2023; 322:121644. [PMID: 37004731 DOI: 10.1016/j.lfs.2023.121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Altered sensitivity to the chronotropic and inotropic effects of catecholamines and reduction in β1/β2-adrenoceptor (β1/β2-AR) ratio were reported in failing and in senescent human heart, as well as in isolated atria and ventricle of rats submitted to stress. This was due to downregulation of β1-AR with or without up-regulation of β2-AR. AIMS To investigate the stress-induced behavior of β1-AR in the heart of mice expressing a non-functional β2-AR subtype. The guiding hypothesis is that the absence of β2-AR signaling will not affect the behavior of β1-AR during stress and that those are independent processes. MATERIALS AND METHODS The chronotropic and inotropic responses to β-AR agonists in isolated atria of stressed mice expressing a non-functional β2-AR were analyzed. The mRNA and protein expressions of β1- and β2-AR were also determined. KEY FINDINGS No deaths were observed in mice under stress protocol. Atria of stressed mice displayed reduced sensitivity to isoprenaline compared to the controls, an effect that was abolished by the β2- and β1-AR antagonists 50 nM ICI118,551 and 300 nM CGP20712A, respectively. Sensitivity and maximum response to the β-agonists dobutamine and salbutamol were not altered by stress or ICI118,551. The responses to dobutamine and salbutamol were prevented by CGP20712A. The expression of β1-AR was reduced at protein levels. SIGNIFICANCE Collectively, our data provide evidence that the cardiac β2-AR is not essential for survival in a stressful situation and that the stress-induced reduction of β1-AR expression was independent of the β2-AR presence.
Collapse
|
16
|
Zhang X, Zhao Y, Zhou Y, Lv J, Peng J, Zhu H, Liu R. Trends in research on sick sinus syndrome: A bibliometric analysis from 2000 to 2022. Front Cardiovasc Med 2022; 9:991503. [DOI: 10.3389/fcvm.2022.991503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Sick sinus syndrome (SSS) is a refractory arrhythmia disease caused by the pathological changes of sinoatrial node and its adjacent tissues. 2,251 publications related to SSS were retrieved from Web of Science database from 2000 to 2022 and analyzed by using VOS viewer and CiteSpace software. The results showed the United States dominated the field, followed by Japan, Germany, and China. SSS was closely related to risk factors such as atrial fibrillation and aging. Sick sinus syndrome, atrial fibrillation and sinus node dysfunction were the top three keywords that had the strongest correlation with the study. Pacemaker implantation, differentiation and mutation are research hotspots currently. Clinical studies on SSS found that sick sinus syndrome, atrial fibrillation, and pacemakers were the top three keywords that had the largest nodes and the highest frequency. In the field of basic applied research and basic research, atrial fibrillation and pacemaker cells were the focus of research. In conclusion, bibliometric analysis provided valuable information for the prevention, treatment and future research trends of SSS.
Collapse
|