1
|
Mondal A, Barai S, Bera H, Patel T, Sahoo NG, Begum D, Ghosh B. Ferulic acid-g-tamarind gum/guar gum based in situ gel-forming powders as wound dressings. Int J Biol Macromol 2024; 277:134382. [PMID: 39111475 DOI: 10.1016/j.ijbiomac.2024.134382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
The current research endeavour aimed to synthesize ferulic acid grafted tamarind gum/guar gum (FA-g-TG/GG) based powders as wound dressings, which could form in situ gels upon contact with wound exudates. In this context, variable amounts of FA were initially grafted with TG via the Steglich esterification reaction protocol and the resulting conjugates were subsequently amalgamated with GG and lyophilized to produce dry powders (F-1 - -F-3) with average particle size within 5.10-5.54 μm and average angle of repose ∼30°. These powders were structurally characterized with 1H NMR, FTIR, DSC, TGA, XRD and SEM analyses. Pristine TG, FA-g-TG and FA-g-TG/GG powders (F-2) revealed their distinct morphological structures and variable negative zeta potential values (-11.06 mV-25.50 mV). Among various formulation (F-1-F-3), F-2 demonstrated an acceptable powder-to-gel conversion time (within 20 min), suitable water vapour transmission rates (WVTR, 2564.94 ± 32.47 g/m2/day) and excellent water retention abilities and swelling profiles (4559.00 ± 41.57 %) in wound fluid. The powders were cytocompatible and conferred antioxidant activities. The powders also displayed fibroblast cell proliferation, migration and adhesion properties, implying their wound-healing potentials. Thus, the developed in situ gel-forming powders could be employed as promising dressings for wound management.
Collapse
Affiliation(s)
- Akash Mondal
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, India
| | - Suman Barai
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, India
| | - Hriday Bera
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, India.
| | - Tarun Patel
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Nanda Gopal Sahoo
- Department of Chemistry, Kumaun University, Nainital 263001, Uttarakhand, India
| | - Darakhshan Begum
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India.
| |
Collapse
|
2
|
Coca-Hidalgo JJ, Recillas-Mota M, Fernández-Quiroz D, Lizardi-Mendoza J, Peniche-Covas C, Goycoolea FM, Argüelles-Monal WM. Study of the Thermal Phase Transition of Poly( N,N-diethylacrylamide- co- N-ethylacrylamide) Random Copolymers in Aqueous Solution. Polymers (Basel) 2024; 16:1575. [PMID: 38891521 PMCID: PMC11175111 DOI: 10.3390/polym16111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
N-alkyl-substituted polyacrylamides exhibit a thermal coil-to-globule transition in aqueous solution driven by an increase in hydrophobic interactions with rising temperature. With the aim of understanding the role of N-alkyl substituents in the thermal transition, this study focuses on the molecular interactions underlying the phase transition of poly(N,N-diethylacrylamide-co-N-ethylacrylamide) random copolymers. Poly(N,N-diethylacrylamide) (PDEAm), poly(N-ethylacrylamide) (PNEAm), and their random copolymers were synthesized by free radical polymerization and their chemical structure characterized spectroscopically. It was found that the values of the cloud-point temperature increased with PNEAm content, and particle aggregation processes took place, increasing the negative charge density on their surface. The cloud-point temperature of each copolymer decreased with respect to the theoretical values calculated assuming an absence of interactions. It is attributed to the formation of intra- and interchain hydrogen bonding in aqueous solutions. These interactions favor the formation of more hydrophobic macromolecular segments, thereby promoting the cooperative nature of the transition. These results definitively reveal the dominant mechanism occurring during the phase transition in the aqueous solutions of these copolymers.
Collapse
Affiliation(s)
- José Javier Coca-Hidalgo
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Mexico; (J.J.C.-H.); (M.R.-M.); (J.L.-M.)
| | - Maricarmen Recillas-Mota
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Mexico; (J.J.C.-H.); (M.R.-M.); (J.L.-M.)
| | - Daniel Fernández-Quiroz
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Mexico; (J.J.C.-H.); (M.R.-M.); (J.L.-M.)
| | | | | | - Waldo M. Argüelles-Monal
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Mexico; (J.J.C.-H.); (M.R.-M.); (J.L.-M.)
| |
Collapse
|
3
|
Gao Q, Wang X, Hu S, He PP, Gou S, Liu S, Du X, Guo W. Dual stimuli-responsive upconversion nanoparticle-poly- N-isopropylacrylamide/DNA core-shell microgels. SOFT MATTER 2024; 20:4052-4056. [PMID: 38738402 DOI: 10.1039/d4sm00258j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Stimuli-responsive upconversion nanoparticle (UCNP)-poly-N-isopropylacrylamide (pNIPAM)/DNA core-shell microgels with tunable sizes and programmable functions have been prepared. Thanks to the near-infrared (NIR)-responsive UCNP cores and thermosensitive polymeric shells, functional DNA-incorporated microgels with high DNA activity and loading efficiency are obtained, and the activity of the loaded DNA structures can be smartly regulated by NIR illumination and temperature simultaneously.
Collapse
Affiliation(s)
- Qi Gao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Xiaowen Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Shanjin Hu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Ping-Ping He
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Siyu Gou
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Shuo Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Xiaoxue Du
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
- Handan Key Laboratory of Novel Nanobiomaterials, College of Materials Science and Engineering, Hebei University of Engineering, Handan 056000, P. R. China.
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| |
Collapse
|
4
|
Wang Z, Chen R, Li Y, Yang W, Tian Z, Graham NJD, Yang Z. Protein-folding-inspired approach for UF fouling mitigation using elevated membrane cleaning temperature and residual hydrophobic-modified flocculant after flocculation-sedimentation pre-treatment. WATER RESEARCH 2023; 236:119942. [PMID: 37031529 DOI: 10.1016/j.watres.2023.119942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/09/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Hydrophobic-modified flocculants have demonstrated considerable promise in the removal of emerging contaminants by flocculation. However, there is a lack of information about the impacts of dosing such flocculants on the performance of subsequent treatment unit(s) in the overall water treatment process. In this work, inspired by the ubiquitous protein folding phenomenon, an innovative approach using an elevated membrane cleaning temperature as the means to induce residual hydrophobic-modified chitosan flocculant (TRC), after flocculation-sedimentation, to reduce membrane fouling in a subsequent ultrafiltration was proposed; this was evaluated in a continuous flocculation-sedimentation-ultrafiltration (FSUF) process treating samples of the Yangtze River. The hydrophobic chains of TRC had similar temperature-dependent hydrophobicity to those of natural proteins. In the 40-day operation of the FSUF system with combined dosing of alum and TRC, a moderately elevated cleaning water temperature (45 °C) of both backwash with air-bubbling and soaking with sponge-scrubbing cleaning, significantly reduced reversible and irreversible fouling resistance by 49.8%∼61.3% and 73.9%∼83.3%, respectively, compared to the system using cleaning water at 25 °C. Material flow analysis, statistical analysis, instrumental characterizations, and computational simulations, showed that the enhanced fouling mitigation originated from three factors: the reduced contaminant accumulation onto membranes, the strengthened membrane-surface-modification role of TRC, and the weakened structure of the fouling material containing TRC, at the elevated cleaning temperature. Other measures of the performance, these being water purification, membrane stability and economic aspects, also confirmed the potential and feasibility of the proposed approach. This work has provided new insights into the role of hydrophobic-modified flocculants in membrane fouling control, in addition to emerging contaminant removal, in a FSUF surface water treatment process.
Collapse
Affiliation(s)
- Zhangzheng Wang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Ruhui Chen
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Yunyun Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Weiben Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315000, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK
| | - Zhen Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Tangparitkul S, Jiang J, Jeraal M, Charpentier TVJ, Harbottle D. Competitive Adsorption of Interfacially Active Nanoparticles and Anionic Surfactant at the Crude Oil-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2483-2490. [PMID: 36753535 DOI: 10.1021/acs.langmuir.2c01413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The interfacial activity of poly(N-isopropylacrylamide) (pNIPAM) nanoparticles in the absence and presence of an anionic surfactant (sodium dodecyl sulfate, SDS) was studied at a crude oil-water interface. Both species are interfacially active and can lower the interfacial tension, but when mixed together, the interfacial composition was found to depend on the aging time and total component concentration. With the total component concentration less than 0.005 wt %, the reduced interfacial tension by pNIPAM was greater than SDS; thus, pNIPAM has a greater affinity to partition at the crude oil-water interface. However, the lower molecular weight (smaller molecule) of SDS compared to pNIPAM meant that it rapidly partitioned at the oil-water interface. When mixed, the interfacial composition was more SDS-like for low total component concentrations (≤ 0.001 wt %), while above, the interfacial composition was more pNIPAM-like, similar to the single component response. Applying a weighted arithmetic mean approach, the surface-active contribution (%) could be approximated for each component, pNIPAM and SDS. Even though SDS rapidly partitioned at the oil-water interface, it was shown to be displaced by the pNIPAM nanoparticles, and for the highest total component concentration, pNIPAM nanoparticles were predominantly contributing to the reduced oil-water interfacial tension. These findings have implications for the design and performance of fluids that are used to enhance crude oil production from reservoirs, particularly highlighting the aging time and component concentration effects to modify interfacial tensions.
Collapse
Affiliation(s)
- Suparit Tangparitkul
- Department of Mining and Petroleum Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiatong Jiang
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mohammed Jeraal
- Cambridge Centre for Advanced Research and Education in Singapore Ltd., 1 Create Way, CREATE Tower #05-05, 138602 Singapore
| | | | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
6
|
Stock S, Röhl S, Mirau L, Kraume M, von Klitzing R. Maximum Incorporation of Soft Microgel at Interfaces of Water in Oil Emulsion Droplets Stabilized by Solid Silica Spheres. NANOMATERIALS 2022; 12:nano12152649. [PMID: 35957079 PMCID: PMC9370103 DOI: 10.3390/nano12152649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023]
Abstract
The incorporation of soft hydrophilic particles at the interface of water in non-polar oil emulsion droplets is crucial for several applications. However, the stabilization of water in non-polar oil emulsions with hydrophilic soft material alone is, besides certain exceptions, not possible. In our previous works, we showed that stabilizing the emulsions with well-characterized spherical hydrophobic silica nanospheres (SNs) and soft equally charged microgel particles (MGs) is a robust strategy to stabilize w/o emulsions while still incorporating a large amount of MGs at the interface. In the present study, we address the question of what the maximum amount of MGs at the interface in these kinds of emulsion droplets can be. By using well-characterized mono-disperse SNs, we are able to calculate the fraction of interface covered by the SNs and complementary that of the present MG. We found that it is not possible to decrease the SN coverage below 56% irrespective of MG softness and SN size. The findings elucidate new perspectives to the broader topic of soft/solid stabilized emulsions.
Collapse
Affiliation(s)
- Sebastian Stock
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany; (S.S.); (L.M.)
| | - Susanne Röhl
- Department of Chemical and Process Engineering, Technische Universität Berlin, 10623 Berlin, Germany; (S.R.); (M.K.)
| | - Luca Mirau
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany; (S.S.); (L.M.)
| | - Matthias Kraume
- Department of Chemical and Process Engineering, Technische Universität Berlin, 10623 Berlin, Germany; (S.R.); (M.K.)
| | - Regine von Klitzing
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany; (S.S.); (L.M.)
- Correspondence: ; Tel.: +49-6151-16-24506
| |
Collapse
|
7
|
Ye Y, Wang Z, Xu S, Lin X, Luo J, Li W, Wang X. Supramolecular Radical Switches Regulated by Host‐Guest Chemistry. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu‐Yuan Ye
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Zi‐Xin Wang
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Shi‐Yuan Xu
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Xiao‐Wei Lin
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Jie Luo
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Wen‐Zhen Li
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Xiao‐Qiang Wang
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| |
Collapse
|
8
|
Plasticizer Effect and Ionic Cross-linking: the Impact of Incorporating Divalent Salts in Methylcellulose Films for Colorimetric Detection of Volatile Ammonia. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09700-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Ou C, Wang C, Giasson S. Enhanced swelling using photothermal responsive
surface‐immobilized
microgels. J Appl Polym Sci 2021. [DOI: 10.1002/app.50973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Charly Ou
- Department of Chemistry Université de Montréal Montreal Quebec Canada
| | - Chang‐Sheng Wang
- Department of Chemistry Université de Montréal Montreal Quebec Canada
| | - Suzanne Giasson
- Department of Chemistry Université de Montréal Montreal Quebec Canada
- Faculty of Pharmacy Université de Montréal Montreal Quebec Canada
| |
Collapse
|
10
|
Li M, Ma X, Eisener J, Pfeiffer P, Ohl CD, Sun C. How bulk nanobubbles are stable over a wide range of temperatures. J Colloid Interface Sci 2021; 596:184-198. [DOI: 10.1016/j.jcis.2021.03.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 11/28/2022]
|
11
|
Büning D, Schumacher J, Helling A, Chakroun R, Ennen-Roth F, Gröschel AH, Thom V, Ulbricht M. Soft synthetic microgels as mimics of mycoplasma. SOFT MATTER 2021; 17:6445-6460. [PMID: 34132722 DOI: 10.1039/d1sm00379h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Artificial model colloids are of special interest in the development of advanced sterile filters, as they are able to efficiently separate pleomorphic, highly deformable and infectious bacteria such as mycoplasma, which, until now, has been considered rather challenging and laborious. This study presents a full range of different soft to super soft synthetic polymeric microgels, including two types with similar hydrodynamic mean diameter, i.e., 180 nm, and zeta potential, i.e., -25 ± 10 mV, but different deformability, synthesized by inverse miniemulsion terpolymerization of acrylamide, sodium acrylate and N,N'-methylenebisacrylamide. These microgels were characterized by means of dynamic, electrophoretic and static light scattering techniques. In addition, the deformability of the colloids was investigated by filter cake compressibility studies during ultrafiltration in dead-end mode, analogously to a study of real mycoplasma, i.e., Acholeplasma laidlawii, to allow for a direct comparison. The results indicate that the variation of the synthesis parameters, i.e., crosslinker content, polymeric solid content and content of sodium acrylate, has a significant impact on the swelling behavior of the microgels in aqueous solution as well as on their deformability under filtration conditions. A higher density of chemical crosslinking points results in less swollen and more rigid microgels. Furthermore, these parameters determine electrokinetic properties of the more or less permeable colloids. Overall, it is shown that these soft synthetic microgels can be obtained with tailor-made properties, covering the size of smallest species of and otherwise similar to real mycoplasma. This is a relevant first step towards the future use of synthetic microgels as mimics for mycoplasma.
Collapse
Affiliation(s)
- Dominic Büning
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany.
| | - Jens Schumacher
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany.
| | - Alexander Helling
- Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Göttingen, Germany
| | - Ramzi Chakroun
- Institute of Physical Chemistry, University of Münster, Corrensstr. 28-30, 48149 Münster, Germany
| | - Franka Ennen-Roth
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany.
| | - Andre H Gröschel
- Institute of Physical Chemistry, University of Münster, Corrensstr. 28-30, 48149 Münster, Germany
| | - Volkmar Thom
- Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Göttingen, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany.
| |
Collapse
|
12
|
Howaili F, Özliseli E, Küçüktürkmen B, Razavi SM, Sadeghizadeh M, Rosenholm JM. Stimuli-Responsive, Plasmonic Nanogel for Dual Delivery of Curcumin and Photothermal Therapy for Cancer Treatment. Front Chem 2021; 8:602941. [PMID: 33585400 PMCID: PMC7873892 DOI: 10.3389/fchem.2020.602941] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023] Open
Abstract
Nanogels (Ng) are crosslinked polymer-based hydrogel nanoparticles considered to be next-generation drug delivery systems due to their superior properties, including high drug loading capacity, low toxicity, and stimuli responsiveness. In this study, dually thermo-pH-responsive plasmonic nanogel (AuNP@Ng) was synthesized by grafting poly (N-isopropyl acrylamide) (PNIPAM) to chitosan (CS) in the presence of a chemical crosslinker to serve as a drug carrier system. The nanogel was further incorporated with gold nanoparticles (AuNP) to provide simultaneous drug delivery and photothermal therapy (PTT). Curcumin's (Cur) low water solubility and low bioavailability are the biggest obstacles to effective use of curcumin for anticancer therapy, and these obstacles can be overcome by utilizing an efficient delivery system. Therefore, curcumin was chosen as a model drug to be loaded into the nanogel for enhancing the anticancer efficiency, and further, its therapeutic efficiency was enhanced by PTT of the formulated AuNP@Ng. Thorough characterization of Ng based on CS and PNIPAM was conducted to confirm successful synthesis. Furthermore, photothermal properties and swelling ratio of fabricated nanoparticles were evaluated. Morphology and size measurements of nanogel were determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Nanogel was found to have a hydrodynamic size of ~167 nm and exhibited sustained release of curcumin up to 72 h with dual thermo-pH responsive drug release behavior, as examined under different temperature and pH conditions. Cytocompatibility of plasmonic nanogel was evaluated on MDA-MB-231 human breast cancer and non-tumorigenic MCF 10A cell lines, and the findings indicated the nanogel formulation to be cytocompatible. Nanoparticle uptake studies showed high internalization of nanoparticles in cancer cells when compared with non-tumorigenic cells and confocal microscopy further demonstrated that AuNP@Ng were internalized into the MDA-MB-231 cancer cells via endosomal route. In vitro cytotoxicity studies revealed dose-dependent and time-dependent drug delivery of curcumin loaded AuNP@Ng/Cur. Furthermore, the developed nanoparticles showed an improved chemotherapy efficacy when irradiated with near-infrared (NIR) laser (808 nm) in vitro. This work revealed that synthesized plasmonic nanogel loaded with curcumin (AuNP@Ng/Cur) can act as stimuli-responsive nanocarriers, having potential for dual therapy i.e., delivery of hydrophobic drug and photothermal therapy.
Collapse
Affiliation(s)
- Fadak Howaili
- NanoBiotechnology Department, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Ezgi Özliseli
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Berrin Küçüktürkmen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Department of Pharmaceutical Technology Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Seyyede Mahboubeh Razavi
- Polymer Reaction Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- NanoBiotechnology Department, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
13
|
Vdovchenko A, Pearce AK, Freeley M, O'Reilly RK, Resmini M. Effect of heterogeneous and homogeneous polymerisation on the structure of pNIPAm nanogels. Polym Chem 2021. [DOI: 10.1039/d1py01333e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The choice of the polymerisation temperature and initiator in the synthesis of poly(N-isopropylacrylamide)-based nanogels can significantly influence their structure, morphology and thermoresponsive properties.
Collapse
Affiliation(s)
- Alena Vdovchenko
- School of Physical and Chemical Science, Queen Mary University of London, London E1 4NS, UK
| | - Amanda K. Pearce
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark Freeley
- School of Physical and Chemical Science, Queen Mary University of London, London E1 4NS, UK
| | | | - Marina Resmini
- School of Physical and Chemical Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
14
|
Zheng D, Bai B, He Y, Hu N, Wang H. Synthesis and characterization of dopamine-modified Ca-alginate/poly(N-isopropylacrylamide) microspheres for water retention and multi-responsive controlled release of agrochemicals. Int J Biol Macromol 2020; 160:518-530. [PMID: 32479948 DOI: 10.1016/j.ijbiomac.2020.05.234] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 01/07/2023]
Abstract
The multi-responsive controlled-release system could enhance crop yield while improving utilization efficiency of agrochemicals, and minimize environmental pollution caused by agrochemicals overuse. This work reports a novel Ca-alginate/Poly(N-isopropylacrylamide)@polydopamine (Ca-alginate/PNIPAm@PDA) microsphere to control the agrochemicals release. Microsphere with a semi-interpenetrating network, which contained pH-sensitive Ca-alginate, temperature-sensitive poly(N-isopropylacrylamide) (PNIPAm), and sunlight-sensitive polydopamine (PDA), was characterized by thermogravimetric analysis, zeta potential, Fourier transform infrared spectroscopy, and scanning electron microscopy to prove the successful synthesis. Moreover, the comprehensive performances, including photothermal conversion, water absorbency, water retention, and controlled-release agrochemicals behaviors, were systematically investigated. The results indicated that the composite microsphere was a prosperous water and agrochemicals manager to effectively retain water and control the release of agrochemicals by external stimulation. Consequently, the Ca-alginate/PNIPAm@PDA microsphere with outstanding water-retention and controlled-release capacities is economical and eco-friendly and thus is promising for utilization as water and agrochemicals controlled-release carrier material in agriculture applications.
Collapse
Affiliation(s)
- Dan Zheng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Bo Bai
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, China.
| | - Yunhua He
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, China
| |
Collapse
|
15
|
de Solorzano IO, Prieto M, Mendoza G, Sebastian V, Arruebo M. Triggered drug release from hybrid thermoresponsive nanoparticles using near infrared light. Nanomedicine (Lond) 2020; 15:219-234. [DOI: 10.2217/nnm-2019-0270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Developing hybrid poly(N-isopropylacrylamide)-based nanogels decorated with plasmonic hollow gold nanoparticles for on-demand drug delivery and their physico-chemical characterization, bupivacaine loading and release ability upon light irradiation, and in vitro cell viability. Materials & methods: Hollow gold nanoparticles were prepared by galvanic replacement reaction; poly(N-isopropylacrylamide)-based nanogels were synthesized via precipitation polymerization and their electrostatic coupling was accomplished using poly(allylamine hydrochloride) as cationic polyelectrolyte linker. Results & conclusion: Colloidal stability of the resulted hybrid nanovectors was demonstrated under physiological conditions together with their fast response and excellent heating efficiency after light stimulation, indicating their potential use as triggered drug-delivery vectors. Moreover, their influence on cell metabolism and cell cycle under subcytotoxic doses were studied showing excellent cytocompatibility.
Collapse
Affiliation(s)
- Isabel Ortiz de Solorzano
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Martin Prieto
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Gracia Mendoza
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Victor Sebastian
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| |
Collapse
|
16
|
Rabiee H, Jin B, Yun S, Dai S. O2/N2-responsive microgels as functional draw agents for gas-triggering forward osmosis desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Fussell SL, Bayliss K, Coops C, Matthews L, Li W, Briscoe WH, Faers MA, Royall CP, van Duijneveldt JS. Reversible temperature-controlled gelation in mixtures of pNIPAM microgels and non-ionic polymer surfactant. SOFT MATTER 2019; 15:8578-8588. [PMID: 31642834 DOI: 10.1039/c9sm01299k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigate the reversible gelation of poly(N-isopropylacrylamide) (pNIPAM) microgels in the presence of triblock-copolymer (PEO-PPO-PEO type) surfactant. We demonstrate that the association of these polymers with the microgel particles at elevated temperature is responsible for the gelation, due to the temperature responsive nature of the components. This is highlighted by an increase in the apparent hydrodynamic diameter of the particles in dynamic light scattering experiments, which only occurs above the volume phase transition temperature of pNIPAM. The gels that result shrink over a time period much larger than that of the collapse of pNIPAM microgels, and retain the shape of the container they form in. We investigate the mechanism that leads to this gelation and the structure of the gels that result. Confocal microscopy experiments show that both polymers are present in the gel network, indicating that an associative mechanism is responsible for the gelation. We vary the pNIPAM particle architecture to further investigate the gelation process, and find that the cross-link distribution plays a key role in the gelation mechanism, where for uniformly cross-linked particles the gelation is not observed. This shows that the fuzzy corona of the pNIPAM microgels is involved in the association of the polymers, allowing the triblock-copolymer to penetrate the outer corona of the microgels and bridge the particles. The phase transition observed is close to physiological conditions, so these gels have the potential for use in biomedical applications, including tissue engineering.
Collapse
Affiliation(s)
- S L Fussell
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
“Smart” IPN microgels with different network structures: Self-crosslinked vs conventionally crosslinked. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Conley GM, Zhang C, Aebischer P, Harden JL, Scheffold F. Relationship between rheology and structure of interpenetrating, deforming and compressing microgels. Nat Commun 2019; 10:2436. [PMID: 31164639 PMCID: PMC6547648 DOI: 10.1038/s41467-019-10181-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 04/23/2019] [Indexed: 11/30/2022] Open
Abstract
Thermosensitive microgels are widely studied hybrid systems combining properties of polymers and colloidal particles in a unique way. Due to their complex morphology, their interactions and packing, and consequentially the viscoelasticity of suspensions made from microgels, are still not fully understood, in particular under dense packing conditions. Here we study the frequency-dependent linear viscoelastic properties of dense suspensions of micron sized soft particles in conjunction with an analysis of the local particle structure and morphology based on superresolution microscopy. By identifying the dominating mechanisms that control the elastic and dissipative response, we can explain the rheology of these widely studied soft particle assemblies from the onset of elasticity deep into the overpacked regime. Interestingly, our results suggest that the friction between the microgels is reduced due to lubrification mediated by the polymer brush-like corona before the onset of interpenetration.
Collapse
Affiliation(s)
- Gaurasundar M Conley
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700, Fribourg, Switzerland
| | - Chi Zhang
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700, Fribourg, Switzerland
| | - Philippe Aebischer
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700, Fribourg, Switzerland
| | - James L Harden
- Department of Physics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Frank Scheffold
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700, Fribourg, Switzerland.
| |
Collapse
|
20
|
Rovigatti L, Gnan N, Tavagnacco L, Moreno AJ, Zaccarelli E. Numerical modelling of non-ionic microgels: an overview. SOFT MATTER 2019; 15:1108-1119. [PMID: 30543246 PMCID: PMC6371763 DOI: 10.1039/c8sm02089b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 05/03/2023]
Abstract
Microgels are complex macromolecules. These colloid-sized polymer networks possess internal degrees of freedom and, depending on the polymer(s) they are made of, can acquire a responsiveness to variations of the environment (temperature, pH, salt concentration, etc.). Besides being valuable for many practical applications, microgels are also extremely important to tackle fundamental physics problems. As a result, these last years have seen a rapid development of protocols for the synthesis of microgels, and more and more research has been devoted to the investigation of their bulk properties. However, from a numerical standpoint the picture is more fragmented, as the inherently multi-scale nature of microgels, whose bulk behaviour crucially depends on the microscopic details, cannot be handled at a single level of coarse-graining. Here we present an overview of the methods and models that have been proposed to describe non-ionic microgels at different length-scales, from the atomistic to the single-particle level. We especially focus on monomer-resolved models, as these have the right level of details to capture the most important properties of microgels, responsiveness and softness. We suggest that these microscopic descriptions, if realistic enough, can be employed as starting points to develop the more coarse-grained representations required to investigate the behaviour of bulk suspensions.
Collapse
Affiliation(s)
- Lorenzo Rovigatti
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| | - Nicoletta Gnan
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| | - Letizia Tavagnacco
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| | - Angel J. Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC
,
Paseo Manuel de Lardizabal 5
, 20018 San Sebastián
, Spain
- Donostia International Physics Center
,
Paseo Manuel de Lardizabal 4
, 20018 San Sebastian
, Spain
| | - Emanuela Zaccarelli
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| |
Collapse
|
21
|
Micali N, Bertoldo M, Buratti E, Nigro V, Angelini R, Villari V. Interpenetrating Polymer Network Microgels in Water: Effect of Composition on the Structural Properties and Electrosteric Interactions. Chemphyschem 2018; 19:2894-2901. [PMID: 30074305 DOI: 10.1002/cphc.201800707] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Microgels of cross-linked interpenetrating polymer networks (IPNs) are very versatile systems combining the properties of colloids and polymers. Herein we study IPN microgels composed of poly(N-isopropylacrylamide) and poly(acrylic acid) to understand how weight composition and reactant concentrations affect their structural, conformational and electrosteric properties in water. The results show that it is possible to drive the formation of microgels with the desired properties by adjusting IPN composition and preparation method during the synthesis. During synthesis, the polymerization of acrylic acid triggers the merging among IPNs via covalent linking, giving rise to microgels with larger mass and size, the effect being larger for higher concentration of the reactants. In addition, a close relation between the microgel internal conformation and the colloidal stability is observed, due to the presence of screened groups inside the microgel.
Collapse
Affiliation(s)
- Norberto Micali
- CNR-IPCF Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, Viale F. Stagno d'Alcontres 37, I-98158, Messina, Italy
| | - Monica Bertoldo
- CNR-IPCF Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, Area della Ricerca, Via G. Moruzzi 1, I-56124, Pisa, Italy
| | - Elena Buratti
- CNR-IPCF Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, Area della Ricerca, Via G. Moruzzi 1, I-56124, Pisa, Italy
| | - Valentina Nigro
- CNR-ISC Istituto dei Sistemi Complessi, sede Sapienza, Consiglio Nazionale delle Ricerche, P.le Aldo Moro 5, I-00185, Roma, Italy.,Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Roberta Angelini
- CNR-ISC Istituto dei Sistemi Complessi, sede Sapienza, Consiglio Nazionale delle Ricerche, P.le Aldo Moro 5, I-00185, Roma, Italy.,Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy
| | - Valentina Villari
- CNR-IPCF Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, Viale F. Stagno d'Alcontres 37, I-98158, Messina, Italy
| |
Collapse
|
22
|
Effects of NaCl, NaOH, and HCl concentration on the cloud point of poly(vinyl methyl ether) in water—electrostatic interactions are inevitably involved in the hydrophobic interaction. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4130-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|