1
|
Theme 7 Pre-Clinical Therapeutic Strategies. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:197-217. [PMID: 39508670 DOI: 10.1080/21678421.2024.2403304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
2
|
Tan DCS, Jung S, Deng Y, Morey N, Chan G, Bongers A, Ke YD, Ittner LM, Delerue F. PLP1-Targeting Antisense Oligonucleotides Improve FOXG1 Syndrome Mice. Int J Mol Sci 2024; 25:10846. [PMID: 39409184 PMCID: PMC11477415 DOI: 10.3390/ijms251910846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
FOXG1 syndrome is a rare neurodevelopmental disorder of the telencephalon, for which there is no cure. Underlying heterozygous pathogenic variants in the Forkhead Box G1 (FOXG1) gene with resulting impaired or loss of FOXG1 function lead to severe neurological impairments. Here, we report a patient with a de novo pathogenic single nucleotide deletion c.946del (p.Leu316Cysfs*10) of the FOXG1 gene that causes a premature protein truncation. To study this variant in vivo, we generated and characterized Foxg1 c946del mice that recapitulate hallmarks of the human disorder. Accordingly, heterozygous Foxg1 c946del mice display neurological symptoms with aberrant neuronal networks and increased seizure susceptibility. Gene expression profiling identified increased oligodendrocyte- and myelination-related gene clusters. Specifically, we showed that expression of the c946del mutant and of other pathogenic FOXG1 variants correlated with overexpression of proteolipid protein 1 (Plp1), a gene linked to white matter disorders. Postnatal administration of Plp1-targeting antisense oligonucleotides (ASOs) in Foxg1 c946del mice improved neurological deficits. Our data suggest Plp1 as a new target for therapeutic strategies mitigating disease phenotypes in FOXG1 syndrome patients.
Collapse
Affiliation(s)
- Daniel C. S. Tan
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Seonghee Jung
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Yuanyuan Deng
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Nicolle Morey
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Gabriella Chan
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Andre Bongers
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.)
| | - Yazi D. Ke
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Lars M. Ittner
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| | - Fabien Delerue
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (D.C.S.T.); (S.J.); (Y.D.); (N.M.); (G.C.); (Y.D.K.)
| |
Collapse
|
3
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
4
|
Ke YD, van Hummel A, Au C, Chan G, Lee WS, van der Hoven J, Przybyla M, Deng Y, Sabale M, Morey N, Bertz J, Feiten A, Ippati S, Stevens CH, Yang S, Gladbach A, Haass NK, Kril JJ, Blair IP, Delerue F, Ittner LM. Targeting 14-3-3θ-mediated TDP-43 pathology in amyotrophic lateral sclerosis and frontotemporal dementia mice. Neuron 2024; 112:1249-1264.e8. [PMID: 38366598 DOI: 10.1016/j.neuron.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by cytoplasmic deposition of the nuclear TAR-binding protein 43 (TDP-43). Although cytoplasmic re-localization of TDP-43 is a key event in the pathogenesis of ALS/FTD, the underlying mechanisms remain unknown. Here, we identified a non-canonical interaction between 14-3-3θ and TDP-43, which regulates nuclear-cytoplasmic shuttling. Neuronal 14-3-3θ levels were increased in sporadic ALS and FTD with TDP-43 pathology. Pathogenic TDP-43 showed increased interaction with 14-3-3θ, resulting in cytoplasmic accumulation, insolubility, phosphorylation, and fragmentation of TDP-43, resembling pathological changes in disease. Harnessing this increased affinity of 14-3-3θ for pathogenic TDP-43, we devised a gene therapy vector targeting TDP-43 pathology, which mitigated functional deficits and neurodegeneration in different ALS/FTD mouse models expressing mutant or non-mutant TDP-43, including when already symptomatic at the time of treatment. Our study identified 14-3-3θ as a mediator of cytoplasmic TDP-43 localization with implications for ALS/FTD pathogenesis and therapy.
Collapse
Affiliation(s)
- Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Annika van Hummel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Carol Au
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Gabriella Chan
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wei Siang Lee
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yuanyuan Deng
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Miheer Sabale
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nicolle Morey
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Josefine Bertz
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Astrid Feiten
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Stefania Ippati
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Claire H Stevens
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Shu Yang
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Amadeus Gladbach
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jillian J Kril
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Ian P Blair
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Fabien Delerue
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
5
|
Moreno-Jiménez L, Benito-Martín MS, Sanclemente-Alamán I, Matías-Guiu JA, Sancho-Bielsa F, Canales-Aguirre A, Mateos-Díaz JC, Matías-Guiu J, Aguilar J, Gómez-Pinedo U. Murine experimental models of amyotrophic lateral sclerosis: an update. Neurologia 2024; 39:282-291. [PMID: 37116688 DOI: 10.1016/j.nrleng.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/08/2021] [Indexed: 04/30/2023] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease whose aetiology is unknown. It is characterised by upper and lower motor neuron degeneration. Approximately 90% of cases of ALS are sporadic, whereas the other 10% are familial. Regardless of whether the case is familial o sporadic, patients will develop progressive weakness, muscle atrophy with spasticity, and muscle contractures. Life expectancy of these patients is generally 2 to 5 years after diagnosis. DEVELOPMENT In vivo models have helped to clarify the aetiology and pathogenesis of ALS, as well as the mechanisms of the disease. However, as these mechanisms are not yet fully understood, experimental models are essential to the continued study of the pathogenesis of ALS, as well as in the search for possible therapeutic targets. Although 90% of cases are sporadic, most of the models used to study ALS pathogenesis are based on genetic mutations associated with the familial form of the disease; the pathogenesis of sporadic ALS remains unknown. Therefore, it would be critical to establish models based on the sporadic form. CONCLUSIONS This article reviews the main genetic and sporadic experimental models used in the study of this disease, focusing on those that have been developed using rodents.
Collapse
Affiliation(s)
- L Moreno-Jiménez
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - M S Benito-Martín
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - I Sanclemente-Alamán
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - J A Matías-Guiu
- Departamento de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - F Sancho-Bielsa
- Departamento de Fisiología, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | - J C Mateos-Díaz
- Departamento de Biotecnología Industrial, CIATEJ-CONACyT, Zapopan, Mexico
| | - J Matías-Guiu
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain; Departamento de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - J Aguilar
- Laboratorio de Neurofisiología Experimental y Circuitos Neuronales del Hospital Nacional de Parapléjicos, Toledo, Spain
| | - U Gómez-Pinedo
- Laboratorio de Neurobiología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
6
|
Rayner SL, Hogan A, Davidson JM, Chapman T, Cheng F, Luu L, Wu S, Zhang S, Yang S, Blair I, Morsch M, Chung R, Lee A. Cyclin F can alter the turnover of TDP-43. Neurobiol Dis 2024; 192:106421. [PMID: 38286389 DOI: 10.1016/j.nbd.2024.106421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Previously, we demonstrated that the SCFcyclin F complex directly mediates the poly-ubiquitylation of TDP-43, raising the question of whether cyclin F can be used to enhance the turnover of TDP-43. A hurdle to the use of cyclin F, however, is that the overexpression of cyclin F can lead to the initiation of cell death pathways. Accordingly, the aim of this study was to identify and evaluate a less toxic variant of cyclin F. To do so, we first confirmed and validated our previous findings that cyclin F binds to TDP-43 in an atypical manner. Additionally, we demonstrated that mutating the canonical substrate region in cyclin F (to generate cyclin FMRL/AAA) led to reduced binding affinity to known canonical substrates without impacting the interaction between cyclin F and TDP-43. Notably, both wild-type and cyclin FMRL/AAA effectively reduced the abundance of TDP-43 in cultured cells whilst cyclin FMRL/AAA also demonstrated reduced cell death compared to the wild-type control. The decrease in toxicity also led to a reduction in morphological defects in zebrafish embryos. These results suggest that cyclin F can be modified to enhance its targeting of TDP-43, which in turn reduces the toxicity associated with the overexpression of cyclin F. This study provides greater insights into the interaction that occurs between cyclin F and TDP-43 in cells and in vivo.
Collapse
Affiliation(s)
- Stephanie L Rayner
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia.
| | - Alison Hogan
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Jennilee M Davidson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Tyler Chapman
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Luan Luu
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Sharlynn Wu
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Selina Zhang
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Shu Yang
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Ian Blair
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Marco Morsch
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Roger Chung
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
7
|
Jensen BK. Astrocyte-Neuron Interactions Contributing to Amyotrophic Lateral Sclerosis Progression. ADVANCES IN NEUROBIOLOGY 2024; 39:285-318. [PMID: 39190080 DOI: 10.1007/978-3-031-64839-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease impacting motor neurons of the brain, brainstem, and spinal cord. Disease etiology is quite heterogeneous with over 40 genes causing the disease and a vast ~90% of patients having no prior family history. Astrocytes are major contributors to ALS, particularly through involvement in accelerating disease progression. Through study of genetic forms of disease including SOD1, TDP43, FUS, C9orf72, VCP, TBK1, and more recently patient-derived cells from sporadic individuals, many biological mechanisms have been identified to cause intrinsic or glial-mediated neurotoxicity to motor neurons. Overall, many of the normally supportive and beneficial roles that astrocytes contribute to neuronal health and survival instead switch to become deleterious and neurotoxic. While the exact pathways may differ based on disease-origin, altered astrocyte-neuron communication is a common feature of ALS. Within this chapter, distinct genetic forms are examined in detail, along with what is known from sporadic patient-derived cells. Overall, this chapter highlights the interplay between astrocytes and neurons in this complex disease and describes the key features underlying: astrocyte-mediated motor neuron toxicity, excitotoxicity, oxidative/nitrosative stress, protein dyshomeostasis, metabolic imbalance, inflammation, trophic factor withdrawal, blood-brain/blood-spinal cord barrier involvement, disease spreading, and the extracellular matrix/cell adhesion/TGF-β signaling pathways.
Collapse
Affiliation(s)
- Brigid K Jensen
- Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Babazadeh A, Rayner SL, Lee A, Chung RS. TDP-43 as a therapeutic target in neurodegenerative diseases: Focusing on motor neuron disease and frontotemporal dementia. Ageing Res Rev 2023; 92:102085. [PMID: 37813308 DOI: 10.1016/j.arr.2023.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
A common feature of adult-onset neurodegenerative diseases is the presence of characteristic pathological accumulations of specific proteins. These pathological protein depositions can vary in their protein composition, cell-type distribution, and intracellular (or extracellular) location. For example, abnormal cytoplasmic protein deposits which consist of the TDP-43 protein are found within motor neurons in patients with amyotrophic lateral sclerosis (ALS, a common form of motor neuron disease) and frontotemporal dementia (FTD). The presence of these insoluble intracellular TDP-43 inclusions suggests that restoring TDP-43 homeostasis represents a potential therapeutical strategy, which has been demonstrated in alleviating neurodegenerative symptoms in cell and animal models of ALS/FTD. We have reviewed the mechanisms that lead to disrupted TDP-43 homeostasis and discussed how small molecule-based therapies could be applied in modulating these mechanisms. This review covers recent advancements and challenges in small molecule-based therapies that could be used to clear pathological forms of TDP-43 through various protein homeostasis mechanisms and advance the way towards finding effective therapeutical drug discoveries for neurodegenerative diseases characterized by TDP-43 proteinopathies, especially ALS and FTD. We also consider the wider insight of these therapeutic strategies for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Afshin Babazadeh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
9
|
Tsuboguchi S, Nakamura Y, Ishihara T, Kato T, Sato T, Koyama A, Mori H, Koike Y, Onodera O, Ueno M. TDP-43 differentially propagates to induce antero- and retrograde degeneration in the corticospinal circuits in mouse focal ALS models. Acta Neuropathol 2023; 146:611-629. [PMID: 37555859 DOI: 10.1007/s00401-023-02615-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/22/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by TDP-43 inclusions in the cortical and spinal motor neurons. It remains unknown whether and how pathogenic TDP-43 spreads across neural connections to progress degenerative processes in the cortico-spinal motor circuitry. Here we established novel mouse ALS models that initially induced mutant TDP-43 inclusions in specific neuronal or cell types in the motor circuits, and investigated whether TDP-43 and relevant pathological processes spread across neuronal or cellular connections. We first developed ALS models that primarily induced TDP-43 inclusions in the corticospinal neurons, spinal motor neurons, or forelimb skeletal muscle, by using adeno-associated virus (AAV) expressing mutant TDP-43. We found that TDP-43 induced in the corticospinal neurons was transported along the axons anterogradely and transferred to the oligodendrocytes along the corticospinal tract (CST), coinciding with mild axon degeneration. In contrast, TDP-43 introduced in the spinal motor neurons did not spread retrogradely to the cortical or spinal neurons; however, it induced an extreme loss of spinal motor neurons and subsequent degeneration of neighboring spinal neurons, suggesting a degenerative propagation in a retrograde manner in the spinal cord. The intraspinal degeneration further led to severe muscle atrophy. Finally, TDP-43 induced in the skeletal muscle did not propagate pathological events to spinal neurons retrogradely. Our data revealed that mutant TDP-43 spread across neuro-glial connections anterogradely in the corticospinal pathway, whereas it exhibited different retrograde degenerative properties in the spinal circuits. This suggests that pathogenic TDP-43 may induce distinct antero- and retrograde mechanisms of degeneration in the motor system in ALS.
Collapse
Affiliation(s)
- Shintaro Tsuboguchi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Yuka Nakamura
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Taisuke Kato
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tokiharu Sato
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihide Koyama
- Division of Legal Medicine, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Hideki Mori
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Yuka Koike
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan.
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
10
|
Yabata H, Riku Y, Miyahara H, Akagi A, Sone J, Urushitani M, Yoshida M, Iwasaki Y. Nuclear Expression of TDP-43 Is Linked with Morphology and Ubiquitylation of Cytoplasmic Aggregates in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:12176. [PMID: 37569549 PMCID: PMC10418808 DOI: 10.3390/ijms241512176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The transactive response DNA-binding protein of 43 kDa (TDP-43) is a pathological protein of amyotrophic lateral sclerosis (ALS). TDP-43 pathology is characterized by a combination of the cytoplasmic aggregation and nuclear clearance of this protein. However, the mechanisms underlying TDP-43 pathology have not been fully clarified. The aim of this study was to evaluate the relationships between the expression level of nuclear TDP-43 and the pathological properties of cytoplasmic aggregates in autopsied ALS cases. We included 22 consecutively autopsied cases with sporadic TDP-43-related ALS. The motor neuron systems were neuropathologically assessed. We identified 790 neurons with cytoplasmic TDP-43 inclusions from the lower motor neuron system of included cases. Nuclear TDP-43 disappeared in 84% (n = 660) and expressed in 16% (n = 130) of neurons with cytoplasmic inclusions; the former was defined as TDP-43 cytoplasmic immunoreactivity (c-ir), and the latter was defined as nuclear and cytoplasmic immunoreactivity (n/c-ir). Morphologically, diffuse cytoplasmic inclusions were significantly more prevalent in TDP-43 n/c-ir neurons than in c-ir neurons, while skein-like and round inclusions were less prevalent in n/c-ir neurons. The cytoplasmic inclusions of TDP-43 n/c-ir neurons were phosphorylated but poorly ubiquitylated when compared with those of c-ir neurons. TDP-43 n/c-ir neurons became less dominant than the c-ir neurons among cases with a prolonged disease duration. The expression level of nuclear TDP-43 was significantly lower in n/c-ir neurons than in normal neurons without cytoplasmic inclusions. Our results indicate that the maturation of cytoplasmic TDP-43 inclusions correlates with the depletion of nuclear TDP-43 in each affected neuron. This finding supports the view that an imbalance between nuclear and cytoplasmic TDP-43 may be an essential pathway to TDP-43 pathology.
Collapse
Grants
- JP20K16586, JP22K07359, JP23K06935 JSPS KAKENHI
- JP20ek0109392, JP20ek0109391 AMED
- (30-8) Intramural Research Grant for Neurological and Psychiatric Disorders of NCNP
- not applicable Grants-in-Aid from the Research Committee of CNS Degenerative Diseases, Research on Policy Planning and Evaluation for Rare and Intractable Diseases, Health, Labour, and Welfare Sciences Research Grants, the Ministry of Health, Labour, and Welfare, Japan
Collapse
Affiliation(s)
- Hiroyuki Yabata
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (H.Y.); (H.M.); (A.A.); (J.S.); (M.Y.); (Y.I.)
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (H.Y.); (H.M.); (A.A.); (J.S.); (M.Y.); (Y.I.)
- Department of Neurology, Nagoya University, Nagoya 466-8550, Aichi, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (H.Y.); (H.M.); (A.A.); (J.S.); (M.Y.); (Y.I.)
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (H.Y.); (H.M.); (A.A.); (J.S.); (M.Y.); (Y.I.)
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (H.Y.); (H.M.); (A.A.); (J.S.); (M.Y.); (Y.I.)
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (H.Y.); (H.M.); (A.A.); (J.S.); (M.Y.); (Y.I.)
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (H.Y.); (H.M.); (A.A.); (J.S.); (M.Y.); (Y.I.)
| |
Collapse
|
11
|
Sustained therapeutic benefits by transient reduction of TDP-43 using ENA-modified antisense oligonucleotides in ALS/FTD mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:353-366. [PMID: 36817728 PMCID: PMC9925842 DOI: 10.1016/j.omtn.2023.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
The abnormal aggregation of TDP-43 into cytoplasmic inclusions in affected neurons is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although how TDP-43 forms cytoplasmic aggregates and causes neurodegeneration in patients with ALS/FTD remains unclear, reducing cellular TDP-43 levels is likely to prevent aggregation and to rescue neurons from TDP-43 toxicity. To address this issue, here we developed gapmer-type antisense oligonucleotides (ASOs) against human TDP-43 using 2'-O,4'-C-ethylene nucleic acids (ENAs), which are modified nucleic acids with high stability, and tested the therapeutic potential of lowering TDP-43 levels using ENA-modified ASOs. We demonstrated that intracerebroventricular administration of ENA-modified ASOs into a mouse model of ALS/FTD expressing human TDP-43 results in the efficient reduction of TDP-43 levels in the brain and spinal cord. Surprisingly, a single injection of ENA-modified ASOs into TDP-43 mice led to long-lasting improvement of behavioral abnormalities and the suppression of cytoplasmic TDP-43 aggregation, even after TDP-43 levels had returned to the initial levels. Our results demonstrate that transient reduction of TDP-43 using ENA-modified ASOs leads to sustained therapeutic benefits in vivo, indicating the possibility of a disease-modifying therapy by lowering TDP-43 levels for the treatment of the TDP-43 proteinopathies, including ALS/FTD.
Collapse
|
12
|
Lépine S, Castellanos-Montiel MJ, Durcan TM. TDP-43 dysregulation and neuromuscular junction disruption in amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:56. [PMID: 36575535 PMCID: PMC9793560 DOI: 10.1186/s40035-022-00331-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease characterized by upper and lower motor neuron (MN) loss with a signature feature of cytoplasmic aggregates containing TDP-43, which are detected in nearly all patients. Mutations in the gene that encodes TDP-43 (TARBDP) are known to result in both familial and sporadic ALS. In ALS, disruption of neuromuscular junctions (NMJs) constitutes a critical event in disease pathogenesis, leading to denervation atrophy, motor impairments and disability. Morphological defects and impaired synaptic transmission at NMJs have been reported in several TDP-43 animal models and in vitro, linking TDP-43 dysregulation to the loss of NMJ integrity in ALS. Through the lens of the dying-back and dying-forward hypotheses of ALS, this review discusses the roles of TDP-43 related to synaptic function, with a focus on the potential molecular mechanisms occurring within MNs, skeletal muscles and glial cells that may contribute to NMJ disruption in ALS.
Collapse
Affiliation(s)
- Sarah Lépine
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada ,grid.14709.3b0000 0004 1936 8649Faculty of Medicine and Health Sciences, McGill University, 3605 De La Montagne, Montreal, QC H3G 2M1 Canada
| | - Maria José Castellanos-Montiel
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| | - Thomas Martin Durcan
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
13
|
Morey N, Przybyla M, van der Hoven J, Ke YD, Delerue F, van Eersel J, Ittner LM. Treatment of epilepsy using a targeted p38γ kinase gene therapy. SCIENCE ADVANCES 2022; 8:eadd2577. [PMID: 36459557 PMCID: PMC10936047 DOI: 10.1126/sciadv.add2577] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Hyperphosphorylated microtubule-associated protein tau has been implicated in dementia, epilepsy, and other neurological disorders. In contrast, site-specific phosphorylation of tau at threonine 205 (T205) by the kinase p38γ was shown to disengage tau from toxic pathways, serving a neuroprotective function in Alzheimer's disease. Using a viral-mediated gene delivery approach in different mouse models of epilepsy, we show that p38γ activity-enhancing treatment reduces seizure susceptibility, restores neuronal firing patterns, reduces behavioral deficits, and ameliorates epilepsy-induced deaths. Furthermore, we show that p38γ-mediated phosphorylation of tau at T205 is essential for this protection in epilepsy, as a lack of this critical interaction reinstates pathological features and accelerates epilepsy in vivo. Hence, our work provides a scope to harness p38γ as a future therapy applicable to acute neurological conditions.
Collapse
Affiliation(s)
- Nicolle Morey
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Magdalena Przybyla
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Julia van der Hoven
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Yazi D. Ke
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Fabien Delerue
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | | | | |
Collapse
|
14
|
Efficient Gene Expression in Human Stem Cell Derived-Cortical Organoids Using Adeno Associated Virus. Cells 2022; 11:cells11203194. [PMID: 36291062 PMCID: PMC9601198 DOI: 10.3390/cells11203194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022] Open
Abstract
Cortical organoids are 3D structures derived either from human embryonic stem cells or human induced pluripotent stem cells with their use exploding in recent years due to their ability to better recapitulate the human brain in vivo in respect to organization; differentiation; and polarity. Adeno-associated viruses (AAVs) have emerged in recent years as the vectors of choice for CNS-targeted gene therapy. Here; we compare the use of AAVs as a mode of gene expression in cortical organoids; over traditional methods such as lipofectamine and electroporation and demonstrate its ease-of-use in generating quick disease models through expression of different variants of the central gene—TDP-43—implicated in amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
|
15
|
Deng Y, Bi M, Delerue F, Forrest SL, Chan G, van der Hoven J, van Hummel A, Feiten AF, Lee S, Martinez-Valbuena I, Karl T, Kovacs GG, Morahan G, Ke YD, Ittner LM. Loss of LAMP5 interneurons drives neuronal network dysfunction in Alzheimer's disease. Acta Neuropathol 2022; 144:637-650. [PMID: 35780436 PMCID: PMC9467963 DOI: 10.1007/s00401-022-02457-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023]
Abstract
In Alzheimer's disease (AD), where amyloid-β (Aβ) and tau deposits in the brain, hyperexcitation of neuronal networks is an underlying disease mechanism, but its cause remains unclear. Here, we used the Collaborative Cross (CC) forward genetics mouse platform to identify modifier genes of neuronal hyperexcitation. We found LAMP5 as a novel regulator of hyperexcitation in mice, critical for the survival of distinct interneuron populations. Interestingly, synaptic LAMP5 was lost in AD brains and LAMP5 interneurons degenerated in different AD mouse models. Genetic reduction of LAMP5 augmented functional deficits and neuronal network hypersynchronicity in both Aβ- and tau-driven AD mouse models. To this end, our work defines the first specific function of LAMP5 interneurons in neuronal network hyperexcitation in AD and dementia with tau pathology.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mian Bi
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Fabien Delerue
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shelley L Forrest
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Gabriella Chan
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Annika van Hummel
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Astrid F Feiten
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Tim Karl
- School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, M5S 2S1, Canada
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, WA, 6150, Australia
| | - Yazi D Ke
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lars M Ittner
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
16
|
Li F, Chen Y, Liu X, Tang Y, Dong X, Wei G. Atomistic Insights into A315E Mutation-Enhanced Pathogenicity of TDP-43 Core Fibrils. ACS Chem Neurosci 2022; 13:2743-2754. [PMID: 36053560 DOI: 10.1021/acschemneuro.2c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) into fibrillary deposits is implicated in amyotrophic lateral sclerosis (ALS), and some hereditary mutations localized in the low complexity domain (LCD) facilitate the formation of pathogenic TDP-43 fibrils. A recent cryo-EM study reported the atomic-level structures of the A315E TDP-43 LCD (residues 288-319, TDP-43288-319) core fibril in which the protofilaments have R-shaped structures and hypothesized that A315E U-shaped protofilaments can readily convert to R-shaped protofilaments compared to the wild-type (WT) ones. There are no atomic structures of WT protofilaments available yet. Herein, we performed extensive all-atom explicit-solvent molecular dynamics simulations on A315E and WT protofilaments starting from both the cryo-EM-determined R-shaped and our constructed U-shaped structures. Our simulations show that WT protofilaments also adopt the R-shaped structures but are less stable than their A315E counterparts. Except for R293-E315 salt bridges, N312-F316 hydrophobic interactions and F316-F316 π-π stacking interactions are also crucial for the stabilization of the neck region of the R-shaped A315E protofilaments. The loss of R293-E315 salt bridges and the weakened interactions of N312-F316 and F316-F316 result in the reduced stability of the R-shaped WT protofilaments. Simulations starting from U-shaped folds reveal that A315E protofilaments can spontaneously convert to the cryo-EM-derived R-shaped protofilaments, whereas WT protofilaments convert to R-shape-like structures with remodeled neck regions. The R-shape-like WT protofilaments could act as intermediate states slowing down the U-to-R transition. This study reveals that A315E mutation can not only enhance the structural stability of the R-shaped TDP-43288-319 protofilaments but also promote the U-to-R transition, which provides atomistic insights into the A315E mutation-enhanced TDP-43 pathogenicity in ALS.
Collapse
Affiliation(s)
- Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| |
Collapse
|
17
|
Broadhead MJ, Bonthron C, Waddington J, Smith WV, Lopez MF, Burley S, Valli J, Zhu F, Komiyama NH, Smith C, Grant SGN, Miles GB. Selective vulnerability of tripartite synapses in amyotrophic lateral sclerosis. Acta Neuropathol 2022; 143:471-486. [PMID: 35305541 PMCID: PMC8960590 DOI: 10.1007/s00401-022-02412-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder. Separate lines of evidence suggest that synapses and astrocytes play a role in the pathological mechanisms underlying ALS. Given that astrocytes make specialised contacts with some synapses, called tripartite synapses, we hypothesise that tripartite synapses could act as the fulcrum of disease in ALS. To test this hypothesis, we have performed an extensive microscopy-based investigation of synapses and tripartite synapses in the spinal cord of ALS model mice and post-mortem human tissue from ALS cases. We reveal widescale synaptic changes at the early symptomatic stages of the SOD1G93a mouse model. Super-resolution microscopy reveals that large complex postsynaptic structures are lost in ALS mice. Most surprisingly, tripartite synapses are selectively lost, while non-tripartite synapses remain in equal number to healthy controls. Finally, we also observe a similar selective loss of tripartite synapses in human post-mortem ALS spinal cords. From these data we conclude that tripartite synaptopathy is a key hallmark of ALS.
Collapse
|
18
|
Handley EE, Reale LA, Chuckowree JA, Dyer MS, Barnett GL, Clark CM, Bennett W, Dickson TC, Blizzard CA. Estrogen Enhances Dendrite Spine Function and Recovers Deficits in Neuroplasticity in the prpTDP-43A315T Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2022; 59:2962-2976. [PMID: 35249200 PMCID: PMC9016039 DOI: 10.1007/s12035-022-02742-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/09/2022] [Indexed: 10/31/2022]
Abstract
AbstractAmyotrophic lateral sclerosis (ALS) attacks the corticomotor system, with motor cortex function affected early in disease. Younger females have a lower relative risk of succumbing to ALS than males and older females, implicating a role for female sex hormones in disease progression. However, the mechanisms driving this dimorphic incidence are still largely unknown. We endeavoured to determine if estrogen mitigates disease progression and pathogenesis, focussing upon the dendritic spine as a site of action. Using two-photon live imaging we identify, in the prpTDP-43A315T mouse model of ALS, that dendritic spines in the male motor cortex have a reduced capacity for remodelling than their wild-type controls. In contrast, females show higher capacity for remodelling, with peak plasticity corresponding to highest estrogen levels during the estrous cycle. Estrogen manipulation through ovariectomies and estrogen replacement with 17β estradiol in vivo was found to significantly alter spine density and mitigate disease severity. Collectively, these findings reveal that synpatic plasticity is reduced in ALS, which can be amelioriated with estrogen, in conjuction with improved disease outcomes.
Collapse
|
19
|
Moreno-Jiménez L, Benito-Martín M, Sanclemente-Alamán I, Matías-Guiu J, Sancho-Bielsa F, Canales-Aguirre A, Mateos-Díaz J, Matías-Guiu J, Aguilar J, Gómez-Pinedo U. Modelos experimentales murinos en la esclerosis lateral amiotrófica. Puesta al día. Neurologia 2021. [DOI: 10.1016/j.nrl.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
20
|
Rapid initiation of cell cycle reentry processes protects neurons from amyloid-β toxicity. Proc Natl Acad Sci U S A 2021; 118:2011876118. [PMID: 33737393 DOI: 10.1073/pnas.2011876118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons are postmitotic cells. Reactivation of the cell cycle by neurons has been reported in Alzheimer's disease (AD) brains and models. This gave rise to the hypothesis that reentering the cell cycle renders neurons vulnerable and thus contributes to AD pathogenesis. Here, we use the fluorescent ubiquitination-based cell cycle indicator (FUCCI) technology to monitor the cell cycle in live neurons. We found transient, self-limited cell cycle reentry activity in naive neurons, suggesting that their postmitotic state is a dynamic process. Furthermore, we observed a diverse response to oligomeric amyloid-β (oAβ) challenge; neurons without cell cycle reentry activity would undergo cell death without activating the FUCCI reporter, while neurons undergoing cell cycle reentry activity at the time of the oAβ challenge could maintain and increase FUCCI reporter signal and evade cell death. Accordingly, we observed marked neuronal FUCCI positivity in the brains of human mutant Aβ precursor protein transgenic (APP23) mice together with increased neuronal expression of the endogenous cell cycle control protein geminin in the brains of 3-mo-old APP23 mice and human AD brains. Taken together, our data challenge the current view on cell cycle in neurons and AD, suggesting that pathways active during early cell cycle reentry in neurons protect from Aβ toxicity.
Collapse
|
21
|
Bright F, Chan G, van Hummel A, Ittner LM, Ke YD. TDP-43 and Inflammation: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Int J Mol Sci 2021; 22:ijms22157781. [PMID: 34360544 PMCID: PMC8346169 DOI: 10.3390/ijms22157781] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
The abnormal mislocalisation and ubiquitinated protein aggregation of the TAR DNA binding protein 43 (TDP-43) within the cytoplasm of neurons and glia in the central nervous system (CNS) is a pathological hallmark of early-onset neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathomechanisms underlying abnormal mislocalisation and aggregation of TDP-43 remain unknown. However, there is a growing body of evidence implicating neuroinflammation and immune-mediated mechanisms in the pathogenesis of neurodegeneration. Importantly, most of the evidence for an active role of immunity and inflammation in the pathogenesis of ALS and FTD relates specifically to TDP-43, posing the question as to whether immune-mediated mechanisms could hold the key to understanding TDP-43’s underlying role in neurodegeneration in both diseases. Therefore, this review aims to piece together key lines of evidence for the specific association of TDP-43 with key immune and inflammatory pathways to explore the nature of this relationship and the implications for potential pathomechanisms underlying neurodegeneration in ALS and FTD.
Collapse
|
22
|
Wood A, Gurfinkel Y, Polain N, Lamont W, Lyn Rea S. Molecular Mechanisms Underlying TDP-43 Pathology in Cellular and Animal Models of ALS and FTLD. Int J Mol Sci 2021; 22:4705. [PMID: 33946763 PMCID: PMC8125728 DOI: 10.3390/ijms22094705] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders that exist on a disease spectrum due to pathological, clinical and genetic overlap. In up to 97% of ALS cases and ~50% of FTLD cases, the primary pathological protein observed in affected tissues is TDP-43, which is hyperphosphorylated, ubiquitinated and cleaved. The TDP-43 is observed in aggregates that are abnormally located in the cytoplasm. The pathogenicity of TDP-43 cytoplasmic aggregates may be linked with both a loss of nuclear function and a gain of toxic functions. The cellular processes involved in ALS and FTLD disease pathogenesis include changes to RNA splicing, abnormal stress granules, mitochondrial dysfunction, impairments to axonal transport and autophagy, abnormal neuromuscular junctions, endoplasmic reticulum stress and the subsequent induction of the unfolded protein response. Here, we review and discuss the evidence for alterations to these processes that have been reported in cellular and animal models of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Alistair Wood
- School of Molecular Science, University of Western Australia, Nedlands 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Yuval Gurfinkel
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Nicole Polain
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Wesley Lamont
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Sarah Lyn Rea
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Hub for Immersive Visualisation and eResearch, Curtin University, Bentley 6102, Australia
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands 6009, Australia
| |
Collapse
|
23
|
Rusina R, Vandenberghe R, Bruffaerts R. Cognitive and Behavioral Manifestations in ALS: Beyond Motor System Involvement. Diagnostics (Basel) 2021; 11:diagnostics11040624. [PMID: 33808458 PMCID: PMC8065866 DOI: 10.3390/diagnostics11040624] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) has long been considered to be a purely motor disorder. However, it has become apparent that many ALS patients develop cognitive and behavioral manifestations similar to frontotemporal dementia and the term amyotrophic lateral sclerosis-frontotemporal spectrum disorder (ALS-FTSD) is now used in these circumstances. This review is intended to be an overview of the cognitive and behavioral manifestations commonly encountered in ALS patients with the goal of improving case-oriented management in clinical practice. We introduce the principal ALS-FTSD subtypes and comment on their principal clinical manifestations, neuroimaging findings, neuropathological and genetic background, and summarize available therapeutic options. Diagnostic criteria for ALS-FTSD create distinct categories based on the type of neuropsychological manifestations, i.e., changes in behavior, impaired social cognition, executive dysfunction, and language or memory impairment. Cognitive impairment is found in up to 65%, while frank dementia affects about 15% of ALS patients. ALS motor and cognitive manifestations can worsen in parallel, becoming more pronounced when bulbar functions (affecting speech, swallowing, and salivation) are involved. Dementia can precede or develop after the appearance of motor symptoms. ALS-FTSD patients have a worse prognosis and shorter survival rates than patients with ALS or frontotemporal dementia alone. Important negative prognostic factors are behavioral and personality changes. From the clinician's perspective, there are five major distinguishable ALS-FTSD subtypes: ALS with cognitive impairment, ALS with behavioral impairment, ALS with combined cognitive and behavioral impairment, fully developed frontotemporal dementia in combination with ALS, and comorbid ALS and Alzheimer's disease. Although the most consistent ALS and ALS-FTSD pathology is a disturbance in transactive response DNA binding protein 43 kDa (TDP-43) metabolism, alterations in microtubule-associated tau protein metabolism have also been observed in ALS-FTSD. Early detection and careful monitoring of cognitive deficits in ALS are crucial for patient and caregiver support and enable personalized management of individual patient needs.
Collapse
Affiliation(s)
- Robert Rusina
- Department of Neurology, Third Faculty of Medicine, Charles University, and Thomayer University Hospital, 140 59 Prague, Czech Republic
- Correspondence: ; Tel.: +420-26108-2479
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU, 3000 Leuven, Belgium; (R.V.); (R.B.)
- Department of Neurology, University Hospitals, 3000 Leuven, Belgium
| | - Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU, 3000 Leuven, Belgium; (R.V.); (R.B.)
- Department of Neurology, University Hospitals, 3000 Leuven, Belgium
- Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
24
|
Solomon DA, Mitchell JC, Salcher-Konrad MT, Vance CA, Mizielinska S. Review: Modelling the pathology and behaviour of frontotemporal dementia. Neuropathol Appl Neurobiol 2020; 45:58-80. [PMID: 30582188 DOI: 10.1111/nan.12536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia (FTD) encompasses a collection of clinically and pathologically diverse neurological disorders. Clinical features of behavioural and language dysfunction are associated with neurodegeneration, predominantly of frontal and temporal cortices. Over the past decade, there have been significant advances in the understanding of the genetic aetiology and neuropathology of FTD which have led to the creation of various disease models to investigate the molecular pathways that contribute to disease pathogenesis. The generation of in vivo models of FTD involves either targeting genes with known disease-causative mutations such as GRN and C9orf72 or genes encoding proteins that form the inclusions that characterize the disease pathologically, such as TDP-43 and FUS. This review provides a comprehensive summary of the different in vivo model systems used to understand pathomechanisms in FTD, with a focus on disease models which reproduce aspects of the wide-ranging behavioural phenotypes seen in people with FTD. We discuss the emerging disease pathways that have emerged from these in vivo models and how this has shaped our understanding of disease mechanisms underpinning FTD. We also discuss the challenges of modelling the complex clinical symptoms shown by people with FTD, the confounding overlap with features of motor neuron disease, and the drive to make models more disease-relevant. In summary, in vivo models can replicate many pathological and behavioural aspects of clinical FTD, but robust and thorough investigations utilizing shared features and variability between disease models will improve the disease-relevance of findings and thus better inform therapeutic development.
Collapse
Affiliation(s)
- D A Solomon
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - J C Mitchell
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - M-T Salcher-Konrad
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - C A Vance
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - S Mizielinska
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| |
Collapse
|
25
|
van der Hoven J, van Hummel A, Przybyla M, Asih PR, Gajwani M, Feiten AF, Ke YD, Ittner A, van Eersel J, Ittner LM. Contribution of endogenous antibodies to learning deficits and astrocytosis in human P301S mutant tau transgenic mice. Sci Rep 2020; 10:13845. [PMID: 32796905 PMCID: PMC7428012 DOI: 10.1038/s41598-020-70845-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/31/2020] [Indexed: 11/09/2022] Open
Abstract
Antibodies have been explored extensively as a potential therapeutic for Alzheimer’s disease, where amyloid-β (Aβ) peptides and the tau protein deposit in patient brains. While the major focus of antibody-based therapy development was on Aβ, arguably with limited success in clinical trials, targeting tau has become an emerging strategy, possibly extending therapies to dementias with isolated tau pathology. Interestingly, low titres of autoantibodies to pathological tau have been described in humans and transgenic mouse models, but their pathophysiological relevance remained elusive. Here, we used two independent approaches to deplete the B-cell lineage and hence antibody formation in human P301S mutant tau transgenic mice, TAU58/2. TAU58/2 mice were either crossed with the B-cell-deficient Ighm knockout line (muMT−/−) or treated with anti-CD20 antibodies that target B-cell precursors. In both models, B-cell depletion significantly reduced astrocytosis in TAU58/2 mice. Only when B-cells were absent throughout life, in TAU58/2.muMT−/− mice, were spatial learning deficits moderately aggravated while motor performance improved as compared to B-cell-competent TAU58/2 mice. This was associated with changes in brain region-specific tau solubility. No other relevant behavioural or neuropathological changes were observed in TAU58/2 mice in the absence of B-cells/antibodies. Taken together, our data suggests that the presence of antibodies throughout life contributes to astrocytosis in TAU58/2 mice and limits learning deficits, while other deficits and neuropathological changes appear to be independent of the presence of B-cells/antibodies.
Collapse
Affiliation(s)
- Julia van der Hoven
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Annika van Hummel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Prita R Asih
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mehul Gajwani
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Astrid F Feiten
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Arne Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Janet van Eersel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
26
|
Mitigation of ALS Pathology by Neuron-Specific Inhibition of Nuclear Factor Kappa B Signaling. J Neurosci 2020; 40:5137-5154. [PMID: 32457070 PMCID: PMC7314413 DOI: 10.1523/jneurosci.0536-20.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
To investigate the role of neuronal NF-κB activity in pathogenesis of amyotrophic lateral sclerosis (ALS), we generated transgenic mice with neuron-specific expression of a super-repressor form of the NF-κB inhibitor (IκBα-SR), which were then crossed with mice of both sexes, expressing ALS-linked gene mutants for TAR DNA-binding protein (TDP-43) and superoxide dismutase 1 (SOD1). Remarkably, neuronal expression of IκBα-SR transgene in mice expressing TDP-43A315T or TDP-43G348C mice led to a decrease in cytoplasmic to nuclear ratio of human TDP-43. The mitigation of TDP-43 neuropathology by IκBα-SR, which is likely due to an induction of autophagy, was associated with amelioration of cognitive and motor deficits as well as reduction of motor neuron loss and gliosis. Neuronal suppression of NF-κB activity in SOD1G93A mice also resulted in neuroprotection with reduction of misfolded SOD1 levels and significant extension of life span. The results suggest that neuronal NF-κB signaling constitutes a novel therapeutic target for ALS disease and related disorders with TDP-43 proteinopathy. SIGNIFICANCE STATEMENT This study reports that neuron-specific expression of IκB super-repressor mitigated behavioral and pathologic changes in transgenic mouse models of amyotrophic lateral sclerosis expressing mutant forms of either Tar DNA-binding protein 43 or superoxide dismutase. The results suggest that neuronal NF-κB signaling constitutes a novel therapeutic target for amyotrophic lateral sclerosis and related disorders with Tar DNA-binding protein 43 proteinopathy.
Collapse
|
27
|
Chan G, van Hummel A, van der Hoven J, Ittner LM, Ke YD. Neurodegeneration and Motor Deficits in the Absence of Astrogliosis upon Transgenic Mutant TDP-43 Expression in Mature Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1713-1722. [PMID: 32371051 DOI: 10.1016/j.ajpath.2020.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/24/2020] [Accepted: 04/16/2020] [Indexed: 11/19/2022]
Abstract
Amyotrophic lateral sclerosis is a rapidly progressing and fatal disease characterized by muscular atrophy due to loss of upper and lower motor neurons. Pathogenic mutations in the TARDBP gene encoding TAR DNA binding protein-43 (TDP-43) have been identified in familial amyotrophic lateral sclerosis. We have previously reported transgenic mice with neuronal expression of human TDP-43 carrying the pathogenic A315T mutation (iTDP-43A315T mice) using a tetracycline-controlled inducible promotor system. Constitutive expression of transgenic TDP-43A315T in the absence of doxycycline resulted in pronounced early-onset and progressive neurodegeneration, and motor and memory deficits. Here, delayed transgene expression of TDP-43A315T by oral doxycycline treatment of iTDP-43A315T mice from birth till weaning was analyzed. After doxycycline withdrawal, transgenic TDP-43A315T expression gradually increased and resulted in cytoplasmic TDP-43, widespread ubiquitination, and cortical and hippocampal atrophy. In addition, these mice developed motor and gait deficits with underlying muscle atrophy, similar to that observed in the constitutive iTDP-43A315T mice. Surprisingly, in contrast to the constitutive iTDP-43A315T mice, these mice did not develop astrogliosis. In summary, delayed activation coupled with gradual increase in TDP-43A315T expression in the central nervous system of mature mice resulted in progressive functional deficits with neuron and muscle loss, but in the absence of a glial response. This suggests that astrocytosis does not contribute to functional deficits and neuronal loss upon TDP-43A315T expression in mature mice.
Collapse
Affiliation(s)
- Gabriella Chan
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Annika van Hummel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julia van der Hoven
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
28
|
Hergesheimer RC, Chami AA, de Assis DR, Vourc'h P, Andres CR, Corcia P, Lanznaster D, Blasco H. The debated toxic role of aggregated TDP-43 in amyotrophic lateral sclerosis: a resolution in sight? Brain 2020; 142:1176-1194. [PMID: 30938443 PMCID: PMC6487324 DOI: 10.1093/brain/awz078] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 02/16/2019] [Indexed: 12/11/2022] Open
Abstract
Transactive response DNA-binding protein-43 (TDP-43) is an RNA/DNA binding protein that forms phosphorylated and ubiquitinated aggregates in the cytoplasm of motor neurons in amyotrophic lateral sclerosis, which is a hallmark of this disease. Amyotrophic lateral sclerosis is a neurodegenerative condition affecting the upper and lower motor neurons. Even though the aggregative property of TDP-43 is considered a cornerstone of amyotrophic lateral sclerosis, there has been major controversy regarding the functional link between TDP-43 aggregates and cell death. In this review, we attempt to reconcile the current literature surrounding this debate by discussing the results and limitations of the published data relating TDP-43 aggregates to cytotoxicity, as well as therapeutic perspectives of TDP-43 aggregate clearance. We point out key data suggesting that the formation of TDP-43 aggregates and the capacity to self-template and propagate among cells as a 'prion-like' protein, another pathological property of TDP-43 aggregates, are a significant cause of motor neuronal death. We discuss the disparities among the various studies, particularly with respect to the type of models and the different forms of TDP-43 used to evaluate cellular toxicity. We also examine how these disparities can interfere with the interpretation of the results pertaining to a direct toxic effect of TDP-43 aggregates. Furthermore, we present perspectives for improving models in order to better uncover the toxic role of aggregated TDP-43. Finally, we review the recent studies on the enhancement of the cellular clearance mechanisms of autophagy, the ubiquitin proteasome system, and endocytosis in an attempt to counteract TDP-43 aggregation-induced toxicity. Altogether, the data available so far encourage us to suggest that the cytoplasmic aggregation of TDP-43 is key for the neurodegeneration observed in motor neurons in patients with amyotrophic lateral sclerosis. The corresponding findings provide novel avenues toward early therapeutic interventions and clinical outcomes for amyotrophic lateral sclerosis management.
Collapse
Affiliation(s)
| | - Anna A Chami
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France
| | | | - Patrick Vourc'h
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France.,CHU de Tours, Service de Biochimie et Biologie Moléculaire, Tours, France
| | - Christian R Andres
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France.,CHU de Tours, Service de Biochimie et Biologie Moléculaire, Tours, France
| | - Philippe Corcia
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France.,CHU de Tours, Service de Neurologie, Tours, France
| | | | - Hélène Blasco
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France.,CHU de Tours, Service de Biochimie et Biologie Moléculaire, Tours, France
| |
Collapse
|
29
|
Filipi T, Hermanova Z, Tureckova J, Vanatko O, Anderova M. Glial Cells-The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment. J Clin Med 2020; 9:E261. [PMID: 31963681 PMCID: PMC7020059 DOI: 10.3390/jcm9010261] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease, which is characterized by the degeneration of motor neurons in the motor cortex and the spinal cord and subsequently by muscle atrophy. To date, numerous gene mutations have been linked to both sporadic and familial ALS, but the effort of many experimental groups to develop a suitable therapy has not, as of yet, proven successful. The original focus was on the degenerating motor neurons, when researchers tried to understand the pathological mechanisms that cause their slow death. However, it was soon discovered that ALS is a complicated and diverse pathology, where not only neurons, but also other cell types, play a crucial role via the so-called non-cell autonomous effect, which strongly deteriorates neuronal conditions. Subsequently, variable glia-based in vitro and in vivo models of ALS were established and used for brand-new experimental and clinical approaches. Such a shift towards glia soon bore its fruit in the form of several clinical studies, which more or less successfully tried to ward the unfavourable prognosis of ALS progression off. In this review, we aimed to summarize current knowledge regarding the involvement of each glial cell type in the progression of ALS, currently available treatments, and to provide an overview of diverse clinical trials covering pharmacological approaches, gene, and cell therapies.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| |
Collapse
|
30
|
Chudinova AV, Rossel M, Vergunst A, Le-Masson G, Camu W, Raoul C, Lumbroso S, Mouzat K. Theme 4 In vivo experimental models. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:160-187. [PMID: 31702459 DOI: 10.1080/21678421.2019.1646992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: In 90% of Amyotrophic Lateral Sclerosis (ALS) cases, the disease is sporadic, the remaining 10% being familial. Many genes have been associated with the disease. The use of next generation sequencing has allowed increasing the number of genes analysed in routine diagnostics. However, this increase raises the issue of genetic variants interpretation within a growing number of ALS-associated-genes. Variant classification is based on a combinatory analysis of multiple factors. Among them, functional analyses provide strong arguments on pathogenicity interpretation.Objectives: We developed a simple animal model, the Zebrafish, for the functional analysis of candidate variants pathogenicity identified by routine genetic testing.Methods: Transient overexpression of different ALS associated genetic variants has been performed by mRNA injection in 1-cell stage zebrafish eggs. Validation of protein overexpression has been done by western blot. Embryos mortality, developmental delay and morphological abnormalities have been assessed within the first two days of development. Cellular phenotype has been investigated by the analysis of axonal length of 2-days old larvae with confocal microscopy. Motor phenotype of 5-days old larvae has been explored by touched-evoked response assay.Results: The model has been validated by the analysis of well-described ALS mutations, SOD1-Gly93Ala and OPTN Glu478Gly. Overexpression of this mutated protein was shown to provoke a shortening of axons and a premature axonal branching, as well as an impairment of motor performances as expected. We did not observe these aberrations in SOD1-WT injected fishes. Two candidate variants observed in ALS-patients have been explored with our model: SOD1 NM_000454.4:c.400_402del, p.Glu134del and OPTN NM_021980.4:c.1475T > G, p. Leu492Arg. Overexpression of both variants induced morphological abnormalities and motor impairment, suggesting a pathogenic involvement of these variants in ALS-patients.Discussion and conclusions: We developed for the first time a simple animal model, the Zebrafish, useful for the functional analysis of variant pathogenicity in order to assist ALS molecular diagnosis. Our model has been used to assess the pathogenicity of SOD1 and OPTN candidate variants, allowing to improve genetic testing interpretation.
Collapse
Affiliation(s)
- Aleksandra V Chudinova
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Nîmes et Université de Montpellier, Nimes, France.,INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| | - Mireille Rossel
- 3MMDN, Univ. Montpellier, EPHE, INSERM, U1198, PSL Research University, Montpellier, France
| | | | - Gwendal Le-Masson
- Department of Neurology, Nerve-Muscle Unit and Centre de Référence Des Pathologies Neuromusculaires CHU Bordeaux (Groupe Hospitalier Pellegrin), University of Bordeaux, Bordeaux, France
| | - William Camu
- INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France.,ALS Center, Département de Neurologie, CHU Gui de Chauliac, Montpellier, France
| | - Cédric Raoul
- INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| | - Serge Lumbroso
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Nîmes et Université de Montpellier, Nimes, France.,INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| | - Kevin Mouzat
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Nîmes et Université de Montpellier, Nimes, France.,INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| |
Collapse
|
31
|
Brettle M, Stefen H, Djordjevic A, Fok SYY, Chan JW, van Hummel A, van der Hoven J, Przybyla M, Volkerling A, Ke YD, Delerue F, Ittner LM, Fath T. Developmental Expression of Mutant PFN1 in Motor Neurons Impacts Neuronal Growth and Motor Performance of Young and Adult Mice. Front Mol Neurosci 2019; 12:231. [PMID: 31611772 PMCID: PMC6776973 DOI: 10.3389/fnmol.2019.00231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with limited treatment and no cure. Mutations in profilin 1 were identified as a cause of familial ALS (fALS) in 2012. We investigated the functional impact of mutant profilin 1 expression in spinal cords during mouse development. We developed a novel mouse model with the expression of profilin 1 C71G under the control of the Hb9 promoter, targeting expression to α-motor neurons in the spinal cord during development. Embryos of transgenic mice showed evidence of a significant reduction of brachial nerve diameter and a loss of Mendelian inheritance. Despite the lack of transgene expression, adult mice presented with significant motor deficits. Transgenic mice had a significant reduction in the number of motor neurons in the spinal cord. Further analysis of these motor neurons in aged transgenic mice revealed reduced levels of TDP-43 and ChAT expression. Although profilin 1 C71G was only expressed during development, adult mice presented with some ALS-associated pathology and motor symptoms. This study highlights the effect of profilin 1 during neurodevelopment and the impact that this may have in later ALS.
Collapse
Affiliation(s)
- Merryn Brettle
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia.,Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Randwick, NSW, Australia
| | - Holly Stefen
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Aleksandra Djordjevic
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
| | - Sandra Y Y Fok
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia.,Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Randwick, NSW, Australia
| | - Josephine W Chan
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
| | - Annika van Hummel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julia van der Hoven
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexander Volkerling
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
| | - Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Fabien Delerue
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Thomas Fath
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia.,Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
32
|
Sugai A, Kato T, Koyama A, Koike Y, Konno T, Ishihara T, Onodera O. Non-genetically modified models exhibit TARDBP mRNA increase due to perturbed TDP-43 autoregulation. Neurobiol Dis 2019; 130:104534. [PMID: 31310801 DOI: 10.1016/j.nbd.2019.104534] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/22/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by accumulation of fragmented insoluble TDP-43 and loss of TDP-43 from the nucleus. Increased expression of exogenous TARDBP (encoding TDP-43) induces TDP-43 pathology and cytotoxicity, suggesting the involvement of aberrant expression of TDP-43 in the pathogenesis of ALS. In normal conditions, however, the amount of TDP-43 is tightly regulated by the autoregulatory mechanism involving alternative splicing of TARDBP mRNA. To investigate the influence of autoregulation dysfunction, we inhibited the splicing of cryptic intron 6 using antisense oligonucleotides in vivo. This inhibition doubled the Tardbp mRNA expression, increased the fragmented insoluble TDP-43, and reduced the number of motor neurons in the mouse spinal cord. In human induced pluripotent stem cell-derived neurons, the splicing inhibition of intron 6 increased TARDBP mRNA and decreased nuclear TDP-43. These non-genetically modified models exhibiting rise in the TARDBP mRNA levels suggest that TDP-43 autoregulation turbulence might be linked to the pathogenesis of ALS.
Collapse
Affiliation(s)
- Akihiro Sugai
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Taisuke Kato
- Department of System Pathology for Neurological Disorders, Brain Science Branch, Center for Bioresource-based Research, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Akihide Koyama
- Division of Legal Medicine, Graduate School of Medicine and Dental Science, Niigata University, Niigata 951-8585, Japan
| | - Yuka Koike
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Takuya Konno
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Tomohiko Ishihara
- Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-based Research, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| |
Collapse
|
33
|
Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, Coyle-Gilchrist ITS, Chui HC, Fardo DW, Flanagan ME, Halliday G, Hokkanen SRK, Hunter S, Jicha GA, Katsumata Y, Kawas CH, Keene CD, Kovacs GG, Kukull WA, Levey AI, Makkinejad N, Montine TJ, Murayama S, Murray ME, Nag S, Rissman RA, Seeley WW, Sperling RA, White III CL, Yu L, Schneider JA. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142:1503-1527. [PMID: 31039256 PMCID: PMC6536849 DOI: 10.1093/brain/awz099] [Citation(s) in RCA: 861] [Impact Index Per Article: 172.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | - Helena C Chui
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Central Clinical School Faculty of Medicine and Health, Sydney, Australia
| | | | | | | | | | | | | | - Gabor G Kovacs
- Institute of Neurology Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Shigeo Murayama
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | - Lei Yu
- Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
34
|
Silva PR, Nieva GV, Igaz LM. Suppression of Conditional TDP-43 Transgene Expression Differentially Affects Early Cognitive and Social Phenotypes in TDP-43 Mice. Front Genet 2019; 10:369. [PMID: 31068973 PMCID: PMC6491777 DOI: 10.3389/fgene.2019.00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of TAR DNA-binding protein 43 (TDP-43) is a hallmark feature of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases. TDP-43 is a ubiquitously expressed RNA-binding protein with many physiological functions, playing a role in multiple aspects of RNA metabolism. We developed transgenic mice conditionally overexpressing human wild-type TDP-43 protein (hTDP-43-WT) in forebrain neurons, a model that recapitulates several key features of FTD. After post-weaning transgene (TG) induction during 1 month, these mice display an early behavioral phenotype, including impaired cognitive and social function with no substantial motor abnormalities. In order to expand the analysis of this model, we took advantage of the temporal and regional control of TG expression possible in these mice. We behaviorally evaluated mice at two different times: after 2 weeks of post-weaning TG induction (0.5 month group) and after subsequent TG suppression for 2 weeks following that time point [1 month (sup) group]. We found no cognitive abnormalities after 0.5 month of hTDP-43 expression, evaluated with a spatial working memory task (Y-maze test). Suppression of TG expression with doxycycline (Dox) at this time point prevented the development of cognitive deficits previously observed at 1 month post-induction, as revealed by the performance of the 1 month (sup) group. On the other hand, sociability deficits (assessed through the social interaction test) appeared very rapidly after Dox removal (0.5 month) and TG suppression was not sufficient to reverse this phenotype, indicating differential vulnerability to hTDP-43 expression and suppression. Animals evaluated at the early time point (0.5 month) post-induction do not display a motor phenotype, in agreement with the results obtained after 1 month of TG expression. Moreover, all motor tests (open field, accelerated rotarod, limb clasping, hanging wire grip) showed identical responses in both control and bigenic animals in the suppressed group, demonstrating that this protocol and treatment do not cause non-specific effects in motor behavior, which could potentially mask the phenotypes in other domains. Our results show that TDP-43-WT mice have a phenotype that qualifies them as a useful model of FTD and provide valuable information for susceptibility windows in therapeutic strategies for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Pablo R Silva
- IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Gabriela V Nieva
- IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Lionel M Igaz
- IFIBIO Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
35
|
Berning BA, Walker AK. The Pathobiology of TDP-43 C-Terminal Fragments in ALS and FTLD. Front Neurosci 2019; 13:335. [PMID: 31031584 PMCID: PMC6470282 DOI: 10.3389/fnins.2019.00335] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
During neurodegenerative disease, the multifunctional RNA-binding protein TDP-43 undergoes a vast array of post-translational modifications, including phosphorylation, acetylation, and cleavage. Many of these alterations may directly contribute to the pathogenesis of TDP-43 proteinopathies, which include most forms of amyotrophic lateral sclerosis (ALS) and approximately half of all frontotemporal dementia, pathologically identified as frontotemporal lobar degeneration (FTLD) with TDP-43 pathology. However, the relative contributions of the various TDP-43 post-translational modifications to disease remain unclear, and indeed some may be secondary epiphenomena rather than disease-causative. It is therefore critical to determine the involvement of each modification in disease processes to allow the design of targeted treatments. In particular, TDP-43 C-terminal fragments (CTFs) accumulate in the brains of people with ALS and FTLD and are therefore described as a neuropathological signature of these diseases. Remarkably, these TDP-43 CTFs are rarely observed in the spinal cord, even in ALS which involves dramatic degeneration of spinal motor neurons. Therefore, TDP-43 CTFs are not produced non-specifically in the course of all forms of TDP-43-related neurodegeneration, but rather variably arise due to additional factors influenced by regional heterogeneity in the central nervous system. In this review, we summarize how TDP-43 CTFs are generated and degraded by cells, and critique evidence from studies of TDP-43 CTF pathology in human disease tissues, as well as cell and animal models, to analyze the pathophysiological relevance of TDP-43 CTFs to ALS and FTLD. Numerous studies now indicate that, although TDP-43 CTFs are prevalent in ALS and FTLD brains, disease-related pathology is only variably reproduced in TDP-43 CTF cell culture models. Furthermore, TDP-43 CTF expression in both transgenic and viral-mediated in vivo models largely fails to induce motor or behavioral dysfunction reminiscent of human disease. We therefore conclude that although TDP-43 CTFs are a hallmark of TDP-43-related neurodegeneration in the brain, they are not a primary cause of ALS or FTLD.
Collapse
Affiliation(s)
- Britt A. Berning
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Adam K. Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
36
|
Tan DCS, Yao S, Ittner A, Bertz J, Ke YD, Ittner LM, Delerue F. Generation of a New Tau Knockout (tauΔex1) Line Using CRISPR/Cas9 Genome Editing in Mice. J Alzheimers Dis 2019; 62:571-578. [PMID: 29480201 DOI: 10.3233/jad-171058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease and other dementias present with tau pathology. Several mouse lines with knockout of the tau-encoding Mapt gene have been reported, yet findings often differed between lines and sites. Here, we report a new tau knockout strain (tauΔex1), generated by CRISPR/Cas9-mediated genome editing of intron -1/exon 1 of Mapt in C57Bl/6J mice. TauΔex1 mice had no overt phenotype, but, in line with previous models, they showed a significantly reduced susceptibility to excitotoxic seizures, with normal memory formation in young mice. This new in vivo resource will be made freely available to the research community.
Collapse
Affiliation(s)
- Daniel C S Tan
- Dementia Research Unit, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Transgenic Animal Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Sherilyn Yao
- Transgenic Animal Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Arne Ittner
- Dementia Research Unit, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Josefine Bertz
- Dementia Research Unit, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Yazi D Ke
- Motor Neuron Disease Unit, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Transgenic Animal Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Fabien Delerue
- Transgenic Animal Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
37
|
Alrafiah AR. From Mouse Models to Human Disease: An Approach for Amyotrophic Lateral Sclerosis. In Vivo 2018; 32:983-998. [PMID: 30150420 DOI: 10.21873/invivo.11339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/22/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disorder. There are several genetic mutations that lead to ALS development, such as chromosome 9 hexanucleotide repeat 72 (C9ORF72), transactive response DNA-binding protein (TARDBP), superoxide dismutase 1 (SOD1) and fused in sarcoma (FUS). ALS is associated with disrupted gene homeostasis causing aberrant RNA processing or toxic pathology. Several animal models of ALS disease have been developed to understand whether TARDBP-mediated neurodegeneration results from a gain or a loss of function of the protein, however, none exactly mimic the pathophysiology and the phenotype of human ALS. Here, the pathophysiology of specific ALS-linked gene mutations is discussed. Furthermore, some of the generated mouse models, as well as the similarities and differences between these models, are comprehensively reviewed. Further refinement of mouse models will likely aid the development of a better form of model that mimics human ALS. However, disrupted gene homeostasis that causes mutation can result in an ALS-like syndrome, increasing concerns about whether neurodegeneration and other effects in these models are due to the mutation or to gene overexpression. Research on the pleiotropic role of different proteins present in motor neurons is also summarized. The development of better mouse models that closely mimic human ALS will help identify potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Aziza Rashed Alrafiah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences and Neuroscience Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
38
|
Stefanoska K, Bertz J, Volkerling AM, van der Hoven J, Ittner LM, Ittner A. Neuronal MAP kinase p38α inhibits c-Jun N-terminal kinase to modulate anxiety-related behaviour. Sci Rep 2018; 8:14296. [PMID: 30250211 PMCID: PMC6155170 DOI: 10.1038/s41598-018-32592-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Modulation of behavioural responses by neuronal signalling pathways remains incompletely understood. Signalling via mitogen-activated protein (MAP) kinase cascades regulates multiple neuronal functions. Here, we show that neuronal p38α, a MAP kinase of the p38 kinase family, has a critical and specific role in modulating anxiety-related behaviour in mice. Neuron-specific p38α-knockout mice show increased levels of anxiety in behaviour tests, yet no other behavioural, cognitive or motor deficits. Using CRISPR-mediated deletion of p38α in cells, we show that p38α inhibits c-Jun N-terminal kinase (JNK) activity, a function that is specific to p38α over other p38 kinases. Consistently, brains of neuron-specific p38α-knockout mice show increased JNK activity. Inhibiting JNK using a specific blood-brain barrier-permeable inhibitor reduces JNK activity in brains of p38α-knockout mice to physiological levels and reverts anxiety behaviour. Thus, our results suggest that neuronal p38α negatively regulates JNK activity that is required for specific modulation of anxiety-related behaviour.
Collapse
Affiliation(s)
- Kristie Stefanoska
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Josefine Bertz
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alexander M Volkerling
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Julia van der Hoven
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.,Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Arne Ittner
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
39
|
Svahn AJ, Don EK, Badrock AP, Cole NJ, Graeber MB, Yerbury JJ, Chung R, Morsch M. Nucleo-cytoplasmic transport of TDP-43 studied in real time: impaired microglia function leads to axonal spreading of TDP-43 in degenerating motor neurons. Acta Neuropathol 2018; 136:445-459. [PMID: 29943193 PMCID: PMC6096729 DOI: 10.1007/s00401-018-1875-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/09/2018] [Accepted: 06/09/2018] [Indexed: 02/08/2023]
Abstract
Transactivating DNA-binding protein-43 (TDP-43) deposits represent a typical finding in almost all ALS patients, more than half of FTLD patients and patients with several other neurodegenerative disorders. It appears that perturbation of nucleo-cytoplasmic transport is an important event in these conditions but the mechanistic role and the fate of TDP-43 during neuronal degeneration remain elusive. We have developed an experimental system for visualising the perturbed nucleocytoplasmic transport of neuronal TDP-43 at the single-cell level in vivo using zebrafish spinal cord. This approach enabled us to image TDP-43-expressing motor neurons before and after experimental initiation of cell death. We report the formation of mobile TDP-43 deposits within degenerating motor neurons, which are normally phagocytosed by microglia. However, when microglial cells were depleted, injury-induced motor neuron degeneration follows a characteristic process that includes TDP-43 redistribution into the cytoplasm, axon and extracellular space. This is the first demonstration of perturbed TDP-43 nucleocytoplasmic transport in vivo, and suggests that impairment in microglial phagocytosis of dying neurons may contribute towards the formation of pathological TDP-43 presentations in ALS and FTLD.
Collapse
|
40
|
van Hummel A, Chan G, van der Hoven J, Morsch M, Ippati S, Suh L, Bi M, Asih PR, Lee WS, Butler TA, Przybyla M, Halliday GM, Piguet O, Kiernan MC, Chung RS, Ittner LM, Ke YD. Selective Spatiotemporal Vulnerability of Central Nervous System Neurons to Pathologic TAR DNA-Binding Protein 43 in Aged Transgenic Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1447-1456. [DOI: 10.1016/j.ajpath.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/19/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022]
|
41
|
Handley EE, Pitman KA, Dawkins E, Young KM, Clark RM, Jiang TC, Turner BJ, Dickson TC, Blizzard CA. Synapse Dysfunction of Layer V Pyramidal Neurons Precedes Neurodegeneration in a Mouse Model of TDP-43 Proteinopathies. Cereb Cortex 2018; 27:3630-3647. [PMID: 27496536 DOI: 10.1093/cercor/bhw185] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TDP-43 is a major protein component of pathological neuronal inclusions that are present in frontotemporal dementia and amyotrophic lateral sclerosis. We report that TDP-43 plays an important role in dendritic spine formation in the cortex. The density of spines on YFP+ pyramidal neurons in both the motor and somatosensory cortex of Thy1-YFP mice, increased significantly from postnatal day 30 (P30), to peak at P60, before being pruned by P90. By comparison, dendritic spine density was significantly reduced in the motor cortex of Thy1-YFP::TDP-43A315T transgenic mice prior to symptom onset (P60), and in the motor and somatosensory cortex at symptom onset (P90). Morphological spine-type analysis revealed that there was a significant impairment in the development of basal mushroom spines in the motor cortex of Thy1-YFP::TDP-43A315T mice compared to Thy1-YFP control. Furthermore, reductions in spine density corresponded to mislocalisation of TDP-43 immunoreactivity and lowered efficacy of synaptic transmission as determined by electrophysiology at P60. We conclude that mutated TDP-43 has a significant pathological effect at the dendritic spine that is associated with attenuated neural transmission.
Collapse
Affiliation(s)
- Emily E Handley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Edgar Dawkins
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Rosemary M Clark
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Tongcui C Jiang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Bradley J Turner
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
42
|
Physiological changes in neurodegeneration - mechanistic insights and clinical utility. Nat Rev Neurol 2018; 14:259-271. [PMID: 29569624 DOI: 10.1038/nrneurol.2018.23] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effects of neurodegenerative syndromes extend beyond cognitive function to involve key physiological processes, including eating and metabolism, autonomic nervous system function, sleep, and motor function. Changes in these physiological processes are present in several conditions, including frontotemporal dementia, amyotrophic lateral sclerosis, Alzheimer disease and the parkinsonian plus conditions. Key neural structures that mediate physiological changes across these conditions include neuroendocrine and hypothalamic pathways, reward pathways, motor systems and the autonomic nervous system. In this Review, we highlight the key changes in physiological processing in neurodegenerative syndromes and the similarities in these changes between different progressive neurodegenerative brain conditions. The changes and similarities between disorders might provide novel insights into the human neural correlates of physiological functioning. Given the evidence that physiological changes can arise early in the neurodegenerative process, these changes could provide biomarkers to aid in the early diagnosis of neurodegenerative diseases and in treatment trials.
Collapse
|
43
|
Nie B, Liu C, Bai X, Chen X, Wu S, Zhang S, Huang Z, Xie M, Xu T, Xin W, Zeng W, Ouyang H. AKAP150 involved in paclitaxel-induced neuropathic pain via inhibiting CN/NFAT2 pathway and downregulating IL-4. Brain Behav Immun 2018; 68:158-168. [PMID: 29056557 DOI: 10.1016/j.bbi.2017.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
Antitubulin chemotherapeutics agents, such as paclitaxel, are effective chemotherapy drugs for cancer treatment. However, painful neuropathy is a major adverse effect limiting the wider application of chemotherapeutics. In this study, we found that A-kinase anchor protein 150 (AKAP150) was significantly upregulated after paclitaxel injection. Inhibition of AKAP150 via siRNA or AKAP150flox/flox in rodents alleviated the pain behavior induced by paclitaxel, and partly restored the decreased calcineurin (CN) phosphatase activity after paclitaxel treatment. Paclitaxel decreased the expression of anti-inflammatory cytokine interleukin-4 (IL-4), and intrathecal injections of IL-4 effectively alleviated paclitaxel-induced hypersensitivity and the frequency of dorsal root ganglion (DRG) neurons action potential. The decreased CN enzyme activity, resulted in reduced protein expression of nuclear factor of activated T cells 2 (NFAT2) in cell nuclei. Chromatin immunoprecipitation showed that, NFAT2 binds to the IL-4 gene promoter regulating the protein expression of IL-4. Overexpression of NFAT2 by intrathecal injection of the AAV5-NFAT2-GFP virus alleviated the pain behavior induced by paclitaxel via increasing the expression of IL-4. Knocked down AKAP150 by siRNA or AAV5-Cre-GFP partly restored the expression of IL-4 in DRG. Our results indicated that regulation of IL-4 via the CN/NFAT2 pathway mediated by AKAP150 could be a pivotal treatment target for paclitaxel-induced neuropathic pain and or other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Bilin Nie
- Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, China; Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Cuicui Liu
- Department of Rehabilitation Medicine and Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Bai
- Department of Rehabilitation Medicine and Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaodi Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaoyong Wu
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Subo Zhang
- Department of Rehabilitation Medicine and Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuxi Huang
- Department of Rehabilitation Medicine and Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Manxiu Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ting Xu
- Zhongshan Medicine School, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China.
| | - Wenjun Xin
- Zhongshan Medicine School, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
44
|
Sugai A, Kato T, Koyama A, Koike Y, Kasahara S, Konno T, Ishihara T, Onodera O. Robustness and Vulnerability of the Autoregulatory System That Maintains Nuclear TDP-43 Levels: A Trade-off Hypothesis for ALS Pathology Based on in Silico Data. Front Neurosci 2018; 12:28. [PMID: 29449800 PMCID: PMC5799296 DOI: 10.3389/fnins.2018.00028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022] Open
Abstract
Abnormal accumulation of TAR DNA-binding protein 43 (TDP-43) in the cytoplasm and its disappearance from the nucleus are pathological features of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) and are directly involved in the pathogenesis of these conditions. TDP-43 is an essential nuclear protein that readily aggregates in a concentration-dependent manner. Therefore, cells must strictly maintain an appropriate amount of nuclear TDP-43. In one relevant maintenance mechanism, TDP-43 binds to its pre-mRNA and promotes alternative splicing, resulting in mRNA degradation via nonsense-mediated mRNA decay. The level of nuclear TDP-43 is tightly regulated by these mechanisms, which control the amount of mRNA that may be translated. Based on the results of previous experiments, we developed an in silico model that mimics the intracellular dynamics of TDP-43 and examined TDP-43 metabolism under various conditions. We discovered an inherent trade-off in this mechanism between transcriptional redundancy, which maintains the robustness of TDP-43 metabolism, and vulnerability to specific interfering factors. These factors include an increased tendency of TDP-43 to aggregate, impaired nuclear-cytoplasmic TDP-43 transport, and a decreased efficiency of degrading abnormal proteins, all of which are functional abnormalities related to the gene that causes familial ALS/FTD. When these conditions continue at a certain intensity, the vulnerability of the autoregulatory machinery becomes apparent over time, and transcriptional redundancy enters a vicious cycle that ultimately results in TDP-43 pathology. The results obtained using this in silico model reveal the difference in TDP-43 metabolism between normal and disease states. Furthermore, using this model, we simulated the effect of a decrease in TDP-43 transcription and found that this decrease improved TDP-43 pathology and suppressed the abnormal propagation of TDP-43. Therefore, we propose a potential therapeutic strategy to suppress transcriptional redundancy, which is the driving force of the pathological condition caused by the specific factors described above, in patients with ALS presenting with TDP-43 pathology. An ALS animal model exhibiting TDP-43 pathology without overexpression of exogenous TDP-43 should be developed to investigate the effect of alleviating the transcriptional redundancy of TARDBP.
Collapse
Affiliation(s)
- Akihiro Sugai
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Taisuke Kato
- Department of System Pathology for Neurological Disorders, Brain Science Branch, Center for Bioresource-Based Research, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihide Koyama
- Division of Legal Medicine, Graduate School of Medicine and Dental Science, Niigata University, Niigata, Japan
| | - Yuka Koike
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Sou Kasahara
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takuya Konno
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomohiko Ishihara
- Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-based Research, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
45
|
Alzheimer’s Disease and Frontotemporal Lobar Degeneration: Mouse Models. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
46
|
Uncoupling N-acetylaspartate from brain pathology: implications for Canavan disease gene therapy. Acta Neuropathol 2018; 135:95-113. [PMID: 29116375 PMCID: PMC5756261 DOI: 10.1007/s00401-017-1784-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/25/2022]
Abstract
N-Acetylaspartate (NAA) is the second most abundant organic metabolite in the brain, but its physiological significance remains enigmatic. Toxic NAA accumulation appears to be the key factor for neurological decline in Canavan disease—a fatal neurometabolic disorder caused by deficiency in the NAA-degrading enzyme aspartoacylase. To date clinical outcome of gene replacement therapy for this spongiform leukodystrophy has not met expectations. To identify the target tissue and cells for maximum anticipated treatment benefit, we employed comprehensive phenotyping of novel mouse models to assess cell type-specific consequences of NAA depletion or elevation. We show that NAA-deficiency causes neurological deficits affecting unconscious defensive reactions aimed at protecting the body from external threat. This finding suggests, while NAA reduction is pivotal to treat Canavan disease, abrogating NAA synthesis should be avoided. At the other end of the spectrum, while predicting pathological severity in Canavan disease mice, increased brain NAA levels are not neurotoxic per se. In fact, in transgenic mice overexpressing the NAA synthesising enzyme Nat8l in neurons, supra-physiological NAA levels were uncoupled from neurological deficits. In contrast, elimination of aspartoacylase expression exclusively in oligodendrocytes elicited Canavan disease like pathology. Although conditional aspartoacylase deletion in oligodendrocytes abolished expression in the entire CNS, the remaining aspartoacylase in peripheral organs was sufficient to lower NAA levels, delay disease onset and ameliorate histopathology. However, comparable endpoints of the conditional and complete aspartoacylase knockout indicate that optimal Canavan disease gene replacement therapies should restore aspartoacylase expression in oligodendrocytes. On the basis of these findings we executed an ASPA gene replacement therapy targeting oligodendrocytes in Canavan disease mice resulting in reversal of pre-existing CNS pathology and lasting neurological benefits. This finding signifies the first successful post-symptomatic treatment of a white matter disorder using an adeno-associated virus vector tailored towards oligodendroglial-restricted transgene expression.
Collapse
|
47
|
Bargsted L, Medinas DB, Martínez Traub F, Rozas P, Muñoz N, Nassif M, Jerez C, Catenaccio A, Court FA, Hetz C, Matus S. Disulfide cross-linked multimers of TDP-43 and spinal motoneuron loss in a TDP-43 A315T ALS/FTD mouse model. Sci Rep 2017; 7:14266. [PMID: 29079747 PMCID: PMC5660202 DOI: 10.1038/s41598-017-14399-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/06/2017] [Indexed: 12/11/2022] Open
Abstract
Tar DNA binding protein 43 (TDP-43) is the principal component of ubiquitinated protein inclusions present in nervous tissue of most cases of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Previous studies described a TDP-43A315T transgenic mouse model that develops progressive motor dysfunction in the absence of protein aggregation or significant motoneuron loss, questioning its validity to study ALS. Here we have further characterized the course of the disease in TDP-43A315T mice using a battery of tests and biochemical approaches. We confirmed that TDP-43 mutant mice develop impaired motor performance, accompanied by progressive body weight loss. Significant differences were observed in life span between genders, where females survived longer than males. Histopathological analysis of the spinal cord demonstrated a significant motoneurons loss, accompanied by axonal degeneration, astrogliosis and microglial activation. Importantly, histopathological alterations observed in TDP-43 mutant mice were similar to some characteristic changes observed in mutant SOD1 mice. Unexpectedly, we identified the presence of different species of disulfide-dependent TDP-43 aggregates in cortex and spinal cord tissue. Overall, this study indicates that TDP-43A315T transgenic mice develop key features resembling key aspects of ALS, highlighting its relevance to study disease pathogenesis.
Collapse
Affiliation(s)
- Leslie Bargsted
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Danilo B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Francisca Martínez Traub
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Pablo Rozas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Natalia Muñoz
- Fundacion Ciencia & Vida, Santiago, 7780272, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Melissa Nassif
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Carolina Jerez
- Fundacion Ciencia & Vida, Santiago, 7780272, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Alejandra Catenaccio
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Felipe A Court
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, MA, USA.
| | - Soledad Matus
- Fundacion Ciencia & Vida, Santiago, 7780272, Chile.
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.
- Neurounion Biomedical Foundation, Santiago, Chile.
| |
Collapse
|
48
|
Tau exacerbates excitotoxic brain damage in an animal model of stroke. Nat Commun 2017; 8:473. [PMID: 28883427 PMCID: PMC5589746 DOI: 10.1038/s41467-017-00618-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal excitotoxicity induced by aberrant excitation of glutamatergic receptors contributes to brain damage in stroke. Here we show that tau-deficient (tau−/−) mice are profoundly protected from excitotoxic brain damage and neurological deficits following experimental stroke, using a middle cerebral artery occlusion with reperfusion model. Mechanistically, we show that this protection is due to site-specific inhibition of glutamate-induced and Ras/ERK-mediated toxicity by accumulation of Ras-inhibiting SynGAP1, which resides in a post-synaptic complex with tau. Accordingly, reducing SynGAP1 levels in tau−/− mice abolished the protection from pharmacologically induced excitotoxicity and middle cerebral artery occlusion-induced brain damage. Conversely, over-expression of SynGAP1 prevented excitotoxic ERK activation in wild-type neurons. Our findings suggest that tau mediates excitotoxic Ras/ERK signaling by controlling post-synaptic compartmentalization of SynGAP1. Excitotoxicity contributes to neuronal injury following stroke. Here the authors show that tau promotes excitotoxicity by a post-synaptic mechanism, involving site-specific control of ERK activation, in a mouse model of stroke.
Collapse
|
49
|
Ittner A, Chua SW, Bertz J, Volkerling A, van der Hoven J, Gladbach A, Przybyla M, Bi M, van Hummel A, Stevens CH, Ippati S, Suh LS, Macmillan A, Sutherland G, Kril JJ, Silva APG, Mackay JP, Poljak A, Delerue F, Ke YD, Ittner LM. Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer's mice. Science 2017; 354:904-908. [PMID: 27856911 DOI: 10.1126/science.aah6205] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/09/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022]
Abstract
Amyloid-β (Aβ) toxicity in Alzheimer's disease (AD) is considered to be mediated by phosphorylated tau protein. In contrast, we found that, at least in early disease, site-specific phosphorylation of tau inhibited Aβ toxicity. This specific tau phosphorylation was mediated by the neuronal p38 mitogen-activated protein kinase p38γ and interfered with postsynaptic excitotoxic signaling complexes engaged by Aβ. Accordingly, depletion of p38γ exacerbated neuronal circuit aberrations, cognitive deficits, and premature lethality in a mouse model of AD, whereas increasing the activity of p38γ abolished these deficits. Furthermore, mimicking site-specific tau phosphorylation alleviated Aβ-induced neuronal death and offered protection from excitotoxicity. Our work provides insights into postsynaptic processes in AD pathogenesis and challenges a purely pathogenic role of tau phosphorylation in neuronal toxicity.
Collapse
Affiliation(s)
- Arne Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.
| | - Sook Wern Chua
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Josefine Bertz
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Alexander Volkerling
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Julia van der Hoven
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Amadeus Gladbach
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Magdalena Przybyla
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Mian Bi
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Annika van Hummel
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.,Motor Neuron Disease Unit, School of Medical Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Claire H Stevens
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Stefania Ippati
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Lisa S Suh
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.,Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Alexander Macmillan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Greg Sutherland
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Jillian J Kril
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Ana P G Silva
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Anne Poljak
- Biomedical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Fabien Delerue
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.,Transgenic Animal Unit, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Yazi D Ke
- Motor Neuron Disease Unit, School of Medical Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia. .,Transgenic Animal Unit, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia.,Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
| |
Collapse
|
50
|
Delerue F, Ittner LM. Generation of Genetically Modified Mice through the Microinjection of Oocytes. J Vis Exp 2017. [PMID: 28654070 DOI: 10.3791/55765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The use of genetically modified mice has significantly contributed to studies on both physiological and pathological in vivo processes. The pronuclear injection of DNA expression constructs into fertilized oocytes remains the most commonly used technique to generate transgenic mice for overexpression. With the introduction of CRISPR technology for gene targeting, pronuclear injection into fertilized oocytes has been extended to the generation of both knockout and knockin mice. This work describes the preparation of DNA for injection and the generation of CRISPR guides for gene targeting, with a particular emphasis on quality control. The genotyping procedures required for the identification of potential founders are critical. Innovative genotyping strategies that take advantage of the "multiplexing" capabilities of CRISPR are presented herein. Surgical procedures are also outlined. Together, the steps of the protocol will allow for the generation of genetically modified mice and for the subsequent establishment of mouse colonies for a plethora of research fields, including immunology, neuroscience, cancer, physiology, development, and others.
Collapse
Affiliation(s)
- Fabien Delerue
- Transgenic Animal Unit, Mark Wainwright Analytical Centre, University of New South Wales;
| | - Lars M Ittner
- Transgenic Animal Unit, Mark Wainwright Analytical Centre, University of New South Wales
| |
Collapse
|