1
|
Chew CS, Lee JY, Ng KY, Koh RY, Chye SM. Resilience mechanisms underlying Alzheimer's disease. Metab Brain Dis 2025; 40:86. [PMID: 39760900 DOI: 10.1007/s11011-024-01507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/14/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) consists of two main pathologies, which are the deposition of amyloid plaque as well as tau protein aggregation. Evidence suggests that not everyone who carries the AD-causing genes displays AD-related symptoms; they might never acquire AD as well. These individuals are referred to as non-demented individuals with AD neuropathology (NDAN). Despite the presence of extensive AD pathology in their brain, it was found that NDAN had better cognitive function than was expected, suggesting that they were more resilient (better at coping) to AD due to differences in their brains compared to other demented or cognitively impaired patients. Thus, identification of the mechanisms underlying resilience is crucial since it represents a promising therapeutic strategy for AD. In this review, we will explore the molecular mechanisms underpinning the role of genetic and molecular resilience factors in improving resilience to AD. These include protective genes and proteins such as APOE2, BDNF, RAB10, actin network proteins, scaffolding proteins, and the basal forebrain cholinergic system. A thorough understanding of these resilience mechanisms is crucial for not just comprehending the development of AD but may also open new treatment possibilities for AD by enhancing the neuroprotective pathway and targeting the pathogenic process.
Collapse
Affiliation(s)
- Chu Shi Chew
- School of Health Science, IMU University, 57000, Kuala Lumpur, Malaysia
| | - Jia Yee Lee
- School of Health Science, IMU University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, IMU University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, IMU University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Győri F, Mészáros Á, Krecsmarik M, Molnár K, Balta C, Hermenean A, Farkas AE, Krizbai IA, Wilhelm I. Expression of alpha smooth muscle actin decreases with ageing and increases upon lumen obstruction in mouse brain pericytes. GeroScience 2024:10.1007/s11357-024-01429-0. [PMID: 39592519 DOI: 10.1007/s11357-024-01429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Cerebral pericytes are mural cells covering brain microvessels, organized as ensheathing, mesh and thin-strand pericytes. These latter two, together called capillary pericytes, have low levels of alpha smooth muscle actin (α-SMA), regulating basal vascular tone and applying a slow influence on cerebral blood flow. Pericytes are subject to alterations in ageing which may be even more pronounced in age-related pathologies, including microinfarcts, which usually affect a large number of vessels in the ageing brain. We modelled this condition by injecting 10 µm-size microspheres into the circulation of mice resulting in the occlusion of capillaries covered by ensheathing and mesh pericytes. We observed that α-SMA and Acta2, the gene encoding it, as well as TGF-β1/Tgfb1, the major regulator of α-SMA, decreased during ageing in cerebral microvessels. In the vicinity of the microspheres stalled in the capillaries, expression of α-SMA increased significantly in both ensheathing and especially in mesh pericytes, both in young (2 to 3 months of age) and old (24 months of age) mice. On the other hand, γ-actin was detected in endothelial cells, but not in pericytes, and decreased in microvessels of microsphere-containing hemispheres. Altogether, our data show that obstruction of cerebral microvessels increases α-SMA expression in pericytes in both age groups, but this does not compensate for the lower expression of the contractile protein in old animals. Increased α-SMA expression may lead to constriction of the obstructed vessels probably aggravating flow heterogeneity in the aged brain.
Collapse
Affiliation(s)
- Fanni Győri
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Ádám Mészáros
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Mónika Krecsmarik
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Cornel Balta
- Aurel Ardelean" Institute of Life Sciences, Vasile Goldiș Western University, Arad, Romania
| | - Anca Hermenean
- Aurel Ardelean" Institute of Life Sciences, Vasile Goldiș Western University, Arad, Romania
| | - Attila E Farkas
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - István A Krizbai
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary.
- Aurel Ardelean" Institute of Life Sciences, Vasile Goldiș Western University, Arad, Romania.
| | - Imola Wilhelm
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary.
- Aurel Ardelean" Institute of Life Sciences, Vasile Goldiș Western University, Arad, Romania.
| |
Collapse
|
3
|
Das V, Miller JH, Alladi CG, Annadurai N, De Sanctis JB, Hrubá L, Hajdúch M. Antineoplastics for treating Alzheimer's disease and dementia: Evidence from preclinical and observational studies. Med Res Rev 2024; 44:2078-2111. [PMID: 38530106 DOI: 10.1002/med.22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
As the world population ages, there will be an increasing need for effective therapies for aging-associated neurodegenerative disorders, which remain untreatable. Dementia due to Alzheimer's disease (AD) is one of the leading neurological diseases in the aging population. Current therapeutic approaches to treat this disorder are solely symptomatic, making the need for new molecular entities acting on the causes of the disease extremely urgent. One of the potential solutions is to use compounds that are already in the market. The structures have known pharmacokinetics, pharmacodynamics, toxicity profiles, and patient data available in several countries. Several drugs have been used successfully to treat diseases different from their original purposes, such as autoimmunity and peripheral inflammation. Herein, we divulge the repurposing of drugs in the area of neurodegenerative diseases, focusing on the therapeutic potential of antineoplastics to treat dementia due to AD and dementia. We briefly touch upon the shared pathological mechanism between AD and cancer and drug repurposing strategies, with a focus on artificial intelligence. Next, we bring out the current status of research on the development of drugs, provide supporting evidence from retrospective, clinical, and preclinical studies on antineoplastic use, and bring in new areas, such as repurposing drugs for the prion-like spreading of pathologies in treating AD.
Collapse
Affiliation(s)
- Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - John H Miller
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Charanraj Goud Alladi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Lenka Hrubá
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
4
|
Zhiyan C, Min Z, Yida D, Chunying H, Xiaohua H, Yutong L, Huan W, Linjuan S. Bioinformatic analysis of hippocampal histopathology in Alzheimer's disease and the therapeutic effects of active components of traditional Chinese medicine. Front Pharmacol 2024; 15:1424803. [PMID: 39221152 PMCID: PMC11362046 DOI: 10.3389/fphar.2024.1424803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Background and aim Pathological changes in the central nervous system (CNS) begin before the clinical symptoms of Alzheimer's Disease (AD) manifest, with the hippocampus being one of the first affected structures. Current treatments fail to alter AD progression. Traditional Chinese medicine (TCM) has shown potential in improving AD pathology through multi-target mechanisms. This study investigates pathological changes in AD hippocampal tissue and explores TCM active components that may alleviate these changes. Methods GSE5281 and GSE173955 datasets were downloaded from GEO and normalized to identify differentially expressed genes (DEGs). Key functional modules and hub genes were analyzed using Cytoscape and R. Active TCM components were identified from literature and the Pharmacopoeia of the People's Republic of China. Enrichment analyses were performed on target genes overlapping with DEGs. Result From the datasets, 76 upregulated and 363 downregulated genes were identified. Hub genes included SLAMF, CD34, ELN (upregulated) and ATP5F1B, VDAC1, VDAC2, HSPA8, ATP5F1C, PDHA1, UBB, SNCA, YWHAZ, PGK1 (downregulated). Literature review identified 33 active components from 23 herbal medicines. Target gene enrichment and analysis were performed for six components: dihydroartemisinin, berberine, naringenin, calycosin, echinacoside, and icariside II. Conclusion Mitochondrial to synaptic vesicle dysfunction pathways were enriched in downregulated genes. Despite downregulation, UBB and SNCA proteins accumulate in AD brains. TCM studies suggest curcumin and echinacoside may improve hippocampal pathology and cognitive impairment in AD. Further investigation into their mechanisms is needed.
Collapse
Affiliation(s)
- Chen Zhiyan
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Zhan Min
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| | - Du Yida
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - He Chunying
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Hu Xiaohua
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Yutong
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Wang Huan
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Sun Linjuan
- Department of Neurology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| |
Collapse
|
5
|
Hoglund Z, Ruiz-Uribe N, Del Sastre E, Woost B, Bader E, Bailey J, Hyman BT, Zwang T, Bennett RE. Brain vasculature accumulates tau and is spatially related to tau tangle pathology in Alzheimer's disease. Acta Neuropathol 2024; 147:101. [PMID: 38884806 PMCID: PMC11182845 DOI: 10.1007/s00401-024-02751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Insoluble pathogenic proteins accumulate along blood vessels in conditions of cerebral amyloid angiopathy (CAA), exerting a toxic effect on vascular cells and impacting cerebral homeostasis. In this work, we provide new evidence from three-dimensional human brain histology that tau protein, the main component of neurofibrillary tangles, can similarly accumulate along brain vascular segments. We quantitatively assessed n = 6 Alzheimer's disease (AD), and n = 6 normal aging control brains and saw that tau-positive blood vessel segments were present in all AD cases. Tau-positive vessels are enriched for tau at levels higher than the surrounding tissue and appear to affect arterioles across cortical layers (I-V). Further, vessels isolated from these AD tissues were enriched for N-terminal tau and tau phosphorylated at T181 and T217. Importantly, tau-positive vessels are associated with local areas of increased tau neurofibrillary tangles. This suggests that accumulation of tau around blood vessels may reflect a local clearance failure. In sum, these data indicate that tau, like amyloid beta, accumulates along blood vessels and may exert a significant influence on vasculature in the setting of AD.
Collapse
Affiliation(s)
- Zachary Hoglund
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA
| | - Nancy Ruiz-Uribe
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Eric Del Sastre
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA
| | - Benjamin Woost
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA
| | - Elizabeth Bader
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA
| | - Joshua Bailey
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Theodore Zwang
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Wojtas AM, Dammer EB, Guo Q, Ping L, Shantaraman A, Duong DM, Yin L, Fox EJ, Seifar F, Lee EB, Johnson ECB, Lah JJ, Levey AI, Levites Y, Rangaraju S, Golde TE, Seyfried NT. Proteomic changes in the human cerebrovasculature in Alzheimer's disease and related tauopathies linked to peripheral biomarkers in plasma and cerebrospinal fluid. Alzheimers Dement 2024; 20:4043-4065. [PMID: 38713744 PMCID: PMC11180878 DOI: 10.1002/alz.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 03/02/2024] [Indexed: 05/09/2024]
Abstract
INTRODUCTION Cerebrovascular dysfunction is a pathological hallmark of Alzheimer's disease (AD). Nevertheless, detecting cerebrovascular changes within bulk tissues has limited our ability to characterize proteomic alterations from less abundant cell types. METHODS We conducted quantitative proteomics on bulk brain tissues and isolated cerebrovasculature from the same individuals, encompassing control (N = 28), progressive supranuclear palsy (PSP) (N = 18), and AD (N = 21) cases. RESULTS Protein co-expression network analysis identified unique cerebrovascular modules significantly correlated with amyloid plaques, cerebrovascular amyloid angiopathy (CAA), and/or tau pathology. The protein products within AD genetic risk loci were concentrated within cerebrovascular modules. The overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with cerebrovascular network highlighted a significant increase of matrisome proteins, SMOC1 and SMOC2, in CSF, plasma, and brain. DISCUSSION These findings enhance our understanding of cerebrovascular deficits in AD, shedding light on potential biomarkers associated with CAA and vascular dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Aleksandra M. Wojtas
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Eric B. Dammer
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Qi Guo
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Lingyan Ping
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Ananth Shantaraman
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Duc M. Duong
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Luming Yin
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Edward J. Fox
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Fatemeh Seifar
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | - Edward B. Lee
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPennsylvaniaUSA
| | - Erik C. B. Johnson
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - James J. Lah
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Allan I. Levey
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Yona Levites
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Srikant Rangaraju
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Todd E. Golde
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Nicholas T. Seyfried
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Center for Neurodegenerative DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
7
|
Perez CM, Gong Z, Yoo C, Roy D, Deoraj A, Felty Q. Inhibitor of DNA Binding Protein 3 (ID3) and Nuclear Respiratory Factor 1 (NRF1) Mediated Transcriptional Gene Signatures are Associated with the Severity of Cerebral Amyloid Angiopathy. Mol Neurobiol 2024; 61:835-882. [PMID: 37668961 DOI: 10.1007/s12035-023-03541-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/25/2023] [Indexed: 09/06/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is a degenerative vasculopathy. We have previously shown that transcription regulating proteins- inhibitor of DNA binding protein 3 (ID3) and the nuclear respiratory factor 1 (NRF1) contribute to vascular dysregulation. In this study, we have identified sex specific ID3 and NRF1-mediated gene networks in CAA patients diagnosed with Alzheimer's Disease (AD). High expression of ID3 mRNA coupled with low NRF1 mRNA levels was observed in the temporal cortex of men and women CAA patients. Low NRF1 mRNA expression in the temporal cortex was found in men with severe CAA. High ID3 expression was found in women with the genetic risk factor APOE4. Low NRF1 expression was also associated with APOE4 in women with CAA. Genome wide transcriptional activity of both ID3 and NRF1 paralleled their mRNA expression levels. Sex specific differences in transcriptional gene signatures of both ID3 and NRF1 were observed. These findings were further corroborated by Bayesian machine learning and the GeNIe simulation models. Dynamic machine learning using a Monte Carlo Markov Chain (MCMC) gene ordering approach revealed that ID3 was associated with disease severity in women. NRF1 was associated with CAA and severity of this disease in men. These findings suggest that aberrant ID3 and NRF1 activity presumably plays a major role in the pathogenesis and severity of CAA. Further analyses of ID3- and NRF1-regulated molecular drivers of CAA may provide new targets for personalized medicine and/or prevention strategies against CAA.
Collapse
Affiliation(s)
- Christian Michael Perez
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Zhenghua Gong
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Changwon Yoo
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Deodutta Roy
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Alok Deoraj
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA.
| |
Collapse
|
8
|
Hoglund Z, Ruiz-Uribe N, del Sastre E, Woost B, Bailey J, Hyman BT, Zwang T, Bennett RE. Brain Vasculature Accumulates Tau and Is Spatially Related to Tau Tangle Pathology in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577088. [PMID: 38328111 PMCID: PMC10849642 DOI: 10.1101/2024.01.27.577088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Insoluble pathogenic proteins accumulate along blood vessels in conditions of cerebral amyloid angiopathy (CAA), exerting a toxic effect on vascular cells and impacting cerebral homeostasis. In this work we provide new evidence from three-dimensional human brain histology that tau protein, the main component of neurofibrillary tangles, can similarly accumulate along brain vascular segments. We quantitatively assessed n=6 Alzheimer's disease (AD), and n=6 normal aging control brains and saw that tau-positive blood vessel segments were present in all AD cases. Tau-positive vessels are enriched for tau at levels higher than the surrounding tissue and appear to affect arterioles across cortical layers (I-V). Further, vessels isolated from these AD tissues were enriched for N-terminal tau and tau phosphorylated at T181 and T217. Importantly, tau-positive vessels are associated with local areas of increased tau neurofibrillary tangles. This suggests that accumulation of tau around blood vessels may reflect a local clearance failure. In sum, these data indicate tau, like amyloid beta, accumulates along blood vessels and may exert a significant influence on vasculature in the setting of AD.
Collapse
Affiliation(s)
- Zachary Hoglund
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Nancy Ruiz-Uribe
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Eric del Sastre
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Benjamin Woost
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Joshua Bailey
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Theodore Zwang
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rachel E. Bennett
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Jiang Z, Wang J, Qin Y, Liu S, Luo B, Bai F, Wei H, Zhang S, Wei J, Ding G, Ma L, He S, Chen R, Sun Y, Chen Y, Wang L, Xu H, Wang X, Chen G, Lei W. A nonhuman primate model with Alzheimer's disease-like pathology induced by hippocampal overexpression of human tau. Alzheimers Res Ther 2024; 16:22. [PMID: 38281031 PMCID: PMC10821564 DOI: 10.1186/s13195-024-01392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most burdening diseases of the century with no disease-modifying treatment at this time. Nonhuman primates (NHPs) share genetic, anatomical, and physiological similarities with humans, making them ideal model animals for investigating the pathogenesis of AD and potential therapies. However, the use of NHPs in AD research has been hindered by the paucity of AD monkey models due to their long generation time, ethical considerations, and technical challenges in genetically modifying monkeys. METHODS Here, we developed an AD-like NHP model by overexpressing human tau in the bilateral hippocampi of adult rhesus macaque monkeys. We evaluated the pathological features of these monkeys with immunostaining, Nissl staining, cerebrospinal fluid (CSF) analysis, magnetic resonance imaging (MRI), positron emission tomography (PET), and behavioural tests. RESULTS We demonstrated that after hippocampal overexpression of tau protein, these monkeys displayed multiple pathological features of AD, including 3-repeat (3R)/4-repeat (4R) tau accumulation, tau hyperphosphorylation, tau propagation, neuronal loss, hippocampal atrophy, neuroinflammation, Aβ clearance deficits, blood vessel damage, and cognitive decline. More interestingly, the accumulation of both 3R and 4R tau is specific to NHPs but not found in adult rodents. CONCLUSIONS This work establishes a tau-induced AD-like NHP model with many key pathological and behavioural features of AD. In addition, our model may potentially become one of the AD NHP models adopted by researchers worldwide since it can be generated within 2 ~ 3 months through a single injection of AAVs into the monkey brains. Hence, our model NHPs may facilitate mechanistic studies and therapeutic treatments for AD.
Collapse
Affiliation(s)
- Zhouquan Jiang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jing Wang
- Department of Neurosurgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yongpeng Qin
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shanggong Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Bin Luo
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Fan Bai
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Huiyi Wei
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shaojuan Zhang
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Junjie Wei
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Guoyu Ding
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Long Ma
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shu He
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Rongjie Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Ying Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yi Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Lu Wang
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiangyu Wang
- Department of Neurosurgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Gong Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Wenliang Lei
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
10
|
Wojtas AM, Dammer EB, Guo Q, Ping L, Shantaraman A, Duong DM, Yin L, Fox EJ, Seifar F, Lee EB, Johnson ECB, Lah JJ, Levey AI, Levites Y, Rangaraju S, Golde TE, Seyfried NT. Proteomic Changes in the Human Cerebrovasculature in Alzheimer's Disease and Related Tauopathies Linked to Peripheral Biomarkers in Plasma and Cerebrospinal Fluid. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.10.24301099. [PMID: 38260316 PMCID: PMC10802758 DOI: 10.1101/2024.01.10.24301099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dysfunction of the neurovascular unit stands as a significant pathological hallmark of Alzheimer's disease (AD) and age-related neurodegenerative diseases. Nevertheless, detecting vascular changes in the brain within bulk tissues has proven challenging, limiting our ability to characterize proteomic alterations from less abundant cell types. To address this challenge, we conducted quantitative proteomic analyses on both bulk brain tissues and cerebrovascular-enriched fractions from the same individuals, encompassing cognitively unimpaired control, progressive supranuclear palsy (PSP), and AD cases. Protein co-expression network analysis identified modules unique to the cerebrovascular fractions, specifically enriched with pericytes, endothelial cells, and smooth muscle cells. Many of these modules also exhibited significant correlations with amyloid plaques, cerebral amyloid angiopathy (CAA), and/or tau pathology in the brain. Notably, the protein products within AD genetic risk loci were found concentrated within modules unique to the vascular fractions, consistent with a role of cerebrovascular deficits in the etiology of AD. To prioritize peripheral AD biomarkers associated with vascular dysfunction, we assessed the overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with a vascular-enriched network modules in the brain. This analysis highlighted matrisome proteins, SMOC1 and SMOC2, as being increased in CSF, plasma, and brain. Immunohistochemical analysis revealed SMOC1 deposition in both parenchymal plaques and CAA in the AD brain, whereas SMOC2 was predominantly localized to CAA. Collectively, these findings significantly enhance our understanding of the involvement of cerebrovascular abnormalities in AD, shedding light on potential biomarkers and molecular pathways associated with CAA and vascular dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Aleksandra M. Wojtas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B. Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Qi Guo
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Lingyan Ping
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Ananth Shantaraman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M. Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Luming Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Edward J. Fox
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Fatemeh Seifar
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Edward B. Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, PA, USA
| | - Erik C. B. Johnson
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - James J. Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I. Levey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Yona Levites
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Todd E. Golde
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
11
|
Wheeler KV, Irimia A, Braskie MN. Using Neuroimaging to Study Cerebral Amyloid Angiopathy and Its Relationship to Alzheimer's Disease. J Alzheimers Dis 2024; 97:1479-1502. [PMID: 38306032 DOI: 10.3233/jad-230553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β aggregation in the media and adventitia of the leptomeningeal and cortical blood vessels. CAA is one of the strongest vascular contributors to Alzheimer's disease (AD). It frequently co-occurs in AD patients, but the relationship between CAA and AD is incompletely understood. CAA may drive AD risk through damage to the neurovascular unit and accelerate parenchymal amyloid and tau deposition. Conversely, early AD may also drive CAA through cerebrovascular remodeling that impairs blood vessels from clearing amyloid-β. Sole reliance on autopsy examination to study CAA limits researchers' ability to investigate CAA's natural disease course and the effect of CAA on cognitive decline. Neuroimaging allows for in vivo assessment of brain function and structure and can be leveraged to investigate CAA staging and explore its associations with AD. In this review, we will discuss neuroimaging modalities that can be used to investigate markers associated with CAA that may impact AD vulnerability including hemorrhages and microbleeds, blood-brain barrier permeability disruption, reduced cerebral blood flow, amyloid and tau accumulation, white matter tract disruption, reduced cerebrovascular reactivity, and lowered brain glucose metabolism. We present possible areas for research inquiry to advance biomarker discovery and improve diagnostics.
Collapse
Affiliation(s)
- Koral V Wheeler
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Corwin D. Denney Research Center, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| |
Collapse
|
12
|
Pandics T, Major D, Fazekas-Pongor V, Szarvas Z, Peterfi A, Mukli P, Gulej R, Ungvari A, Fekete M, Tompa A, Tarantini S, Yabluchanskiy A, Conley S, Csiszar A, Tabak AG, Benyo Z, Adany R, Ungvari Z. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. GeroScience 2023; 45:3381-3408. [PMID: 37688657 PMCID: PMC10643494 DOI: 10.1007/s11357-023-00913-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer's disease, Parkinson's disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood-brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population.
Collapse
Affiliation(s)
- Tamas Pandics
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Public Health Laboratory, National Public Health Centre, Budapest, Hungary
- Department of Public Health Siences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Peterfi
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Tompa
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam G Tabak
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, H-1052, Hungary
| | - Roza Adany
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
- Epidemiology and Surveillance Centre, Semmelweis University, 1085, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
13
|
Wu W, Huang J, Han P, Zhang J, Wang Y, Jin F, Zhou Y. Research Progress on Natural Plant Molecules in Regulating the Blood-Brain Barrier in Alzheimer's Disease. Molecules 2023; 28:7631. [PMID: 38005352 PMCID: PMC10674591 DOI: 10.3390/molecules28227631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. With the aging population and the continuous development of risk factors associated with AD, it will impose a significant burden on individuals, families, and society. Currently, commonly used therapeutic drugs such as Cholinesterase inhibitors, N-methyl-D-aspartate antagonists, and multiple AD pathology removal drugs have been shown to have beneficial effects on certain pathological conditions of AD. However, their clinical efficacy is minimal and they are associated with certain adverse reactions. Furthermore, the underlying pathological mechanism of AD remains unclear, posing a challenge for drug development. In contrast, natural plant molecules, widely available, offer multiple targeting pathways and demonstrate inherent advantages in modifying the typical pathologic features of AD by influencing the blood-brain barrier (BBB). We provide a comprehensive review of recent in vivo and in vitro studies on natural plant molecules that impact the BBB in the treatment of AD. Additionally, we analyze their specific mechanisms to offer novel insights for the development of safe and effective targeted drugs as well as guidance for experimental research and the clinical application of drugs for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Weidong Wu
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Jiahao Huang
- Department of Chinese Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Pengfei Han
- Science and Education Section, Zhangjiakou First Hospital, Zhangjiakou 075041, China;
| | - Jian Zhang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Yuxin Wang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanyan Zhou
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| |
Collapse
|
14
|
Emmerson JT, Do Carmo S, Liu Y, Shalhoub A, Liu A, Bonomo Q, Malcolm JC, Breuillaud L, Cuello AC. Progressive human-like tauopathy with downstream neurodegeneration and neurovascular compromise in a transgenic rat model. Neurobiol Dis 2023; 184:106227. [PMID: 37454780 DOI: 10.1016/j.nbd.2023.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Tauopathies, including frontotemporal dementia (FTD) and Alzheimer's disease (AD), clinically present with progressive cognitive decline and the deposition of neurofibrillary tangles (NFTs) in the brain. Neurovascular compromise is also prevalent in AD and FTD however the relationship between tau and the neurovascular unit is less understood relative to other degenerative phenotypes. Current animal models confer the ability to recapitulate aspects of the CNS tauopathies, however, existing models either display overaggressive phenotypes, or do not develop neuronal loss or genuine neurofibrillary lesions. In this report, we communicate the longitudinal characterization of brain tauopathy in a novel transgenic rat model, coded McGill-R955-hTau. The model expresses the longest isoform of human P301S tau. Homozygous R955-hTau rats displayed a robust, progressive accumulation of mutated human tau leading to the detection of tau hyperphosphorylation and cognitive deficits accelerating from 14 months of age. This model features extensive tau hyperphosphorylation with endogenous tau recruitment, authentic neurofibrillary lesions, and tau-associated neuronal loss, ventricular dilation, decreased brain volume, and gliosis in aged rats. Further, we demonstrate how neurovascular integrity becomes compromised at aged life stages using a combination of electron microscopy, injection of the tracer horseradish peroxidase and immunohistochemical approaches.
Collapse
Affiliation(s)
- Joshua T Emmerson
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Yingying Liu
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Ali Shalhoub
- Department of Biochemistry, McGill University, Montreal H3A 0C7, Canada
| | - Ai Liu
- Integrated Program in Neuroscience, McGill University, Montreal H3A 1A1, Canada
| | - Quentin Bonomo
- Integrated Program in Neuroscience, McGill University, Montreal H3A 1A1, Canada
| | - Janice C Malcolm
- Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada
| | - Lionel Breuillaud
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - A Claudio Cuello
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada; Integrated Program in Neuroscience, McGill University, Montreal H3A 1A1, Canada; Department of Pharmacology, Oxford University, Oxford OX13QT, UK.
| |
Collapse
|
15
|
Xu X, Xu H, Zhang Z. Cerebral amyloid angiopathy-related cardiac injury: Focus on cardiac cell death. Front Cell Dev Biol 2023; 11:1156970. [PMID: 36910141 PMCID: PMC9998697 DOI: 10.3389/fcell.2023.1156970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a kind of disease in which amyloid β (Aβ) and other amyloid protein deposits in the cerebral cortex and the small blood vessels of the brain, causing cerebrovascular and brain parenchymal damage. CAA patients are often accompanied by cardiac injury, involving Aβ, tau and transthyroxine amyloid (ATTR). Aβ is the main injury factor of CAA, which can accelerate the formation of coronary artery atherosclerosis, aortic valve osteogenesis calcification and cardiomyocytes basophilic degeneration. In the early stage of CAA (pre-stroke), the accompanying locus coeruleus (LC) amyloidosis, vasculitis and circulating Aβ will induce first hit to the heart. When the CAA progresses to an advanced stage and causes a cerebral hemorrhage, the hemorrhage leads to autonomic nervous function disturbance, catecholamine surges, and systemic inflammation reaction, which can deal the second hit to the heart. Based on the brain-heart axis, CAA and its associated cardiac injury can create a vicious cycle that accelerates the progression of each other.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huikang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of the Diagnosis and Treatment for Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Province Clinical Research Center for Emergency and Critical care medicine, Hangzhou, China
| |
Collapse
|
16
|
Guo XY, Kwon HJ, Rhee HY, Park S, Cho AR, Ryu CW, Jahng GH. Microvascular morphology alteration using relaxation rate change with gadolinium-based magnetic resonance imaging contrast agent in patients with Alzheimer's disease. Quant Imaging Med Surg 2023; 13:1-16. [PMID: 36620129 PMCID: PMC9816741 DOI: 10.21037/qims-22-524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Background Conventional magnetic resonance imaging (MRI) techniques cannot demonstrate microvascular alterations in mild Alzheimer's disease (AD). Thus, the diagnosis of microvascular pathology commonly relies on postmortem. The purpose of this study was to evaluate alterations of microvascular structures in patients with AD using a 3T clinical MRI system with a commercially available contrast agent. Methods Eleven patients with AD and 11 cognitively normal (CN) controls were included in this cross-sectional prospective study. R2 and R2* relaxation rate changes (∆R2 and ∆R2*) before and after a Gadolinium (Gd)-based contrast agent injection were calculated from images obtained with a multi-echo turbo spin-echo sequence and multi-echo gradient-echo sequence to obtain microvascular index maps of blood volume fraction (BVf), mean vessel diameter (mVD), vessel size index (VSI), mean vessel density (Q), and microvessel-weighted imaging (MvWI). Two-sample t-test was used to compare those values between the two groups. Correlation analysis was performed to evaluate the relationship between those values and age. Results BVfs at the corpus callosum and at the thalamus were significantly increased in the AD group (P=0.024 and P=0.005, respectively). BVf at the gray matter (P=0.020) and white matter area (P=0.012) were also significantly increased in the AD group compared with the CN group. MvWIs at the hippocampus and parahippocampal gyrus were significantly increased in the AD group compared with the CN group (P=0.020 and P=0.006, respectively). Voxel-based analysis showed both mVD and VSI were significantly decreased at the prefrontal lobe in the AD group. Q were not significant difference between CN and AD groups. MvWI were significantly positively correlated with age. Conclusions Microvascular index was a useful non-invasive method to evaluate microvascular morphology alteration. The microvascular morphology of AD was manifested as increasing BVf and microvessel-weighted.
Collapse
Affiliation(s)
- Xiao-Yi Guo
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeok Jung Kwon
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hak Young Rhee
- Department of Neurology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Soonchan Park
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ah Rang Cho
- Department of Psychiatry, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Woo Ryu
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F, Breuzard G. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers (Basel) 2022; 14:5386. [PMID: 36358803 PMCID: PMC9653627 DOI: 10.3390/cancers14215386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Alessandra Pagano
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France
| | - François Devred
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| |
Collapse
|
18
|
Piccarducci R, Caselli MC, Zappelli E, Ulivi L, Daniele S, Siciliano G, Ceravolo R, Mancuso M, Baldacci F, Martini C. The Role of Amyloid-β, Tau, and α-Synuclein Proteins as Putative Blood Biomarkers in Patients with Cerebral Amyloid Angiopathy. J Alzheimers Dis 2022; 89:1039-1049. [PMID: 35964181 DOI: 10.3233/jad-220216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder characterized by the deposition of amyloid-β protein (Aβ) within brain blood vessels that develops in elderly people and Alzheimer's disease (AD) patients. Therefore, the investigation of biomarkers able to differentiate CAA patients from AD patients and healthy controls (HC) is of great interest, in particular in peripheral fluids. OBJECTIVE The current study aimed to detect the neurodegenerative disease (ND)-related protein (i.e., Aβ 1 - 40, Aβ 1 - 42, tau, and α-synuclein) levels in both red blood cells (RBCs) and plasma of CAA patients and HC, evaluating their role as putative peripheral biomarkers for CAA. METHODS For this purpose, the proteins' concentration was quantified in RBCs and plasma by homemade immunoenzymatic assays in an exploratory cohort of 20 CAA patients and 20 HC. RESULTS The results highlighted a significant increase of Aβ 1 - 40 and α-synuclein concentrations in both RBCs and plasma of CAA patients, while higher Aβ 1 - 42 and t-tau levels were detected only in RBCs of CAA individuals compared to HC. Moreover, Aβ 1 - 42/Aβ 1 - 40 ratio increased in RBCs and decreased in plasma of CAA patients. The role of these proteins as candidate peripheral biomarkers easily measurable with a blood sample in CAA needs to be confirmed in larger studies. CONCLUSION In conclusion, we provide evidence concerning the possible use of blood biomarkers for contributing to CAA diagnosis and differentiation from other NDs.
Collapse
Affiliation(s)
| | - Maria Chiara Caselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Leonardo Ulivi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
19
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
20
|
Zou X, Yuan Y, Liao Y, Jiang C, Zhao F, Ding D, Gu Y, Chen L, Chu Y, Hsu Y, Liebig PA, Xu B, Mao Y. Moyamoya disease: A human model for chronic hypoperfusion and intervention in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12285. [PMID: 35415209 PMCID: PMC8985488 DOI: 10.1002/trc2.12285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 11/07/2022]
Abstract
Introduction Chronic cerebral hypoperfusion has been considered the etiology for sporadic Alzheimer's disease (AD). However, no valid clinical evidence exists due to the similar risk factors between cerebrovascular disease and AD. Methods We used moyamoya disease (MMD) as a model of chronic hypoperfusion and cognitive impairment, without other etiology interference. Results Based on the previous reports and preliminary findings, we hypothesized that chronic cerebral hypoperfusion could be an independent upstream crucial variable, resulting in AD, and induce pathological hallmarks such as amyloid beta peptide and hyperphosphorylated tau accumulation. Discussion Timely intervention with revascularisation would help reverse the brain damage with AD hallmarks and lead to cognitive improvement.
Collapse
Affiliation(s)
- Xiang Zou
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Yifan Yuan
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Yujun Liao
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Conglin Jiang
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Fan Zhao
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Ding Ding
- Huashan HospitalInstitute of NeurologyFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Yuxiang Gu
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Liang Chen
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Tianqiao and Chrissy Chen International Institute for Brain DiseasesShanghaiChina
| | - Ying‐Hua Chu
- MR CollaborationSiemens Healthineers Ltd.ShanghaiChina
| | - Yi‐Cheng Hsu
- MR CollaborationSiemens Healthineers Ltd.ShanghaiChina
| | | | - Bin Xu
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Ying Mao
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Huashan HospitalInstitute of NeurologyFudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceSchool of Basic Medical Sciences and Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
21
|
Kindler D, Maschio C, Ni R, Zerbi V, Razansky D, Klohs J. Arterial spin labeling demonstrates preserved regional cerebral blood flow in the P301L mouse model of tauopathy. J Cereb Blood Flow Metab 2022; 42:686-693. [PMID: 34822744 PMCID: PMC8943618 DOI: 10.1177/0271678x211062274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is growing evidence for the vascular contribution to cognitive impairment and dementia in Alzheimer's disease (AD) and other neurodegenerative diseases. While perfusion deficits have been observed in patients with Alzheimer's disease and tauopaties, little is known about the role of tau in vascular dysfunction. In the present study, regional cerebral blood (rCBF) was characterized in P301L mice with arterial spin labeling. No differences in rCBF in P301L mice compared to their age-matched non-transgenic littermates at mid (10-12 months of age) and advanced (19-21 months of age) disease stages. This was concomitant with preservation of cortical brain structure as assessed with structural T2-weighted magnetic resonance imaging. These results show that hypoperfusion and neurodegeneration are not a phenotype of P301L mice. More studies are thus needed to understand the relationship of tau, neurodegeneration and vascular dysfunction and its modulators in AD and primary tauopathies.
Collapse
Affiliation(s)
- Diana Kindler
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland
| | - Cinzia Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Valerio Zerbi
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.,Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, 27219ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| |
Collapse
|
22
|
Abubakar MB, Sanusi KO, Ugusman A, Mohamed W, Kamal H, Ibrahim NH, Khoo CS, Kumar J. Alzheimer’s Disease: An Update and Insights Into Pathophysiology. Front Aging Neurosci 2022; 14:742408. [PMID: 35431894 PMCID: PMC9006951 DOI: 10.3389/fnagi.2022.742408] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/25/2022] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible brain disorder associated with slow, progressive loss of brain functions mostly in older people. The disease processes start years before the symptoms are manifested at which point most therapies may not be as effective. In the hippocampus, the key proteins involved in the JAK2/STAT3 signaling pathway, such as p-JAK2-Tyr1007 and p-STAT3-Tyr705 were found to be elevated in various models of AD. In addition to neurons, glial cells such as astrocytes also play a crucial role in the progression of AD. Without having a significant effect on tau and amyloid pathologies, the JAK2/STAT3 pathway in reactive astrocytes exhibits a behavioral impact in the experimental models of AD. Cholinergic atrophy in AD has been traced to a trophic failure in the NGF metabolic pathway, which is essential for the survival and maintenance of basal forebrain cholinergic neurons (BFCN). In AD, there is an alteration in the conversion of the proNGF to mature NGF (mNGF), in addition to an increase in degradation of the biologically active mNGF. Thus, the application of exogenous mNGF in experimental studies was shown to improve the recovery of atrophic BFCN. Furthermore, it is now coming to light that the FGF7/FGFR2/PI3K/Akt signaling pathway mediated by microRNA-107 is also involved in AD pathogenesis. Vascular dysfunction has long been associated with cognitive decline and increased risk of AD. Vascular risk factors are associated with higher tau and cerebral beta-amyloid (Aβ) burden, while synergistically acting with Aβ to induce cognitive decline. The apolipoprotein E4 polymorphism is not just one of the vascular risk factors, but also the most prevalent genetic risk factor of AD. More recently, the research focus on AD shifted toward metabolisms of various neurotransmitters, major and minor nutrients, thus giving rise to metabolomics, the most important “omics” tool for the diagnosis and prognosis of neurodegenerative diseases based on an individual’s metabolome. This review will therefore proffer a better understanding of novel signaling pathways associated with neural and glial mechanisms involved in AD, elaborate potential links between vascular dysfunction and AD, and recent developments in “omics”-based biomarkers in AD.
Collapse
Affiliation(s)
- Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kamaldeen Olalekan Sanusi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wael Mohamed
- Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nurul Husna Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ching Soong Khoo
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- *Correspondence: Jaya Kumar,
| |
Collapse
|
23
|
Kapasi A, Yu L, Petyuk V, Arfanakis K, Bennett DA, Schneider JA. Association of small vessel disease with tau pathology. Acta Neuropathol 2022; 143:349-362. [PMID: 35044500 PMCID: PMC8858293 DOI: 10.1007/s00401-021-02397-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests that small vessel disease (SVD) is a risk factor for clinical dementia and may contribute to AD neuropathological changes. Watershed brain regions are located at the most distal areas between arterial territories, making them vulnerable to SVD-related changes. We examined the association of pathologic markers of SVD, specifically arteriolosclerosis in watershed brain regions, with AD pathologic changes. Participants (N = 982; mean age-at-death = 90; 69% women) were enrolled as part of one of two cohort studies of aging and dementia. At autopsy, neuropathological evaluation included semi-quantitative grading of arteriolosclerosis pathology from 2 cortical watershed regions: the anterior watershed (AWS) and posterior watershed (PWS), densities for cortical β-amyloid and tau-tangle pathology, and other common age-related pathologies. Linear regression models examined the association of watershed arteriolosclerosis pathology with β-amyloid and tau-tangle burden. In follow-up analyses, available ex-vivo MRI and proteomics data in a subset of decedents were leveraged to examine the association of whole brain measure of WMH, as a presumed MRI marker of SVD, with β-amyloid and tau-tangle burden, as well as to examine the association of watershed arteriolosclerosis with proteomic tau. Watershed arteriolosclerosis was common, with 45% of older persons having moderate-to-severe arteriolosclerosis pathology in the AWS region, and 35% in the PWS. In fully adjusted models that controlled for demographics and common age-related pathologies, an increase in severity of PWS arteriolosclerosis was associated with a higher burden of tau-tangle burden, specifically neocortical tau burden, but not with β-amyloid. AWS arteriolosclerosis was not associated with β-amyloid or tau pathology. Ex-vivo WMH was associated with greater tau-tangle pathology burden but not β-amyloid. Furthermore, PWS arteriolosclerosis was associated with higher abundance of tau phosphopeptides, that promote formation of tau aggregates. These data provide compelling evidence that SVD, specifically posterior watershed arteriolosclerosis pathology, is linked with tau pathological changes in the aging brain.
Collapse
Affiliation(s)
- Alifiya Kapasi
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Chicago, IL, 60612, USA.
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA.
| | - L Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - V Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - K Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Chicago, IL, 60612, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - D A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - J A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Chicago, IL, 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
24
|
Cipriano L, Saracino D, Oliva M, Campana V, Puoti G, Conforti R, Fulgione L, Signoriello E, Bonavita S, Coppola C. Systematic Review on the Role of Lobar Cerebral Microbleeds in Cognition. J Alzheimers Dis 2022; 86:1025-1035. [PMID: 35180115 DOI: 10.3233/jad-215323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cerebral microbleeds (CMBs) are small round/oval lesions seen in MRI-specific sequences. They are divided in deep and lobar according to their location. Lobar CMBs (L-CMBs) are commonly associated with amyloid angiopathy. Although CMBs have been considered clinically silent for a long time, a growing body of evidence has shown that they could play a crucial role in cognitive functioning. OBJECTIVE The aim of this systematic review was to estimate the role of L-CMBs in cognitive performance. METHODS We selected, from the Cochrane Library, Embase, PubMed, and ScienceDirect databases, clinical studies, published from January 2000 to January 2020 and focused on the association between L-CMBs and cognitive functions. The inclusion criteria were: 1) participants grouped according to presence or absence of CMBs, 2) extensive neuropsychological examination, 3) CMBs differentiation according to topographical distribution, and 4) MRI-based CMB definition (< 10 mm and low signal in T2*/SWI). The impact of L-CMBs was separately assessed for executive functions, visuospatial skills, language, and memory. RESULTS Among 963 potentially eligible studies, six fulfilled the inclusion criteria. Four studies reported a greater reduction in executive performances in participants with L-CMB and two studies showed a statistically significant association between visuospatial dysfunction and L-CMBs. No association was found between hippocampal memory or language abilities and L-CMBs. CONCLUSION Lobar CMBs are associated with a reduction of processing speed and visuospatial performances, thus suggesting the contribution of vascular amyloid deposition to this cognitive profile. This occurrence enables us to suspect an underlying Alzheimer's disease pathology even in absence of typical hippocampal memory impairment.
Collapse
Affiliation(s)
- Lorenzo Cipriano
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Dario Saracino
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau (ICM), INSERM U1127, CNRS UMR 7225 - Aramis Project Team, Inria Research Center of Paris - Reference Center for Rare or Early Dementias, IM2A, Department of Neurology, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Mariano Oliva
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vito Campana
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Gianfranco Puoti
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Renata Conforti
- Department of Medicine of Precision, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ludovica Fulgione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Elisabetta Signoriello
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Cinzia Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
25
|
Shapira R, Gdalyahu A, Gottfried I, Sasson E, Hadanny A, Efrati S, Blinder P, Ashery U. Hyperbaric oxygen therapy alleviates vascular dysfunction and amyloid burden in an Alzheimer's disease mouse model and in elderly patients. Aging (Albany NY) 2021; 13:20935-20961. [PMID: 34499614 PMCID: PMC8457592 DOI: 10.18632/aging.203485] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/10/2021] [Indexed: 04/21/2023]
Abstract
Vascular dysfunction is entwined with aging and in the pathogenesis of Alzheimer's disease (AD) and contributes to reduced cerebral blood flow (CBF) and consequently, hypoxia. Hyperbaric oxygen therapy (HBOT) is in clinical use for a wide range of medical conditions. In the current study, we exposed 5XFAD mice, a well-studied AD model that presents impaired cognitive abilities, to HBOT and then investigated the therapeutical effects using two-photon live animal imaging, behavioral tasks, and biochemical and histological analysis. HBOT increased arteriolar luminal diameter and elevated CBF, thus contributing to reduced hypoxia. Furthermore, HBOT reduced amyloid burden by reducing the volume of pre-existing plaques and attenuating the formation of new ones. This was associated with changes in amyloid precursor protein processing, elevated degradation and clearance of Aß protein and improved behavior of 5XFAD mice. Hence, our findings are consistent with the effects of HBOT being mediated partially through a persistent structural change in blood vessels that reduces brain hypoxia. Motivated by these findings, we exposed elderly patients with significant memory loss at baseline to HBOT and observed an increase in CBF and improvement in cognitive performances. This study demonstrates HBOT efficacy in hypoxia-related neurological conditions, particularly in AD and aging.
Collapse
Affiliation(s)
- Ronit Shapira
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Amos Gdalyahu
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Irit Gottfried
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Efrat Sasson
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Amir Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Shai Efrati
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Pablo Blinder
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
26
|
Shedding a new light on Huntington's disease: how blood can both propagate and ameliorate disease pathology. Mol Psychiatry 2021; 26:5441-5463. [PMID: 32514103 DOI: 10.1038/s41380-020-0787-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a monogenic neurodegenerative disorder resulting from a mutation in the huntingtin gene. This leads to the expression of the mutant huntingtin protein (mHTT) which provokes pathological changes in both the central nervous system (CNS) and periphery. Accumulating evidence suggests that mHTT can spread between cells of the CNS but here, we explored the possibility that mHTT could also propagate and cause pathology via the bloodstream. For this, we used a parabiosis approach to join the circulatory systems of wild-type (WT) and zQ175 mice. After surgery, we observed mHTT in the plasma and circulating blood cells of WT mice and post-mortem analyses revealed the presence of mHTT aggregates in several organs including the liver, kidney, muscle and brain. The presence of mHTT in the brain was accompanied by vascular abnormalities, such as a reduction of Collagen IV signal intensity and altered vessel diameter in the striatum, and changes in expression of Glutamic acid decarboxylase 65/67 (GAD65-67) in the cortex. Conversely, we measured reduced pathology in zQ175 mice by decreased mitochondrial impairments in peripheral organs, restored vessel diameter in the cortex and improved expression of Dopamine- and cAMP-regulated phosphoprotein 32 (DARPP32) in striatal neurons. Collectively, these results demonstrate that circulating mHTT can disseminate disease, but importantly, that healthy blood can dilute pathology. These findings have significant implications for the development of therapies in HD.
Collapse
|
27
|
Wang M, Lv J, Huang X, Wisniewski T, Zhang W. High-fat diet-induced atherosclerosis promotes neurodegeneration in the triple transgenic (3 × Tg) mouse model of Alzheimer's disease associated with chronic platelet activation. ALZHEIMERS RESEARCH & THERAPY 2021; 13:144. [PMID: 34454596 PMCID: PMC8403418 DOI: 10.1186/s13195-021-00890-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023]
Abstract
Background Epidemiological studies link vascular disease risk factors such as atherosclerosis, hypertension, and diabetes mellitus with Alzheimer’s disease (AD). Whether there are direct links between these conditions to β-amyloid (Aβ) aggregation and tau pathology is uncertain. Methods To investigate the possible link between atherosclerosis and AD pathology, we subjected triple transgenic (3 × Tg) AD mice to a high-fat diet (HFD) at 3 months of age, which corresponds to early adulthood in humans. Results After 9 months of treatment, HFD-treated 3 × Tg mice exhibited worse memory deficits accompanied by blood hypercoagulation, thrombocytosis, and chronic platelet activation. Procoagulant platelets from HFD-treated 3 × Tg mice actively induced the conversion of soluble Aβ40 into fibrillar Aβ aggregates, associated with increased expression of integrin αIIbβ3 and clusterin. At 9 months and older, platelet-associated fibrillar Aβ aggregates were observed to obstruct the cerebral blood vessels in HFD-treated 3 × Tg mice. HFD-treated 3 × Tg mice exhibited a greater cerebral amyloid angiopathy (CAA) burden and increased cerebral vascular permeability, as well as more extensive neuroinflammation, tau hyperphosphorylation, and neuron loss. Disaggregation of preexisting platelet micro-clots with humanized GPIIIa49-66 scFv Ab (A11) significantly reduced platelet-associated fibrillar Aβ aggregates in vitro and improved vascular permeability in vivo. Conclusions These findings suggest that a major contribution of atherosclerosis to AD pathology is via its effects on blood coagulation and the formation of platelet-mediated Aβ aggregates that compromise cerebral blood flow and therefore neuronal function. This leads to cognitive decline. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00890-9.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Junyan Lv
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Xiaoshan Huang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Departments of Neurology, Pathology and Psychiatry, New York University School of Medicine, Science Building, Rm1017, 435 East 30th Street, New York, NY, 10016, USA.
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
28
|
Cheng Y, Ma X, Belfield KD, Haorah J. Biphasic Effects of Ethanol Exposure on Waste Metabolites Clearance in the CNS. Mol Neurobiol 2021; 58:3953-3967. [PMID: 33895940 DOI: 10.1007/s12035-021-02379-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
We have shown that the effects of low-dose ethanol promote the clearance of waste metabolites, such as amyloid-beta (Aβ) proteins, from the brain through the perivascular space (PVS). We demonstrated that dilative reactivity of arterial smooth muscle and endothelial cells regulate this clearance. These findings indicate the importance of blood-brain barrier (BBB) transvascular clearance of large size metabolites from the central nervous system (CNS), where the lymphatic clearance system is absent. We next examined the contrasting effects of acute low-dose and chronic moderate ethanol exposure on BBB-associated perivascular clearance. We injected a high molecular weight fluorescent dye into the interstitial space or directly into the cerebrospinal fluid (CSF). Bio-distribution of this tracer was then examined in different brain regions by multiphoton imaging and whole brain tissue section scanning. Ethanol-induced molecular/cellular mechanisms that drive the increase or decrease in movement of the fluorescent tracer were correlated to BBB integrity and arterial vessel reactivity. We found that activation of endothelial nitric oxide synthase (eNOS) under low-dose ethanol conditions with a shift to activation of inducible NOS (iNOS) under chronic high ethanol exposure conditions, which appeared to regulate these contrasting effects. We validated these observations by qualitative and quantitative investigation of eNOS, iNOS, BBB integrity, and perivascular clearance of waste metabolites. We concluded that the effects of low-dose ethanol increased the diffusive movement of waste metabolites via eNOS-derived NO, which increased the arterial endothelial-smooth muscle cell dilative reactivity without affecting BBB integrity, whereas a prolonged induction of iNOS under chronic ethanol exposure conditions caused oxidative damage of the arterial endothelial-smooth muscle layers resulting in cerebral amyloid-like angiopathy. This led to dysfunction of the BBB, dilative reactivity, and impaired waste metabolites movement from the interstitial space or subarachnoid space (SAS) through perivascular clearance.
Collapse
Affiliation(s)
- Yiming Cheng
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xiaotang Ma
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kevin D Belfield
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, NJ, 07102, USA
| | - James Haorah
- Laboratory of Neurovascular Inflammation and Neurodegeneration, Department of Biomedical Engineering, Center for Injury Bio Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
29
|
He JT, Zhao X, Xu L, Mao CY. Vascular Risk Factors and Alzheimer's Disease: Blood-Brain Barrier Disruption, Metabolic Syndromes, and Molecular Links. J Alzheimers Dis 2021; 73:39-58. [PMID: 31815697 DOI: 10.3233/jad-190764] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, marked by cortical and hippocampal deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles and cognitive impairment. Studies indicate a prominent link between cerebrovascular abnormalities and the onset and progression of AD, where blood-brain barrier (BBB) dysfunction and metabolic disorders play key risk factors. Pericyte degeneration, endothelial cell damage, astrocyte depolarization, diminished tight junction integrity, and basement membrane disarray trigger BBB damage. Subsequently, the altered expression of low-density lipoprotein receptor-related protein 1 and receptor for advanced glycation end products at the microvascular endothelial cells dysregulate Aβ transport across the BBB. White matter lesions and microhemorrhages, dyslipidemia, altered brain insulin signaling, and insulin resistance contribute to tau and Aβ pathogenesis, and oxidative stress, mitochondrial damage, inflammation, and hypoperfusion serve as mechanistic links between pathophysiological features of AD and ischemia. Deregulated calcium homeostasis, voltage gated calcium channel functioning, and protein kinase C signaling are also common mechanisms for both AD pathogenesis and cerebrovascular abnormalities. Additionally, APOE polymorphic alleles that characterize impaired cerebrovascular integrity function as primary genetic determinants of AD. Overall, the current review enlightens key vascular risk factors for AD and underscores pathophysiologic relationship between AD and vascular dysfunction.
Collapse
Affiliation(s)
- Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lei Xu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Cui-Ying Mao
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
30
|
Nichols JB, Malek-Ahmadi M, Tariot PN, Serrano GE, Sue LI, Beach TG. Vascular Lesions, APOE ε4, and Tau Pathology in Alzheimer Disease. J Neuropathol Exp Neurol 2021; 80:240-246. [PMID: 33617650 PMCID: PMC7899190 DOI: 10.1093/jnen/nlaa160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We sought to determine the associations among cerebral amyloid angiopathy (CAA), white matter rarefaction (WMR), circle of Willis atherosclerosis (CWA), and total microinfarct number with Braak neurofibrillary stage in postmortem individuals with and without Alzheimer disease (AD). Data from 355 cases of autopsied individuals with Braak stage I-VI who had antemortem consensus diagnoses of cognitively unimpaired (n = 183), amnestic mild cognitive impairment (n = 31), and AD dementia (n = 141) were used. The association between Braak stage and vascular lesions were individually assessed using multivariable linear regression that adjusted for age at death, APOE ε4 carrier status, sex, education, and neuritic plaque density. CAA (p = 0.007) and WMR (p < 0.001) were associated with Braak stage, independent of amyloid load; microinfarct number and CWA showed no association. Analyses of the interactions between APOE ε4 carrier status and vascular lesions found that greater WMR and positive ε4 carrier status were associated with higher Braak stages. These results suggest that CAA and WMR are statistically linked to the severity of AD-related NFT pathology. The statistical link between WMR and NFT load may be strengthened by the presence of APOE ε4 carrier status. An additional finding was that Lewy body pathology was most prevalent in higher Braak stages.
Collapse
Affiliation(s)
- Jodie B Nichols
- From the Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA
| | | | | | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
31
|
Santiago JA, Potashkin JA. The Impact of Disease Comorbidities in Alzheimer's Disease. Front Aging Neurosci 2021; 13:631770. [PMID: 33643025 PMCID: PMC7906983 DOI: 10.3389/fnagi.2021.631770] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
A wide range of comorbid diseases is associated with Alzheimer's disease (AD), the most common neurodegenerative disease worldwide. Evidence from clinical and molecular studies suggest that chronic diseases, including diabetes, cardiovascular disease, depression, and inflammatory bowel disease, may be associated with an increased risk of AD in different populations. Disruption in several shared biological pathways has been proposed as the underlying mechanism for the association between AD and these comorbidities. Notably, inflammation is a common dysregulated pathway shared by most of the comorbidities associated with AD. Some drugs commonly prescribed to patients with diabetes and cardiovascular disease have shown promising results in AD patients. Systems-based biology studies have identified common genetic factors and dysregulated pathways that may explain the relationship of comorbid disorders in AD. Nonetheless, the precise mechanisms for the occurrence of disease comorbidities in AD are not entirely understood. Here, we discuss the impact of the most common comorbidities in the clinical management of AD patients.
Collapse
Affiliation(s)
| | - Judith A Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
32
|
Kapasi A, Leurgans SE, Arvanitakis Z, Barnes LL, Bennett DA, Schneider JA. Aβ (Amyloid Beta) and Tau Tangle Pathology Modifies the Association Between Small Vessel Disease and Cortical Microinfarcts. Stroke 2021; 52:1012-1021. [PMID: 33567873 DOI: 10.1161/strokeaha.120.031073] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE There is increasing recognition of the importance of cortical microinfarcts to overall brain health, cognition, and Alzheimer dementia. Cerebral small vessel pathologies are associated with microinfarcts and frequently coexist with Alzheimer disease; however, the extent to which Aβ (amyloid beta) and tau pathology modulates microvascular pathogenesis is not fully understood. Study objective was to examine the relationship of small vessel pathologies, arteriolosclerosis, and cerebral amyloid angiopathy, with cortical microinfarcts in people with differing levels of Aβ or tau tangle burden. METHODS Participants were 1489 autopsied older people (mean age at death, 89 years; 67% women) from 1 of 3 ongoing clinical-pathological cohort studies of aging. Neuropathological evaluation identified cortical Aβ and tau tangle burden using immunohistochemistry in 8 brain regions, provided semiquantitative grading of cerebral vessel pathologies, and identified the presence of cortical microinfarcts. Logistic regression models adjusted for demographics and atherosclerosis and examined whether Aβ or tau tangle burden modified relations between small vessel pathologies and cortical microinfarcts. RESULTS Cortical microinfarcts were present in 17% of older people, moderate-to-severe cerebral amyloid angiopathy pathology in 36%, and arteriolosclerosis in 34%. In logistic regression models, we found interactions with Aβ and tau tangles, reflecting that the association between arteriolosclerosis and cortical microinfarcts was stronger in the context of greater Aβ (estimate, 0.15; SE=0.07; P=0.02) and tau tangle burden (estimate, 0.13; SE=0.06; P=0.02). Interactions also emerged for cerebral amyloid angiopathy, suggesting that the association between cerebral amyloid angiopathy and cortical microinfarcts is more robust in the presence of higher Aβ (estimate, 0.27; SE=0.07; P<0.001) and tangle burden (estimate, 0.16; SE=0.06; P=0.005). CONCLUSIONS These findings suggest that in the presence of elevated Aβ or tangle pathology, small vessel pathologies are associated with greater microvascular tissue injury, highlighting a potential link between neurodegenerative and vascular mechanisms.
Collapse
Affiliation(s)
- A Kapasi
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Pathology (A.K., J.A.S.), Rush University Medical Center, Chicago, IL
| | - S E Leurgans
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL
| | - Z Arvanitakis
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL
| | - L L Barnes
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Behavioral Sciences (L.L.B.), Rush University Medical Center, Chicago, IL
| | - D A Bennett
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL
| | - J A Schneider
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Pathology (A.K., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
33
|
Canepa E, Fossati S. Impact of Tau on Neurovascular Pathology in Alzheimer's Disease. Front Neurol 2021; 11:573324. [PMID: 33488493 PMCID: PMC7817626 DOI: 10.3389/fneur.2020.573324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most prevalent cause of dementia. The main cerebral histological hallmarks are represented by parenchymal insoluble deposits of amyloid beta (Aβ plaques) and neurofibrillary tangles (NFT), intracellular filamentous inclusions of tau, a microtubule-associated protein. It is well-established that cerebrovascular dysfunction is an early feature of AD pathology, but the detrimental mechanisms leading to blood vessel impairment and the associated neurovascular deregulation are not fully understood. In 90% of AD cases, Aβ deposition around the brain vasculature, known as cerebral amyloid angiopathy (CAA), alters blood brain barrier (BBB) essential functions. While the effects of vascular Aβ accumulation are better documented, the scientific community has only recently started to consider the impact of tau on neurovascular pathology in AD. Emerging compelling evidence points to transmission of neuronal tau to different brain cells, including astrocytes, as well as to the release of tau into brain interstitial fluids, which may lead to perivascular neurofibrillar tau accumulation and toxicity, affecting vessel architecture, cerebral blood flow (CBF), and vascular permeability. BBB integrity and functionality may therefore be impacted by pathological tau, consequentially accelerating the progression of the disease. Tau aggregates have also been shown to induce mitochondrial damage: it is known that tau impairs mitochondrial localization, distribution and dynamics, alters ATP and reactive oxygen species production, and compromises oxidative phosphorylation systems. In light of this previous knowledge, we postulate that tau can initiate neurovascular pathology in AD through mitochondrial dysregulation. In this review, we will explore the literature investigating tau pathology contribution to the malfunction of the brain vasculature and neurovascular unit, and its association with mitochondrial alterations and caspase activation, in cellular, animal, and human studies of AD and tauopathies.
Collapse
Affiliation(s)
- Elisa Canepa
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Silvia Fossati
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
34
|
Young KZ, Xu G, Keep SG, Borjigin J, Wang MM. Overlapping Protein Accumulation Profiles of CADASIL and CAA: Is There a Common Mechanism Driving Cerebral Small-Vessel Disease? THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:1871-1887. [PMID: 33387456 DOI: 10.1016/j.ajpath.2020.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and cerebral amyloid angiopathy (CAA) are two distinct vascular angiopathies that share several similarities in clinical presentation and vascular pathology. Given the clinical and pathologic overlap, the molecular overlap between CADASIL and CAA was explored. CADASIL and CAA protein profiles from recently published proteomics-based and immuno-based studies were compared to investigate the potential for shared disease mechanisms. A comparison of affected proteins in each disease highlighted 19 proteins that are regulated in both CADASIL and CAA. Functional analysis of the shared proteins predicts significant interaction between them and suggests that most enriched proteins play roles in extracellular matrix structure and remodeling. Proposed models to explain the observed enrichment of extracellular matrix proteins include both increased protein secretion and decreased protein turnover by sequestration of chaperones and proteases or formation of stable protein complexes. Single-cell RNA sequencing of vascular cells in mice suggested that the vast majority of the genes accounting for the overlapped proteins between CADASIL and CAA are expressed by fibroblasts. Thus, our current understanding of the molecular profiles of CADASIL and CAA appears to support potential for common mechanisms underlying the two disorders.
Collapse
Affiliation(s)
- Kelly Z Young
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Gang Xu
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Simon G Keep
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Jimo Borjigin
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Michael M Wang
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan.
| |
Collapse
|
35
|
Albrecht D, Isenberg AL, Stradford J, Monreal T, Sagare A, Pachicano M, Sweeney M, Toga A, Zlokovic B, Chui H, Joe E, Schneider L, Conti P, Jann K, Pa J. Associations between Vascular Function and Tau PET Are Associated with Global Cognition and Amyloid. J Neurosci 2020; 40:8573-8586. [PMID: 33046556 PMCID: PMC7605425 DOI: 10.1523/jneurosci.1230-20.2020] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022] Open
Abstract
Tau pathology and vascular dysfunction are important contributors to Alzheimer's disease (AD), but vascular-tau associations and their effects on cognition are poorly understood. We investigated these associations in male and female humans by conducting voxelwise comparisons between cerebral blood flow (CBF) and tau positron emission tomography (PET) images in independent discovery [cognitively normal (CN), 19; mild cognitive impairment (MCI) risk, 43; MCI, 6] and replication (CN,73; MCI, 45; AD, 20) cohorts. In a subgroup, we assessed relationships between tau and soluble platelet-derived growth factor β (sPDGFRβ), a CSF marker of pericyte injury. We tested whether CBF/sPDGFRβ-tau relationships differed based on Montreal Cognitive Assessment (MoCA) global cognition performance, or based on amyloid burden. Mediation analyses assessed relationships among CBF/sPDGFRβ, tau, and cognition. Negative CBF-tau correlations were observed predominantly in temporal-parietal regions. In the replication cohort, early negative CBF-tau correlations increased in spatial extent and in strength of correlation with increased disease severity. Stronger CBF-tau and sPDGFRβ-tau correlations were observed in participants with greater amyloid burden and lower MoCA scores. Importantly, when stratifying by amyloid status, stronger CBF-tau relationships in individuals with lower MoCA scores were driven by amyloid+ participants. Tau PET was a significant mediator CBF/sPDGFRβ-MoCA relationships in numerous regions. Our results demonstrate vascular-tau associations across the AD spectrum and suggest that early vascular-tau associations are exacerbated in the presence of amyloid, consistent with a two-hit model of AD on cognition. Combination treatments targeting vascular health, as well as amyloid-β and tau levels, may preserve cognitive function more effectively than single-target therapies.SIGNIFICANCE STATEMENT Emerging evidence demonstrates a role for vascular dysfunction as a significant contributor to Alzheimer's pathophysiology. However, associations between vascular dysfunction and tau pathology, and their effects on cognition remain poorly understood. Multimodal neuroimaging data from two independent cohorts were analyzed to provide novel in vivo evidence of associations between cerebral blood flow (CBF), an MRI measure of vascular health, and tau pathology using PET. CBF-tau associations were related to cognition and driven in part by amyloid burden. Soluble platelet-derived growth factor β, an independent CSF vascular biomarker, confirmed vascular-tau associations in a subgroup analysis. These results suggest that combination treatments targeting vascular health, amyloid-β, and tau levels may more effectively preserve cognitive function than single-target therapies.
Collapse
Affiliation(s)
- Daniel Albrecht
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - A Lisette Isenberg
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Joy Stradford
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Teresa Monreal
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Abhay Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Maricarmen Pachicano
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Melanie Sweeney
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Arthur Toga
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Berislav Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Helena Chui
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Elizabeth Joe
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Lon Schneider
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Peter Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Kay Jann
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Judy Pa
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
36
|
Liu CC, Yamazaki Y, Heckman MG, Martens YA, Jia L, Yamazaki A, Diehl NN, Zhao J, Zhao N, DeTure M, Davis MD, Felton LM, Qiao W, Li Y, Li H, Fu Y, Wang N, Wren M, Aikawa T, Holm ML, Oue H, Linares C, Allen M, Carrasquillo MM, Murray ME, Petersen RC, Ertekin-Taner N, Dickson DW, Kanekiyo T, Bu G. Tau and apolipoprotein E modulate cerebrovascular tight junction integrity independent of cerebral amyloid angiopathy in Alzheimer's disease. Alzheimers Dement 2020; 16:1372-1383. [PMID: 32827351 PMCID: PMC8103951 DOI: 10.1002/alz.12104] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 01/05/2020] [Accepted: 01/15/2020] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cerebrovascular pathologies including cerebral amyloid angiopathy (CAA) and blood-brain barrier (BBB) dysregulation are prominent features in the majority of Alzheimer's disease (AD) cases. METHODS We performed neuropathologic and biochemical studies on a large, neuropathologically confirmed human AD cohort (N = 469). Amounts of endothelial tight junction proteins claudin-5 (CLDN5) and occludin (OCLN), and major AD-related molecules (amyloid beta [Aβ40], Aβ42, tau, p-tau, and apolipoprotein E) in the temporal cortex were assessed by ELISA. RESULTS Higher levels of soluble tau, insoluble p-tau, and apolipoprotein E (apoE) were independently correlated with lower levels of endothelial tight junction proteins CLDN5 and OCLN in AD brains. Although high Aβ40 levels, APOE ε4, and male sex were predominantly associated with exacerbated CAA severity, those factors did not influence tight junction protein levels. DISCUSSION Refining the molecular mechanisms connecting tau, Aβ, and apoE with cerebrovascular pathologies is critical for greater understanding of AD pathogenesis and establishing effective therapeutic interventions for the disease.
Collapse
Affiliation(s)
- Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael G. Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Yuka A. Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Akari Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Nancy N. Diehl
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Mary D. Davis
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Hongmei Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yuan Fu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Na Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Melissa Wren
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Tomonori Aikawa
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Hiroshi Oue
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Cynthia Linares
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | | | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
37
|
Lee Y, Choi Y, Park EJ, Kwon S, Kim H, Lee JY, Lee DS. Improvement of glymphatic-lymphatic drainage of beta-amyloid by focused ultrasound in Alzheimer's disease model. Sci Rep 2020; 10:16144. [PMID: 32999351 PMCID: PMC7527457 DOI: 10.1038/s41598-020-73151-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Drainage of parenchymal waste through the lymphatic system maintains brain homeostasis. Age-related changes of glymphatic-lymphatic clearance lead to the accumulation beta-amyloid (Aβ) in dementia models. In this study, focused ultrasound treatment in combination with microbubbles (FUS-MB) improved Aβ drainage in early dementia model mice, 5XFAD. FUS-MB enhanced solute Aβ clearance from brain, but not plaques, to cerebrospinal fluid (CSF) space and then deep cervical lymph node (dCLN). dCLN ligation exaggerated memory impairment and progress of plaque formation and also the beneficial effects of FUS-MB upon Aβ removal through CSF-lymphatic routes. In this ligation model, FUS-MB improved memory despite accumulation of Aβ in CSF. In conclusion, FUS-MB enhances glymphatic-lymphatic clearance of Aβ mainly by increasing brain-to-CSF Aβ drainage. We suggest that FUS-MB can delay dementia progress in early period and benefits of FUS-MB depend on the effect of Aβ disposal through CSF-lymphatics.
Collapse
Affiliation(s)
- Youngsun Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yoori Choi
- Department of Nuclear Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Eun-Joo Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea. .,Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Seokjun Kwon
- Department of Nuclear Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyun Kim
- Department of Nuclear Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jae Young Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea.
| |
Collapse
|
38
|
Ali AM, Kunugi H. Royal Jelly as an Intelligent Anti-Aging Agent-A Focus on Cognitive Aging and Alzheimer's Disease: A Review. Antioxidants (Basel) 2020; 9:E937. [PMID: 33003559 PMCID: PMC7601550 DOI: 10.3390/antiox9100937] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
The astronomical increase of the world's aged population is associated with the increased prevalence of neurodegenerative diseases, heightened disability, and extremely high costs of care. Alzheimer's Disease (AD) is a widespread, age-related, multifactorial neurodegenerative disease that has enormous social and financial drawbacks worldwide. The unsatisfactory outcomes of available AD pharmacotherapy necessitate the search for alternative natural resources that can target various the underlying mechanisms of AD pathology and reduce disease occurrence and/or progression. Royal jelly (RJ) is the main food of bee queens; it contributes to their fertility, long lifespan, and memory performance. It represents a potent nutraceutical with various pharmacological properties, and has been used in a number of preclinical studies to target AD and age-related cognitive deterioration. To understand the mechanisms through which RJ affects cognitive performance both in natural aging and AD, we reviewed the literature, elaborating on the metabolic, molecular, and cellular mechanisms that mediate its anti-AD effects. Preclinical findings revealed that RJ acts as a multidomain cognitive enhancer that can restore cognitive performance in aged and AD models. It promotes brain cell survival and function by targeting multiple adversities in the neuronal microenvironment such as inflammation, oxidative stress, mitochondrial alterations, impaired proteostasis, amyloid-β toxicity, Ca excitotoxicity, and bioenergetic challenges. Human trials using RJ in AD are limited in quantity and quality. Here, the limitations of RJ-based treatment strategies are discussed, and directions for future studies examining the effect of RJ in cognitively impaired subjects are noted.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
39
|
Bryant AG, Hu M, Carlyle BC, Arnold SE, Frosch MP, Das S, Hyman BT, Bennett RE. Cerebrovascular Senescence Is Associated With Tau Pathology in Alzheimer's Disease. Front Neurol 2020; 11:575953. [PMID: 33041998 PMCID: PMC7525127 DOI: 10.3389/fneur.2020.575953] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's Disease (AD) is associated with neuropathological changes, including aggregation of tau neurofibrillary tangles (NFTs) and amyloid-beta plaques. Mounting evidence indicates that vascular dysfunction also plays a key role in the pathogenesis and progression of AD, in part through endothelial dysfunction. Based on findings in animal models that tau pathology induces vascular abnormalities and cellular senescence, we hypothesized that tau pathology in the human AD brain leads to vascular senescence. To explore this hypothesis, we isolated intact microvessels from the dorsolateral prefrontal cortex (PFC, BA9) from 16 subjects with advanced Braak stages (Braak V/VI, B3) and 12 control subjects (Braak 0/I/II, B1), and quantified expression of 42 genes associated with senescence, cell adhesion, and various endothelial cell functions. Genes associated with endothelial senescence and leukocyte adhesion, including SERPINE1 (PAI-1), CXCL8 (IL8), CXCL1, CXCL2, ICAM-2, and TIE1, were significantly upregulated in B3 microvessels after adjusting for sex and cerebrovascular pathology. In particular, the senescence-associated secretory phenotype genes SERPINE1 and CXCL8 were upregulated by more than 2-fold in B3 microvessels after adjusting for sex, cerebrovascular pathology, and age at death. Protein quantification data from longitudinal plasma samples for a subset of 13 (n = 9 B3, n = 4 B1) subjects showed no significant differences in plasma senescence or adhesion-associated protein levels, suggesting that these changes were not associated with systemic vascular alterations. Future investigations of senescence biomarkers in both the peripheral and cortical vasculature could further elucidate links between tau pathology and vascular changes in human AD.
Collapse
Affiliation(s)
- Annie G Bryant
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Miwei Hu
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Becky C Carlyle
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Steven E Arnold
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Matthew P Frosch
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Pathology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Sudeshna Das
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Bradley T Hyman
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Rachel E Bennett
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
40
|
Xu X, Meng T, Wen Q, Tao M, Wang P, Zhong K, Shen Y. Dynamic changes in vascular size and density in transgenic mice with Alzheimer's disease. Aging (Albany NY) 2020; 12:17224-17234. [PMID: 32908022 PMCID: PMC7521516 DOI: 10.18632/aging.103672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Here, we used vessel size imaging to investigate the specific microvascular changes and most susceptible brain regions during AD progression in an amyloid precursor protein 23 (APP23) transgenic AD mouse model. Using 9.4 Tesla magnetic resonance imaging (MRI), the values of microvascular density (Density), mean vessel diameter (mVD), and vessel size index (VSI) were compared between APP23 and wild-type (WT) mice at 3, 6, 9, 14, and 20 months of age. Our results demonstrate that in 20-month old APP23 and WT mice, the Density values were significantly decreased, while the vascular dilatation and diameter had increased. However, a transient increase in the cortex Density at 14-months was observed in APP23 mice. Additionally, our results suggest that the hippocampus is the susceptible brain region affected by the abnormal microvascular angiogenesis during the early stages of AD. Together, our findings indicate that vessel size imaging using MRI can provide novel biomarkers for the early detection of AD, and for monitoring the effects of vascular-targeted therapeutics in AD.
Collapse
Affiliation(s)
- Xiaowen Xu
- Institute on Aging and Brain Disorders, First University Affiliated Hospital, Neurodegenerative Disorder Research Center, Division of Life and Medical Sciences, University of Science and Technology of China, Hefei Material Science National Laboratory at Microscale, CAS-Key Laboratory of Brain Functions and Brain Disorders, Center for Excellent in Brain Science and Intelligence Technology, Hefei, China,Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,School of Medicine, Tongji University, Shanghai, China
| | - Tong Meng
- School of Medicine, Tongji University, Shanghai, China
| | - Qingqing Wen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengling Tao
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,School of Medicine, Tongji University, Shanghai, China
| | - Peijun Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,School of Medicine, Tongji University, Shanghai, China
| | - Kai Zhong
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China,Key Laboratory of Anhui Province for High Field Magnetic Resonance Imaging, Hefei, China,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, First University Affiliated Hospital, Neurodegenerative Disorder Research Center, Division of Life and Medical Sciences, University of Science and Technology of China, Hefei Material Science National Laboratory at Microscale, CAS-Key Laboratory of Brain Functions and Brain Disorders, Center for Excellent in Brain Science and Intelligence Technology, Hefei, China
| |
Collapse
|
41
|
Bennett RE, Hu M, Fernandes A, Perez-Rando M, Robbins A, Kamath T, Dujardin S, Hyman BT. Tau reduction in aged mice does not impact Microangiopathy. Acta Neuropathol Commun 2020; 8:137. [PMID: 32811565 PMCID: PMC7436970 DOI: 10.1186/s40478-020-01014-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 11/30/2022] Open
Abstract
Microangiopathy, including proliferation of small diameter capillaries, increasing vessel tortuosity, and increased capillary blockage by leukocytes, was previously observed in the aged rTg4510 mouse model. Similar gene expression changes related to angiogenesis were observed in both rTg4510 and Alzheimer's disease (AD). It is uncertain if tau is directly responsible for these vascular changes by interacting directly with microvessels, and/or if it contributes indirectly via neurodegeneration and concurrent neuronal loss and inflammation. To better understand the nature of tau-related microangiopathy in human AD and in tau mice, we isolated capillaries and observed that bioactive soluble tau protein could be readily detected in association with vasculature. To examine whether this soluble tau is directly responsible for the microangiopathic changes, we made use of the tetracycline-repressible gene expression cassette in the rTg4510 mouse model and measured vascular pathology following tau reduction. These data suggest that reduction of tau is insufficient to alter established microvascular complications including morphological alterations, enhanced expression of inflammatory genes involved in leukocyte adherence, and blood brain barrier compromise. These data imply that 1) soluble bioactive tau surprisingly accumulates at the blood brain barrier in human brain and in mouse models, and 2) the morphological and molecular phenotype of microvascular disturbance does not resolve with reduction of whole brain soluble tau. Additional consideration of vascular-directed therapies and strategies that target tau in the vascular space may be required to restore normal function in neurodegenerative disease.
Collapse
Affiliation(s)
- Rachel E Bennett
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Miwei Hu
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Analiese Fernandes
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Marta Perez-Rando
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ashley Robbins
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Tarun Kamath
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Simon Dujardin
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Bradley T Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
42
|
|
43
|
Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer's disease. Nat Neurosci 2020; 23:1183-1193. [PMID: 32778792 DOI: 10.1038/s41593-020-0687-6] [Citation(s) in RCA: 608] [Impact Index Per Article: 121.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 07/06/2020] [Indexed: 12/24/2022]
Abstract
Patients with Alzheimer's disease (AD) present with both extracellular amyloid-β (Aβ) plaques and intracellular tau-containing neurofibrillary tangles in the brain. For many years, the prevailing view of AD pathogenesis has been that changes in Aβ precipitate the disease process and initiate a deleterious cascade involving tau pathology and neurodegeneration. Beyond this 'triggering' function, it has been typically presumed that Aβ and tau act independently and in the absence of specific interaction. However, accumulating evidence now suggests otherwise and contends that both pathologies have synergistic effects. This could not only help explain negative results from anti-Aβ clinical trials but also suggest that trials directed solely at tau may need to be reconsidered. Here, drawing from extensive human and disease model data, we highlight the latest evidence base pertaining to the complex Aβ-tau interaction and underscore its crucial importance to elucidating disease pathogenesis and the design of next-generation AD therapeutic trials.
Collapse
Affiliation(s)
- Marc Aurel Busche
- UK Dementia Research Institute at UCL, University College London, London, UK.
| | - Bradley T Hyman
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
44
|
Ma J, Ma C, Li J, Sun Y, Ye F, Liu K, Zhang H. Extracellular Matrix Proteins Involved in Alzheimer's Disease. Chemistry 2020; 26:12101-12110. [PMID: 32207199 DOI: 10.1002/chem.202000782] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/22/2020] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and characterized by cognitive and memory impairments. Emerging evidence suggests that the extracellular matrix (ECM) in the brain plays an important role in the etiology of AD. It has been detected that the levels of ECM proteins have changed in the brains of AD patients and animal models. Some ECM components, for example, elastin and heparan sulfate proteoglycans, are considered to promote the upregulation of extracellular amyloid-beta (Aβ) proteins. In addition, collagen VI and laminin are shown to have interactions with Aβ peptides, which might lead to the clearance of those peptides. Thus, ECM proteins are involved in both amyloidosis and neuroprotection in the AD process. However, the molecular mechanism of neuronal ECM proteins on the pathophysiology of AD remains elusive. More investigation of ECM proteins with AD pathogenesis is needed, and this may lead to novel therapeutic strategies and biomarkers for AD.
Collapse
Affiliation(s)
- Jun Ma
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P.R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Chao Ma
- School of Engineering and Applied Sciences & Department of Physics, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Yao Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P.R. China.,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
45
|
Abstract
PURPOSE To review the recent developments on the effect of chronic high mean arterial blood pressure (MAP) on cerebral blood flow (CBF) autoregulation and supporting the notion that CBF autoregulation impairment has connection with chronic cerebral diseases. Method: A narrative review of all the relevant papers known to the authors was conducted. Results: Our understanding of the connection between cerebral perfusion impairment and chronic high MAP and cerebral disease is rapidly evolving, from cerebral perfusion impairment being the result of cerebral diseases to being the cause of cerebral diseases. We now better understand the intertwined impact of hypertension and Alzheimer's disease (AD) on cerebrovascular sensory elements and recognize cerebrovascular elements that are more vulnerable to these diseases. Conclusion: We conclude with the suggestion that the sensory elements pathology plays important roles in intertwined mechanisms of chronic high MAP and AD that impact cerebral perfusion.
Collapse
Affiliation(s)
- Noushin Yazdani
- College of Public Health, University of South Florida , Tampa, FL, USA
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida , Tampa, FL, USA.,Biomedical Research, James A. Haley VA Medical Center , Tampa, FL, USA
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida , Tampa, FL, USA.,Byrd Neuroscience Institute, University of South Florida , Tampa, FL, USA
| |
Collapse
|
46
|
de Montgolfier O, Thorin-Trescases N, Thorin E. Pathological Continuum From the Rise in Pulse Pressure to Impaired Neurovascular Coupling and Cognitive Decline. Am J Hypertens 2020; 33:375-390. [PMID: 32202623 PMCID: PMC7188799 DOI: 10.1093/ajh/hpaa001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/11/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
The "biomechanical hypothesis" stipulates that with aging, the cumulative mechanical damages to the cerebral microvasculature, magnified by risk factors for vascular diseases, contribute to a breach in cerebral homeostasis producing neuronal losses. In other words, vascular dysfunction affects brain structure and function, and leads to cognitive failure. This is gathered under the term Vascular Cognitive Impairment and Dementia (VCID). One of the main culprits in the occurrence of cognitive decline could be the inevitable rise in arterial pulse pressure due to the age-dependent stiffening of large conductance arteries like the carotids, which in turn, could accentuate the penetration of the pulse pressure wave deeper into the fragile microvasculature of the brain and damage it. In this review, we will discuss how and why the vascular and brain cells communicate and are interdependent, describe the deleterious impact of a vascular dysfunction on brain function in various neurodegenerative diseases and even of psychiatric disorders, and the potential chronic deleterious effects of the pulsatile blood pressure on the cerebral microcirculation. We will also briefly review data from antihypertensive clinical trial aiming at improving or delaying dementia. Finally, we will debate how the aging process, starting early in life, could determine our sensitivity to risk factors for vascular diseases, including cerebral diseases, and the trajectory to VCID.
Collapse
Affiliation(s)
- Olivia de Montgolfier
- Faculty of Medicine, Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Eric Thorin
- Faculty of Medicine, Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
- Correspondence: Eric Thorin ()
| |
Collapse
|
47
|
Abner EL, Elahi FM, Jicha GA, Mustapic M, Al-Janabi O, Kramer JH, Kapogiannis D, Goetzl EJ. Endothelial-derived plasma exosome proteins in Alzheimer's disease angiopathy. FASEB J 2020; 34:5967-5974. [PMID: 32157747 PMCID: PMC7233139 DOI: 10.1096/fj.202000034r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/30/2022]
Abstract
Small cerebral vascular disease (SCeVD) demonstrated by white matter hyperintensity (WMH) on MRI contributes to the development of dementia in Alzheimer's disease (AD), but it has not been possible to correlate onset, severity, or protein components of SCeVD with characteristics of WMH in living patients. Plasma endothelial-derived exosomes (EDEs) were enriched by two-step immunoabsorption from four groups of participants with no clinical evidence of cerebrovascular disease: cognitively normal (CN) without WMH (CN without SCeVD, n = 20), CN with SCeVD (n = 22), preclinical AD (pAD) + mild cognitive impairment (MCI) without SCeVD (pAD/MCI without SCeVD, n = 22), and pAD/MCI with SCeVD (n = 16) for ELISA quantification of cargo proteins. Exosome marker CD81-normalized EDE levels of the cerebrovascular-selective biomarkers large neutral amino acid transporter 1 (LAT-1), glucose transporter type 1 (Glut-1), and permeability-glycoprotein (p-GP, ABCB1) were similarly significantly higher in the CN with SCeVD and pAD/MCI with SCeVD groups than their corresponding control groups without SCeVD. CD81-normalized EDE levels of Aβ40 and Aβ42 were significantly higher in the pAD/MCI with SCeVD group but not in the CN with SCeVD group relative to controls without SCeVD. Levels of normal cellular prion protein (PrPc), a receptor for amyloid peptides, and phospho-181T-tau were higher in both CN and pAD/MCI with SCeVD groups than in the corresponding controls. High EDE levels of Aβ40, Aβ42, and phospho-181T-tau in patients with WMH suggesting SCeVD appear at the pre-clinical or MCI stage of AD and therapeutic lowering of neurotoxic peptide levels may delay progression of AD angiopathy.
Collapse
Affiliation(s)
- Erin L. Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Gregory A. Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Maja Mustapic
- Cellular and Molecular Neurosciences Section, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD, USA
| | - Omar Al-Janabi
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitrios Kapogiannis
- Cellular and Molecular Neurosciences Section, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD, USA
| | - Edward J. Goetzl
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Campus for Jewish Living, San Francisco, CA, USA
| |
Collapse
|
48
|
Malek-Ahmadi M, Chen K, Perez SE, Mufson EJ. Cerebral Amyloid Angiopathy and Neuritic Plaque Pathology Correlate with Cognitive Decline in Elderly Non-Demented Individuals. J Alzheimers Dis 2020; 67:411-422. [PMID: 30594928 DOI: 10.3233/jad-180765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a vascular neuropathology commonly reported in non-cognitively impaired (NCI), mild cognitive impairment, and Alzheimer's disease (AD) brains. However, it is unknown whether similar findings are present in non-demented elderly subjects. OBJECTIVE This study determined the association between CAA and cognition among elderly NCI subjects with varying levels of AD pathology. METHODS Data from 182 cases that received a diagnosis of NCI at their first clinical assessment were obtained from the Rush Religious Orders study (RROS). A cognitive composite score was used to measure cognitive decline. CAA was dichotomized as present or absent. Cases were also dichotomized according to CERAD neuropathological diagnosis and Braak staging. A mixed model-repeated measures analysis assessed decline on the cognitive composite score. RESULTS CAA, alone, was not associated with cognitive decline [-0.87 (95% CI: -3.33, 1.58), p = 0.49]. However, among those with CAA, the High CERAD group had significantly greater decline relative to the Low CERAD group [-4.08 (95% CI: -7.10, -1.06), p = 0.008]. The High and Low CERAD groups were not significantly different [-1.77 (95% CI: -6.14, 2.60), p = 0.43] in those without CAA. Composite score decline in the High and Low Braak groups with [-1.32 (95% CI: -4.40, 1.75), p = 0.40] or without [0.27 (95% CI: -4.01, 4.56), p = 0.90] CAA was not significantly different. CONCLUSION The current data shows that an interaction between CAA and plaque load is associated with greater decline on a cognitive composite score used to test non-cognitively impaired elderly participants in AD prevention trials.
Collapse
Affiliation(s)
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
49
|
Avram S, Mernea M, Limban C, Borcan F, Chifiriuc C. Potential Therapeutic Approaches to Alzheimer's Disease By Bioinformatics, Cheminformatics And Predicted Adme-Tox Tools. Curr Neuropharmacol 2020; 18:696-719. [PMID: 31885353 PMCID: PMC7536829 DOI: 10.2174/1570159x18666191230120053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/24/2019] [Accepted: 12/28/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is considered a severe, irreversible and progressive neurodegenerative disorder. Currently, the pharmacological management of AD is based on a few clinically approved acethylcholinesterase (AChE) and N-methyl-D-aspartate (NMDA) receptor ligands, with unclear molecular mechanisms and severe side effects. METHODS Here, we reviewed the most recent bioinformatics, cheminformatics (SAR, drug design, molecular docking, friendly databases, ADME-Tox) and experimental data on relevant structurebiological activity relationships and molecular mechanisms of some natural and synthetic compounds with possible anti-AD effects (inhibitors of AChE, NMDA receptors, beta-secretase, amyloid beta (Aβ), redox metals) or acting on multiple AD targets at once. We considered: (i) in silico supported by experimental studies regarding the pharmacological potential of natural compounds as resveratrol, natural alkaloids, flavonoids isolated from various plants and donepezil, galantamine, rivastagmine and memantine derivatives, (ii) the most important pharmacokinetic descriptors of natural compounds in comparison with donepezil, memantine and galantamine. RESULTS In silico and experimental methods applied to synthetic compounds led to the identification of new AChE inhibitors, NMDA antagonists, multipotent hybrids targeting different AD processes and metal-organic compounds acting as Aβ inhibitors. Natural compounds appear as multipotent agents, acting on several AD pathways: cholinesterases, NMDA receptors, secretases or Aβ, but their efficiency in vivo and their correct dosage should be determined. CONCLUSION Bioinformatics, cheminformatics and ADME-Tox methods can be very helpful in the quest for an effective anti-AD treatment, allowing the identification of novel drugs, enhancing the druggability of molecular targets and providing a deeper understanding of AD pathological mechanisms.
Collapse
Affiliation(s)
| | - Maria Mernea
- Address correspondence to this author at the Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95th Spl. Independentei, Bucharest, Romania; Tel/Fax: ++4-021-318-1573; E-mail:
| | | | | | | |
Collapse
|
50
|
Malek-Ahmadi M, Perez SE, Chen K, Mufson EJ. Braak Stage, Cerebral Amyloid Angiopathy, and Cognitive Decline in Early Alzheimer's Disease. J Alzheimers Dis 2020; 74:189-197. [PMID: 31985469 PMCID: PMC10026689 DOI: 10.3233/jad-191151] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to determine the interaction between cerebral amyloid angiopathy (CAA) and Braak staging on cognition in the elderly. The study used a total of 141 subjects consisting of 72 non-cognitively impaired (NCI), 33 mild cognitive impairment (MCI), 36 Alzheimer's disease (AD) cases displaying Braak stages 0-II and III from the Rush Religious Order Study cohort. The association between Braak stage and CAA status and cognition was evaluated using a series of regression models that adjusted for age at death, sex, education, APOEɛ4 status, and Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropathological diagnosis. Individuals with CAA were more likely to be classified as Braak stage III relative to those without CAA [OR = 2.33, 95% CI (1.06, 5.14), p = 0.04]. A significant interaction was found between Braak stage and CAA status on a global cognitive score (β = -0.58, SE = 0.25, p = 0.02). Episodic memory also showed a significant association between Braak stage and CAA (β= -0.75, SE = 0.35, p = 0.03). These data suggest that there is a significant interaction between tau pathology and cerebrovascular lesions on cognition within the AD clinical spectrum.
Collapse
Affiliation(s)
| | - Sylvia E. Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | - Elliott J. Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|