1
|
Liu Y, Jin F, Chen Q, Liu M, Li X, Zhou L, Li X, Yang S, Qi F. PDGFR-α Mediated the Neuroinflammation and Autophagy via the JAK2/STAT3 Signaling Pathway Contributing to Depression-Like Behaviors in Myofascial Pain Syndrome Rats. Mol Neurobiol 2024:10.1007/s12035-024-04616-4. [PMID: 39602051 DOI: 10.1007/s12035-024-04616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Depression often occurs in patients with additional co-morbidities, particularly in cases of chronic pain. Currently, there is a lack of research on the molecular mechanisms of depression under chronic pain conditions and suitable animal models. Due to the contradiction exhibited by platelet-derived growth factor receptor (PDGF/PDGFR) in neuroprotection, further investigation is required. In the present study, we investigated the roles of PDGFR-α in the hippocampus based on rat models of chronic pain (myofascial pain syndrome, MPS) that exhibited depressive phenotypes. The depression-like phenotypes were assessed by the sucrose preference test, forced swimming test, tail suspension test, and the levels of BDNF and 5HT1AR. Electron microscopic analysis and altered expression of autophagy-related proteins revealed reduced autophagy levels in the hippocampus of MPS rats. Phosphorylation PDGFR-α was significantly upregulated in the MPS rat model of depression, as well as the levels of inflammatory factors and p-JAK2/p-STAT3. Treatment with inhibitors of PDGFR-α or JAK2/STAT3 alleviated depressive behaviors, Nissl bodies staining, increased the protein levels of BDNF and 5HT1AR, and decreased the levels of inflammatory factors in MPS rats. Additionally, it restored autophagy levels. These results indicate that PDGFR-α induces neuroinflammation, altered autophagy, and depressive behavior, potentially mediated by the JAK2/STAT3 signaling pathway in MPS rats. PDGFR-α may thus represent a promising therapeutic target for the treatment of this type of depression.
Collapse
Affiliation(s)
- Yu Liu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Feihong Jin
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Qinghe Chen
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Mingjian Liu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of Anesthesiology, Shandong First Medical University Affiliated Binzhou People's Hospital, Binzhou, Shandong, China
| | - Xuan Li
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lingwei Zhou
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaoyue Li
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shaozhong Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Feng Qi
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Nilsson I, Su EJ, Fredriksson L, Sahlgren BH, Bagoly Z, Moessinger C, Stefanitsch C, Ning FC, Zeitelhofer M, Muhl L, Lawrence ALE, Scotney PD, Lu L, Samén E, Ho H, Keep RF, Medcalf RL, Lawrence DA, Eriksson U. Thrombolysis exacerbates cerebrovascular injury after ischemic stroke via a VEGF-B dependent effect on adipose lipolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617532. [PMID: 39416206 PMCID: PMC11483068 DOI: 10.1101/2024.10.11.617532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cerebrovascular injuries leading to edema and hemorrhage after ischemic stroke are common. The mechanisms underlying these events and how they are connected to known risk factors for poor outcome, like obesity and diabetes, is relatively unknown. Herein we demonstrate that increased adipose tissue lipolysis is a dominating risk factor for the development of a compromised cerebrovasculature in ischemic stroke. Reducing adipose lipolysis by VEGF-B antagonism improved vascular integrity by reducing ectopic cerebrovascular lipid deposition. Thrombolytic therapy in ischemic stroke using tissue plasminogen activator (tPA) leads to increased risk of hemorrhagic complications, substantially limiting the use of thrombolytic therapy. We provide evidence that thrombolysis with tPA promotes adipose tissue lipolysis, leading to a rise in plasma fatty acids and lipid accumulation in the ischemic cerebrovasculature after stroke. VEGF-B blockade improved the efficacy and safety of thrombolysis suggesting the potential use of anti-VEGF-B therapy to extend the therapeutic window for stroke management.
Collapse
Affiliation(s)
- Ingrid Nilsson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
- These authors contributed equally
- Lead contact: (I.N.)
| | - Enming J. Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- These authors contributed equally
| | - Linda Fredriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin Heller Sahlgren
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Zsuzsa Bagoly
- MTA-DE Lendület “Momentum” Hemostasis and Stroke Research Group, Department of Laboratory Medicine, Division of Clinical Laboratory Sciences, Faculty of Medicine, University of Debrecen, Hungary
| | - Christine Moessinger
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Stefanitsch
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Frank Chenfei Ning
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Muhl
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Lisa E. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Li Lu
- Karolinska Experimental Research and Imaging Centre, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Samén
- Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Heidi Ho
- Australian Centre for Blood Diseases, Monash University, Melbourne 3004, Victoria, Australia
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Robert L. Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne 3004, Victoria, Australia
| | - Daniel A. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Zhang X, Zhang H, Liu Z, Huang T, Yi R, Ma Z, Gao Y. Salidroside improves blood-brain barrier integrity and cognitive function in hypobaric hypoxia mice by inhibiting microglia activation through GSK3β. Phytother Res 2024. [PMID: 39364585 DOI: 10.1002/ptr.8264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 10/05/2024]
Abstract
Salidroside, an active component found in Rhodiola rosea L., has emerged as a potential therapeutic agent for the prevention and treatment of hypoxic brain injury, while the precise target and mechanism of salidroside were remain unclear. The study utilized techniques such as network pharmacology, transcriptome sequencing to investigate the mechanism and target of salidroside in regulating blood-brain barrier (BBB) function to protect hypoxic brain injury in vivo. Utilized macromolecular docking and molecular biology techniques to explore the molecular mechanism of salidroside in alleviating brain injury induced by hypoxia in BV2 cell model. The results show that salidroside alleviated the learning and memory dysfunction and pathological injury in mice exposed to hypobaric hypoxia, reduced brain water content and attenuate the inflammatory response and oxidative stress, effectively reversed S100β in serum and promoted the repair of BBB. GSK3β is an important therapeutic target of salidroside in the treatment of hypoxic cognitive impairment, and salidroside can specifically bind GSK3β in the ATP binding pocket, inducing the phosphorylation of GSK3β, targeting downstream Nrf-2 to regulate microglia activity, promoting the accumulation of β-catenin, thereby inhibiting microglial activation, improving the BBB integrity injury and achieving a neuroprotective effect. This study demonstrates that salidroside can inhibit the activation of microglia by inducing GSK3β phosphorylation, achieve neuroprotective effects and alleviate learning and memory dysfunction in hypobaric hypoxia mice. This study provides a theoretical basis for the development of salidroside and the clinical application of Rhodiola rosea L.
Collapse
Affiliation(s)
- Xianxie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Huiting Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Zuoxu Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Tianke Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Ru Yi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zengchun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
4
|
Makarava N, Safadi T, Bocharova O, Mychko O, Pandit NP, Molesworth K, Baiardi S, Zhang L, Parchi P, Baskakov IV. Reactive microglia partially envelop viable neurons in prion diseases. J Clin Invest 2024; 134:e181169. [PMID: 39361421 PMCID: PMC11601909 DOI: 10.1172/jci181169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
Microglia are recognized as the main cells in the central nervous system responsible for phagocytosis. The current study demonstrated that in prion disease, microglia effectively phagocytose prions or PrPSc during early preclinical stages. However, a critical shift occured in microglial activity during the late preclinical stage, transitioning from PrPSc uptake to establishing extensive neuron-microglia body-to-body cell contacts. This change was followed by a rapid accumulation of PrPSc in the brain. Microglia that enveloped neurons exhibited hypertrophic, cathepsin D-positive lysosomal compartments. However, most neurons undergoing envelopment were only partially encircled by microglia. Despite up to 40% of cortical neurons being partially enveloped at clinical stages, only a small percentage of envelopment proceeded to full engulfment. Partially enveloped neurons lacked apoptotic markers but showed signs of functional decline. Neuronal envelopment was independent of the CD11b pathway, previously associated with phagocytosis of newborn neurons during neurodevelopment. This phenomenon of partial envelopment was consistently observed across multiple prion-affected brain regions, various mouse-adapted strains, and different subtypes of sporadic Creutzfeldt-Jakob disease (sCJD) in humans. The current work describes a new phenomenon of partial envelopment of neurons by reactive microglia in the context of an actual neurodegenerative disease, not a disease model.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology and
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tarek Safadi
- Center for Biomedical Engineering and Technology and
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Olga Bocharova
- Center for Biomedical Engineering and Technology and
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Olga Mychko
- Center for Biomedical Engineering and Technology and
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Narayan P. Pandit
- Center for Biomedical Engineering and Technology and
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology and
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Simone Baiardi
- University Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Bologna, Italy
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Piero Parchi
- University Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Bologna, Italy
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology and
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Li Y, Lei Z, Ritzel RM, He J, Liu S, Zhang L, Wu J. Ablation of the Integrin CD11b Mac-1 Limits Deleterious Responses to Traumatic Spinal Cord Injury and Improves Functional Recovery in Mice. Cells 2024; 13:1584. [PMID: 39329765 PMCID: PMC11430243 DOI: 10.3390/cells13181584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Spinal cord injury (SCI) triggers microglial/monocytes activation with distinct pro-inflammatory or inflammation-resolving phenotypes, which potentiate tissue damage or facilitate functional repair, respectively. The major integrin Mac-1 (CD11b/CD18), a heterodimer consisting of CD11b and CD18 chains, is expressed in multiple immune cells of the myeloid lineage. Here, we examined the effects of CD11b gene ablation in neuroinflammation and functional outcomes after SCI. qPCR analysis of C57BL/6 female mice showed upregulation of CD11b mRNA starting from 1 d after injury, which persisted up to 28 d. CD11b knockout (KO) mice and their wildtype littermates were subjected to moderate SCI. At 1 d post-injury, qPCR showed increased expression of genes involved with inflammation-resolving processes in CD11b KO mice. Flow cytometry analysis of CD45intLy6C-CX3CR1+ microglia, CD45hiLy6C+Ly6G- monocytes, and CD45hiLy6C+Ly6G+ neutrophils revealed significantly reduced cell counts as well as reactive oxygen species (ROS) production in CD11b KO mice at d3 post-injury. Further examination with NanoString and RNA-seq showed upregulation of pro-inflammatory genes, but downregulation of the ROS pathway. Importantly, CD11b KO mice exhibited significantly improved locomotor function, reduced cutaneous mechanical/thermal hypersensitivity, and limited tissue damage at 8 weeks post-injury. Collectively, our data suggest an important role for CD11b in regulating tissue inflammation and functional outcome following SCI.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Rodney M. Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Simon Liu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| | - Li Zhang
- Department of Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF, Room 6-034D, Baltimore, MD 21201, USA; (Y.L.); (Z.L.); (R.M.R.); (J.H.); (S.L.)
| |
Collapse
|
6
|
Sahebi K, Foroozand H, Amirsoleymani M, Eslamzadeh S, Negahdaripour M, Tajbakhsh A, Rahimi Jaberi A, Savardashtaki A. Advancing stroke recovery: unlocking the potential of cellular dynamics in stroke recovery. Cell Death Discov 2024; 10:321. [PMID: 38992073 PMCID: PMC11239950 DOI: 10.1038/s41420-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Stroke stands as a predominant cause of mortality and morbidity worldwide, and there is a pressing need for effective therapies to improve outcomes and enhance the quality of life for stroke survivors. In this line, effective efferocytosis, the clearance of apoptotic cells, plays a crucial role in neuroprotection and immunoregulation. This process involves specialized phagocytes known as "professional phagocytes" and consists of four steps: "Find-Me," "Eat-Me," engulfment/digestion, and anti-inflammatory responses. Impaired efferocytosis can lead to secondary necrosis and inflammation, resulting in adverse outcomes following brain pathologies. Enhancing efferocytosis presents a potential avenue for improving post-stroke recovery. Several therapeutic targets have been identified, including osteopontin, cysteinyl leukotriene 2 receptor, the µ opioid receptor antagonist β-funaltrexamine, and PPARγ and RXR agonists. Ferroptosis, defined as iron-dependent cell death, is now emerging as a novel target to attenuate post-stroke tissue damage and neuronal loss. Additionally, several biomarkers, most importantly CD163, may serve as potential biomarkers and therapeutic targets for acute ischemic stroke, aiding in stroke diagnosis and prognosis. Non-pharmacological approaches involve physical rehabilitation, hypoxia, and hypothermia. Mitochondrial dysfunction is now recognized as a major contributor to the poor outcomes of brain stroke, and medications targeting mitochondria may exhibit beneficial effects. These strategies aim to polarize efferocytes toward an anti-inflammatory phenotype, limit the ingestion of distressed but viable neurons, and stimulate efferocytosis in the late phase of stroke to enhance post-stroke recovery. These findings highlight promising directions for future research and development of effective stroke recovery therapies.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saghi Eslamzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Yepes M. Reprint of: Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain. Neuroscience 2024; 550:21-29. [PMID: 38964373 DOI: 10.1016/j.neuroscience.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/06/2023] [Indexed: 07/06/2024]
Abstract
The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
8
|
Bernard M, Menet R, Lecordier S, ElAli A. Endothelial PDGF-D contributes to neurovascular protection after ischemic stroke by rescuing pericyte functions. Cell Mol Life Sci 2024; 81:225. [PMID: 38769116 PMCID: PMC11106055 DOI: 10.1007/s00018-024-05244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Ischemic stroke induces neovascularization of the injured tissue as an attempt to promote structural repair and neurological recovery. Angiogenesis is regulated by pericytes that potently react to ischemic stroke stressors, ranging from death to dysfunction. Platelet-derived growth factor (PDGF) receptor (PDGFR)β controls pericyte survival, migration, and interaction with brain endothelial cells. PDGF-D a specific ligand of PDGFRβ is expressed in the brain, yet its regulation and role in ischemic stroke pathobiology remains unexplored. Using experimental ischemic stroke mouse model, we found that PDGF-D is transiently induced in brain endothelial cells at the injury site in the subacute phase. To investigate the biological significance of PDGF-D post-ischemic stroke regulation, its subacute expression was either downregulated using siRNA or upregulated using an active recombinant form. Attenuation of PDGF-D subacute induction exacerbates neuronal loss, impairs microvascular density, alters vascular permeability, and increases microvascular stalling. Increasing PDGF-D subacute bioavailability rescues neuronal survival and improves neurological recovery. PDGF-D subacute enhanced bioavailability promotes stable neovascularization of the injured tissue and improves brain perfusion. Notably, PDGF-D enhanced bioavailability improves pericyte association with brain endothelial cells. Cell-based assays using human brain pericyte and brain endothelial cells exposed to ischemia-like conditions were applied to investigate the underlying mechanisms. PDGF-D stimulation attenuates pericyte loss and fibrotic transition, while increasing the secretion of pro-angiogenic and vascular protective factors. Moreover, PDGF-D stimulates pericyte migration required for optimal endothelial coverage and promotes angiogenesis. Our study unravels new insights into PDGF-D contribution to neurovascular protection after ischemic stroke by rescuing the functions of pericytes.
Collapse
Affiliation(s)
- Maxime Bernard
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Romain Menet
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Sarah Lecordier
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Ayman ElAli
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
9
|
Protzmann J, Jung F, Jakobsson L, Fredriksson L. Analysis of ischemic stroke-mediated effects on blood-brain barrier properties along the arteriovenous axis assessed by intravital two-photon imaging. Fluids Barriers CNS 2024; 21:35. [PMID: 38622710 PMCID: PMC11017501 DOI: 10.1186/s12987-024-00537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Early breach of the blood-brain barrier (BBB) and consequently extravasation of blood-borne substances into the brain parenchyma is a common hallmark of ischemic stroke. Although BBB breakdown is associated with an increased risk of cerebral hemorrhage and poor clinical prognosis, the cause and mechanism of this process are largely unknown. The aim of this study was to establish an imaging and analysis protocol which enables investigation of the dynamics of BBB breach in relation to hemodynamic properties along the arteriovenous axis. Using longitudinal intravital two-photon imaging following photothrombotic induction of ischemic stroke through a cranial window, we were able to study the response of the cerebral vasculature to ischemia, from the early critical hours to the days/weeks after the infarct. We demonstrate that disruption of the BBB and hemodynamic parameters, including perturbed blood flow, can be studied at single-vessel resolution in the three-dimensional space as early as 30 min after vessel occlusion. Further, we show that this protocol permits longitudinal studies on the response of individual blood vessels to ischemia over time, thus enabling detection of (maladaptive) vascular remodeling such as intussusception, angiogenic sprouting and entanglement of vessel networks. Taken together, this in vivo two-photon imaging and analysis protocol will be useful in future studies investigating the molecular and cellular mechanisms, and the spatial contribution, of BBB breach to disease progression which might ultimately aid the development of new and more precise treatment strategies for ischemic stroke.
Collapse
Affiliation(s)
- Jil Protzmann
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Solnavägen 9, Stockholm, Sweden, 17165
| | - Felix Jung
- Department of Neuroscience , Karolinska Institutet, Solnavägen 9, Stockholm, Sweden, 17165
| | - Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Solnavägen 9, Stockholm, Sweden, 17165
| | - Linda Fredriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Solnavägen 9, Stockholm, Sweden, 17165.
| |
Collapse
|
10
|
Li Y, Ritzel RM, He J, Liu S, Zhang L, Wu J. Ablation of the integrin CD11b mac-1 limits deleterious responses to traumatic spinal cord injury and improves functional recovery in mice. RESEARCH SQUARE 2024:rs.3.rs-4196316. [PMID: 38645238 PMCID: PMC11030505 DOI: 10.21203/rs.3.rs-4196316/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Spinal cord injury (SCI) causes long-term sensorimotor deficits and posttraumatic neuropathic pain, with no effective treatment. In part, this reflects an incomplete understanding of the complex secondary pathobiological mechanisms involved. SCI triggers microglial/macrophage activation with distinct pro-inflammatory or inflammation-resolving phenotypes, which potentiate tissue damage or facilitate functional repair, respectively. The major integrin Mac-1 (CD11b/CD18, αMβ2 or CR3), a heterodimer consisting of αM (CD11b) and β2 (CD18) chains, is generally regarded as a pro-inflammatory receptor in neurotrauma. Multiple immune cells of the myeloid lineage express CD11b, including microglia, macrophages, and neutrophils. In the present study, we examined the effects of CD11b gene ablation on posttraumatic neuroinflammation and functional outcomes after SCI. Methods Young adult age-matched female CD11b knockout (KO) mice and their wildtype (WT) littermates were subjected to moderate thoracic spinal cord contusion. Neuroinflammation in the injured spinal cord was assessed with qPCR, flow cytometry, NanoString, and RNAseq. Neurological function was evaluated with the Basso Mouse Scale (BMS), gait analysis, thermal hyperesthesia, and mechanical allodynia. Lesion volume was evaluated by GFAP-DAB immunohistochemistry, followed by analysis with unbiased stereology. Results qPCR analysis showed a rapid and persistent upregulation of CD11b mRNA starting from 1d after injury, which persisted up to 28 days. At 1d post-injury, increased expression levels of genes that regulate inflammation-resolving processes were observed in CD11b KO mice. Flow cytometry analysis of CD45intLy6C-CX3CR1+ microglia, CD45hiLy6C+Ly6G- monocytes, and CD45hiLy6C+Ly6G+ neutrophils revealed significantly reduced cell counts as well as reactive oxygen production in CD11b KO mice at d3 post-injury. Further examination of the injured spinal cord with NanoString Mouse Neuroinflammation Panel and RNAseq showed upregulated expression of pro-inflammatory genes, but downregulated expression of the reactive oxygen species pathway. Importantly, CD11b KO mice exhibited significantly improved locomotor function, reduced cutaneous mechanical/thermal hypersensitivity, and limited tissue damage at 8 weeks post-injury. Conclusion Collectively, our data suggest an important role for CD11b in regulating tissue inflammation and functional outcome following SCI. Thus, the integrin CD11b represents a potential target that may lead to novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yun Li
- University of Maryland School of Medicine
| | | | - Junyun He
- University of Maryland School of Medicine
| | - Simon Liu
- University of Maryland School of Medicine
| | - Li Zhang
- University of Maryland School of Medicine
| | - Junfang Wu
- University of Maryland School of Medicine
| |
Collapse
|
11
|
Yepes M. Fibrinolytic and Non-fibrinolytic Roles of Tissue-type Plasminogen Activator in the Ischemic Brain. Neuroscience 2024; 542:69-80. [PMID: 37574107 DOI: 10.1016/j.neuroscience.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
The neurovascular unit (NVU) is assembled by endothelial cells (ECs) and pericytes, and encased by a basement membrane (BM) surveilled by microglia and surrounded by perivascular astrocytes (PVA), which in turn are in contact with synapses. Cerebral ischemia induces the rapid release of the serine proteinase tissue-type plasminogen activator (tPA) from endothelial cells, perivascular astrocytes, microglia and neurons. Owning to its ability to catalyze the conversion of plasminogen into plasmin, in the intravascular space tPA functions as a fibrinolytic enzyme. In contrast, the release of astrocytic, microglial and neuronal tPA have a plethora of effects that not always require the generation of plasmin. In the ischemic brain tPA increases the permeability of the NVU, induces microglial activation, participates in the recycling of glutamate, and has various effects on neuronal survival. These effects are mediated by different receptors, notably subunits of the N-methyl-D-aspartate receptor (NMDAR) and the low-density lipoprotein receptor-related protein-1 (LRP-1). Here we review data on the role of tPA in the NVU under non-ischemic and ischemic conditions, and analyze how this knowledge may lead to the development of potential strategies for the treatment of acute ischemic stroke patients.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University, Atlanta, GA, USA; Division of Neuropharmacology and Neurologic Diseases, Emory Primate Research Center, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
12
|
He Q, Wang Y, Fang C, Feng Z, Yin M, Huang J, Ma Y, Mo Z. Advancing stroke therapy: A deep dive into early phase of ischemic stroke and recanalization. CNS Neurosci Ther 2024; 30:e14634. [PMID: 38379112 PMCID: PMC10879038 DOI: 10.1111/cns.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Ischemic stroke, accounting for the majority of stroke events, significantly contributes to global morbidity and mortality. Vascular recanalization therapies, namely intravenous thrombolysis and mechanical thrombectomy, have emerged as critical interventions, yet their success hinges on timely application and patient-specific factors. This review focuses on the early phase pathophysiological mechanisms of ischemic stroke and the nuances of recanalization. It highlights the dual role of neutrophils in tissue damage and repair, and the critical involvement of the blood-brain barrier (BBB) in stroke outcomes. Special emphasis is placed on ischemia-reperfusion injury, characterized by oxidative stress, inflammation, and endothelial dysfunction, which paradoxically exacerbates cerebral damage post-revascularization. The review also explores the potential of targeting molecular pathways involved in BBB integrity and inflammation to enhance the efficacy of recanalization therapies. By synthesizing current research, this paper aims to provide insights into optimizing treatment protocols and developing adjuvant neuroprotective strategies, thereby advancing stroke therapy and improving patient outcomes.
Collapse
Affiliation(s)
- Qianyan He
- Department of Neurology, Stroke CenterThe First Hospital of Jilin UniversityJilinChina
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Yueqing Wang
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Cheng Fang
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Ziying Feng
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Meifang Yin
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Juyang Huang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Yinzhong Ma
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Zhizhun Mo
- Emergency Department, Shenzhen Traditional Chinese Medicine HospitalThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenGuangdongChina
| |
Collapse
|
13
|
Kuang X, Chen S, Ye Q. The Role of Histone Deacetylases in NLRP3 Inflammasomesmediated Epilepsy. Curr Mol Med 2024; 24:980-1003. [PMID: 37519210 DOI: 10.2174/1566524023666230731095431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Epilepsy is one of the most common brain disorders that not only causes death worldwide, but also affects the daily lives of patients. Previous studies have revealed that inflammation plays an important role in the pathophysiology of epilepsy. Activation of inflammasomes can promote neuroinflammation by boosting the maturation of caspase-1 and the secretion of various inflammatory effectors, including chemokines, interleukins, and tumor necrosis factors. With the in-depth research on the mechanism of inflammasomes in the development of epilepsy, it has been discovered that NLRP3 inflammasomes may induce epilepsy by mediating neuronal inflammatory injury, neuronal loss and blood-brain barrier dysfunction. Therefore, blocking the activation of the NLRP3 inflammasomes may be a new epilepsy treatment strategy. However, the drugs that specifically block NLRP3 inflammasomes assembly has not been approved for clinical use. In this review, the mechanism of how HDACs, an inflammatory regulator, regulates the activation of NLRP3 inflammasome is summarized. It helps to explore the mechanism of the HDAC inhibitors inhibiting brain inflammatory damage so as to provide a potential therapeutic strategy for controlling the development of epilepsy.
Collapse
Affiliation(s)
- Xi Kuang
- Hainan Health Vocational College,Haikou, Hainan, 570311, China
| | - Shuang Chen
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, 430022, Hubei, China
| | - Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| |
Collapse
|
14
|
Zhang J, Gao L, Zhang Y, Wang H, Sun S, Wu L. Involvement of microglial P2X7 receptor in pain modulation. CNS Neurosci Ther 2024; 30:e14496. [PMID: 37950524 PMCID: PMC10805404 DOI: 10.1111/cns.14496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Pain is a rapid response mechanism that compels organisms to retreat from the harmful stimuli and triggers a repair response. Nonetheless, when pain persists for extended periods, it can lead to adverse changes into in the individual's brain, negatively impacting their emotional state and overall quality of life. Microglia, the resident immune cells in the central nervous system (CNS), play a pivotal role in regulating a variety of pain-related disorders. Specifically, recent studies have shed light on the central role that microglial purinergic ligand-gated ion channel 7 receptor (P2X7R) plays in regulating pain. In this respect, the P2X7R on microglial membranes represents a potential therapeutic target. AIMS To expound on the intricate link between microglial P2X7R and pain, offering insights into potential avenues for future research. METHODS We reviewed 140 literature and summarized the important role of microglial P2X7R in regulating pain, including the structure and function of P2X7R, the relationship between P2X7R and microglial polarization, P2X7R-related signaling pathways, and the effects of P2X7R antagonists on pain regulation. RESULTS P2X7R activation is related to M1 polarization of microglia, while suppressing P2X7R can transfer microglia from M1 into M2 phenotype. And targeting the P2X7R-mediated signaling pathways helps to explore new therapy for pain alleviation. P2X7R antagonists also hold potential for translational and clinical applications in pain management. CONCLUSIONS Microglial P2X7R holds promise as a potential novel pharmacological target for clinical treatments due to its distinctive structure, function, and the development of antagonists.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Lei Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Yaoyuan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Haozhen Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Shukai Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Li‐an Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
15
|
Thiebaut AM, Louet ER, Ianszen M, Guichard MJ, Hanley DF, Gaudin C, Parcq J. O2L-001, an innovative thrombolytic to evacuate intracerebral haematoma. Brain 2023; 146:4690-4701. [PMID: 37450572 PMCID: PMC10629768 DOI: 10.1093/brain/awad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/31/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Intracerebral haemorrhage is an unmet medical need affecting more than 3 million people worldwide every year and leading to the formation of an intracerebral haematoma. Updated guidelines (2022) for the management of intracerebral haemorrhage patients recognize that minimally invasive approaches for the evacuation of supratentorial intracerebral haemorrhage have demonstrated reductions in mortality compared with medical management alone. However, improvement of functional outcome with a procedure involving thrombolytic therapy was neutral in the last large phase 3 clinical trial and requires a more effective and safer thrombolytic agent than those currently available. Here, we demonstrate that O2L-001 allows for the extended release of W253R/R275S recombinant tissue-type plasminogen activator (rtPA). A new rtPA variant, called optimized tPA (OptPA), offers improved efficacy for haematoma evacuation as well as improved safety. OptPA was produced in a Chinese hamster ovary cell line before purification, nanoprecipitation using the NANOp2Lysis® technological platform followed by suspension in a solution of 17% poloxamer 407 to obtain O2L-001. Plasmin generation assays were performed to demonstrate O2L-001 safety. Ex vivo haematoma models using human blood were used to demonstrate O2L-001 thrombolysis properties and efficacy. For the best translational significance, a clinical sized haematoma was used to ensure catheter placement and to allow administration of the thrombolytic agent into the core of the haematoma via a minimally invasive procedure. The capacity of OptPA to convert plasminogen into plasmin is strongly decreased compared to rtPA, thereby reducing potential bleeding events. However, a clot lysis assay showed that OptPA had the same fibrinolytic activity as rtPA. We demonstrated that long-term exposure to a thrombolytic agent was essential to achieve high thrombolysis efficacy. Indeed, 24 h continuous exposure to 0.1 µg/ml rtPA had similar efficacy than repeated short exposure to 30 µg/ml rtPA. This finding led to the development of O2L-001, allowing the extended release of OptPA in the first 6 h following injection. An ex vivo model using human blood was used to demonstrate O2L-001 efficacy. Interestingly, unlike rtPA, O2L-001 was able to induce the complete lysis of the 5 ml haematoma. In clinical sized haematomas (obtained from 30 ml of human blood), a single injection of O2L-001 at 1 mg/ml into the core of the haematoma led to a 44% increase in thrombolysis compared to rtPA. Taken together, these results demonstrate that O2L-001 provides new hope for haematoma evacuation and the treatment of patients with intracerebral haemorrhage.
Collapse
Affiliation(s)
| | - Estelle R Louet
- Op2Lysis SAS, GIP Cyceron, 14000 Caen, France
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France
| | | | | | - Daniel F Hanley
- The Johns Hopkins Medical Institutions, BIOS, Baltimore, MD 21202, USA
| | | | | |
Collapse
|
16
|
Ma X, Xin D, She R, Liu D, Ge J, Mei Z. Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. Front Immunol 2023; 14:1275408. [PMID: 37915571 PMCID: PMC10616885 DOI: 10.3389/fimmu.2023.1275408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic stroke, a primary cause of disability and the second leading cause of mortality, has emerged as an urgent public health issue. Growing evidence suggests that the Cyclic GMP-AMP synthase (cGAS)- Stimulator of interferon genes (STING) pathway, a component of innate immunity, is closely associated with microglia activation, neuroinflammation, and regulated cell death in ischemic stroke. However, the mechanisms underlying this pathway remain inadequately understood. This article comprehensively reviews the existing literature on the cGAS-STING pathway and its multifaceted relationship with ischemic stroke. Initially, it examines how various risk factors and pre-disease mechanisms such as metabolic dysfunction and senescence (e.g., hypertension, hyperglycemia, hyperlipidemia) affect the cGAS-STING pathway in relation to ischemic stroke. Subsequently, we explore in depth the potential pathophysiological relationship between this pathway and oxidative stress, endoplasmic reticulum stress, neuroinflammation as well as regulated cell death including ferroptosis and PANoptosis following cerebral ischemia injury. Finally, it suggests that intervention targeting the cGAS-STING pathway may serve as promising therapeutic strategies for addressing neuroinflammation associated with ischemic stroke. Taken together, this review concludes that targeting the microglia cGAS-STING pathway may shed light on the exploration of new therapeutic strategies against ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Xin
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
17
|
McDonald B, Barth K, Schmidt MHH. The origin of brain malignancies at the blood-brain barrier. Cell Mol Life Sci 2023; 80:282. [PMID: 37688612 PMCID: PMC10492883 DOI: 10.1007/s00018-023-04934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Despite improvements in extracranial therapy, survival rate for patients suffering from brain metastases remains very poor. This is coupled with the incidence of brain metastases continuing to rise. In this review, we focus on core contributions of the blood-brain barrier to the origin of brain metastases. We first provide an overview of the structure and function of the blood-brain barrier under physiological conditions. Next, we discuss the emerging idea of a pre-metastatic niche, namely that secreted factors and extracellular vesicles from a primary tumor site are able to travel through the circulation and prime the neurovasculature for metastatic invasion. We then consider the neurotropic mechanisms that circulating tumor cells possess or develop that facilitate disruption of the blood-brain barrier and survival in the brain's parenchyma. Finally, we compare and contrast brain metastases at the blood-brain barrier to the primary brain tumor, glioma, examining the process of vessel co-option that favors the survival and outgrowth of brain malignancies.
Collapse
Affiliation(s)
- Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany.
| | - Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| |
Collapse
|
18
|
Nakamura K, Ago T. Pericyte-Mediated Molecular Mechanisms Underlying Tissue Repair and Functional Recovery after Ischemic Stroke. J Atheroscler Thromb 2023; 30:1085-1094. [PMID: 37394570 PMCID: PMC10499454 DOI: 10.5551/jat.rv22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
There are still many patients suffering from ischemic stroke and related disabilities worldwide. To develop a treatment that promotes functional recovery after acute ischemic stroke, we need to elucidate endogenous tissue repair mechanisms. The concept of a neurovascular unit (NVU) indicates the importance of a complex orchestration of cell-cell interactions and their microenvironment in the physiology and pathophysiology of various central nervous system diseases, particularly ischemic stroke. In this concept, microvascular pericytes play a crucial role in regulating the blood-brain barrier integrity, cerebral blood flow (CBF), and vascular stability. Recent evidence suggests that pericytes are also involved in the tissue repair leading to functional recovery following acute ischemic stroke through the interaction with other cell types constituting the NVU; pericytes may organize CBF recovery, macrophage-mediated clearance of myelin debris, intrainfarct fibrosis, and periinfarct astrogliosis and remyelination. In this review, we will discuss the physiological and pathophysiological functions of pericytes, their involvement in the molecular mechanisms underlying tissue repair and functional recovery after ischemic stroke, and a therapeutic strategy to promote endogenous regeneration.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Cao Y, Yue X, Jia M, Wang J. Neuroinflammation and anti-inflammatory therapy for ischemic stroke. Heliyon 2023; 9:e17986. [PMID: 37519706 PMCID: PMC10372247 DOI: 10.1016/j.heliyon.2023.e17986] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 04/25/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Stroke remains one of the most devastating and challenging neurological diseases worldwide. Inflammation, as well as oxidative stress is one of the main contributors to post-stroke injuries, and oxidative stress can further induce inflammation. Moreover, the inflammatory response is closely related to immune modulation in ischemic stroke progression. Hence, major ischemic stroke treatment strategies include targeting inflammatory responses, immune modulation (especially immune cells), and inflammatory response to suppress stroke progression. To date, several drugs have demonstrated clinical efficacy, such as Etanercept and Fingolimod. However, only edaravone dexborneol has successfully passed the phase III clinical trial and been approved by the National Medical Products Administration (NMPA) to treat ischemic stroke in China, which can restore redox balance and regulate inflammatory immune responses, thus providing neuroprotection in ischemic stroke. In this review, we will comprehensively summarize the current advances in the application of inflammatory biomarkers, neuroinflammation and neuro-immunotherapeutic scenarios for ischemic stroke, thus aiming to provide a theoretical basis and new prospects and frontiers for clinical applications.
Collapse
Affiliation(s)
- Yangyue Cao
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xuanye Yue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Jia
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Faissner A. Low-density lipoprotein receptor-related protein-1 (LRP1) in the glial lineage modulates neuronal excitability. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1190240. [PMID: 37383546 PMCID: PMC10293750 DOI: 10.3389/fnetp.2023.1190240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
The low-density lipoprotein related protein receptor 1 (LRP1), also known as CD91 or α-Macroglobulin-receptor, is a transmembrane receptor that interacts with more than 40 known ligands. It plays an important biological role as receptor of morphogens, extracellular matrix molecules, cytokines, proteases, protease inhibitors and pathogens. In the CNS, it has primarily been studied as a receptor and clearance agent of pathogenic factors such as Aβ-peptide and, lately, Tau protein that is relevant for tissue homeostasis and protection against neurodegenerative processes. Recently, it was found that LRP1 expresses the Lewis-X (Lex) carbohydrate motif and is expressed in the neural stem cell compartment. The removal of Lrp1 from the cortical radial glia compartment generates a strong phenotype with severe motor deficits, seizures and a reduced life span. The present review discusses approaches that have been taken to address the neurodevelopmental significance of LRP1 by creating novel, lineage-specific constitutive or conditional knockout mouse lines. Deficits in the stem cell compartment may be at the root of severe CNS pathologies.
Collapse
|
21
|
Zhao N, Hua W, Liu Q, Wang Y, Liu Z, Jin S, Wang B, Pang Y, Qi J, Song Y. MALAT1 knockdown alleviates the pyroptosis of microglias in diabetic cerebral ischemia via regulating STAT1 mediated NLRP3 transcription. Mol Med 2023; 29:44. [PMID: 37013491 PMCID: PMC10069069 DOI: 10.1186/s10020-023-00637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Dysregulated long non-coding RNAs participate in the development of diabetic cerebral ischemia. This study aimed to investigate the underlying mechanism of lncRNA MALAT1 in diabetic cerebral ischemia. METHOD Middle cerebral artery occlusion (MCAO) was performed to establish diabetic cerebral I/R in vivo. TTC and neurological deficits assessment were performed to assess cerebral ischemic injury. LDH was conducted to detect cytotoxicity. RT-qPCR and western blotting assays were applied to determine mRNA and protein expression. Flow cytometry was performed to detect the pyroptosis of BV2 cells. Immunofluorescence and FISH were conducted for subcellular localization of MALAT1 and STAT1. ELISA was performed to determine cytokine release. Dual luciferase reporter, RIP, and ChIP assays were used to validate the interaction between STAT1 and MALAT1/NLRP3. Diabetes aggravated cerebral injury in vivo and in vitro. Diabetic cerebral ischemia induced inflammatory response and inflammation-induced cell pyroptosis. RESULT MALAT1 was overexpressed in diabetic cerebral ischemia models in vivo and in vitro. However, knockdown of MALAT1 suppressed inflammatory response and the pyroptosis of BV2 cells. Moreover, MALAT1 interacted with STAT1 to transcriptionally activate NLRP3. Knockdown of STAT1 significantly reversed the effects of MALAT1. Furthermore, STAT1 promotes the MALAT1 transcription. MALAT1 interacts with STAT1 to promote the pyroptosis of microglias induced by diabetic cerebral ischemia through activating NLRP3 transcription. CONCLUSION Thus, knockdown of MALAT1 may be a potential promising therapy target for diabetic cerebral ischemia.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Wei Hua
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Qi Liu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yueying Wang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Zhiyi Liu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Sinan Jin
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Benshuai Wang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yuxin Pang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Jiping Qi
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| | - Yuejia Song
- Department of Endocrinology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
22
|
Rada CC, Yuki K, Ding J, Kuo CJ. Regulation of the Blood-Brain Barrier in Health and Disease. Cold Spring Harb Perspect Med 2023; 13:a041191. [PMID: 36987582 PMCID: PMC10691497 DOI: 10.1101/cshperspect.a041191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The neurovascular unit is a dynamic microenvironment with tightly controlled signaling and transport coordinated by the blood-brain barrier (BBB). A properly functioning BBB allows sufficient movement of ions and macromolecules to meet the high metabolic demand of the central nervous system (CNS), while protecting the brain from pathogenic and noxious insults. This review describes the main cell types comprising the BBB and unique molecular signatures of these cells. Additionally, major signaling pathways for BBB development and maintenance are highlighted. Finally, we describe the pathophysiology of BBB diseases, their relationship to barrier dysfunction, and identify avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Cara C Rada
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jie Ding
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
23
|
Zhou SY, Guo ZN, Yang Y, Qu Y, Jin H. Gut-brain axis: Mechanisms and potential therapeutic strategies for ischemic stroke through immune functions. Front Neurosci 2023; 17:1081347. [PMID: 36777635 PMCID: PMC9911679 DOI: 10.3389/fnins.2023.1081347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
After an ischemic stroke (IS) occurs, immune cells begin traveling to the brain and immune system from the gut and gastrointestinal tract, where most of them typically reside. Because the majority of the body's macrophages and more than 70% of the total immune cell pool are typically found within the gut and gastrointestinal tract, inflammation and immune responses in the brain and immune organs require the mobilization of a large number of immune cells. The bidirectional communication pathway between the brain and gut is often referred to as the gut-brain axis. IS usually leads to intestinal motility disorders, dysbiosis of intestinal microbiota, and a leaky gut, which are often associated with poor prognosis in patients with IS. In recent years, several studies have suggested that intestinal inflammation and immune responses play key roles in the development of IS, and thus may become potential therapeutic targets that can drive new therapeutic strategies. However, research on gut inflammation and immune responses after stroke remains in its infancy. A better understanding of gut inflammation and immune responses after stroke may be important for developing effective therapies. This review discusses the immune-related mechanisms of the gut-brain axis after IS and compiles potential therapeutic targets to provide new ideas and strategies for the future effective treatment of IS.
Collapse
Affiliation(s)
- Sheng-Yu Zhou
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China,*Correspondence: Hang Jin,
| |
Collapse
|
24
|
He Q, Ma Y, Fang C, Deng Z, Wang F, Qu Y, Yin M, Zhao R, Zhang D, Guo F, Yang Y, Chang J, Guo ZN. Remote ischemic conditioning attenuates blood-brain barrier disruption after recombinant tissue plasminogen activator treatment via reducing PDGF-CC. Pharmacol Res 2023; 187:106641. [PMID: 36587812 DOI: 10.1016/j.phrs.2022.106641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Treatment of acute ischemic stroke with the recombinant tissue plasminogen activator (rtPA) is associated with increased blood-brain barrier (BBB) disruption and hemorrhagic transformation. Remote ischemic conditioning (RIC) has demonstrated neuroprotective effects against acute ischemic stroke. However, whether and how RIC regulates rtPA-associated BBB disruption remains unclear. Here, a rodent model of thromboembolic stroke followed by rtPA thrombolysis at different time points was performed with or without RIC. Brain infarction, neurological outcomes, BBB permeability, and intracerebral hemorrhage were assessed. The platelet-derived growth factor CC (PDGF-CC)/PDGFRα pathway in the brain tissue, PDGF-CC levels in the skeletal muscle and peripheral blood were also measured. Furthermore, impact of RIC on serum PDGF-CC levels were measured in healthy subjects and AIS patients. Our results showed that RIC substantially reduced BBB injury, intracerebral hemorrhage, cerebral infarction, and neurological deficits after stroke, even when rtPA was administrated in a delayed therapeutic time window. Mechanistically, RIC significantly decreased PDGFRα activation in ischemic brain tissue and reduced blood PDGF-CC levels, which partially resulted from PDGF-CC reduction in the skeletal muscle of RIC-applied hindlimbs and platelets. Intravenous or intraventricular recombinant PDGF-CC supplementation abolished RIC protective effects on BBB integrity. Moreover, similar changes of PDGF-CC in serum by RIC were also observed in healthy humans and acute ischemic stroke patients. Together, our study demonstrates that RIC can attenuate rtPA-aggravated BBB disruption after ischemic stroke via reducing the PDGF-CC/PDGFRα pathway and thus supports RIC as a potential approach for BBB disruption prevention or treatment following thrombolysis.
Collapse
Affiliation(s)
- Qianyan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Zijun Deng
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Fang Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China; Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Meifang Yin
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Dianhui Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Fuyou Guo
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
25
|
Mao B, Wang M, Wan S. Platelet derived growth factor and its receptor in intracerebral hemorrhage. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:634-639. [PMID: 36581581 PMCID: PMC10264983 DOI: 10.3724/zdxbyxb-2022-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/10/2022] [Indexed: 12/02/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and highly disabling or fatal neurological disorder in adults. Recent studies have suggested that the platelet derived growth factor (PDGF) signaling pathway plays an important role in the development of ICH. PDGF is involved in vascular remodeling and can be used as a biomarker of cerebral amyloid angiopathy which is one of the major causes of ICH. PDGF and its receptors are involved in the mechanism of the secondary injury after ICH by affecting the integrity of the blood-brain barrier and inflammatory response. PDGF and its receptors may also participate in the mechanism of repair after ICH by promoting angiogenesis. This article reviews the latest research progress on the involvement of PDGF signaling pathway in the pathophysiology of intracerebral hemorrhage, and introduces the relevant antagonists using PDGFR as the therapeutic target, to provide information for the development of therapeutic options for intracerebral hemorrhage.
Collapse
Affiliation(s)
- Baojie Mao
- 1. The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- 2. Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Ming Wang
- 2. Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Shu Wan
- 2. Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| |
Collapse
|
26
|
Peng L, Hu G, Yao Q, Wu J, He Z, Law BYK, Hu G, Zhou X, Du J, Wu A, Yu L. Microglia autophagy in ischemic stroke: A double-edged sword. Front Immunol 2022; 13:1013311. [PMID: 36466850 PMCID: PMC9708732 DOI: 10.3389/fimmu.2022.1013311] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/25/2022] [Indexed: 08/14/2023] Open
Abstract
Ischemic stroke (IS) is one of the major types of cerebrovascular diseases causing neurological morbidity and mortality worldwide. In the pathophysiological process of IS, microglia play a beneficial role in tissue repair. However, it could also cause cellular damage, consequently leading to cell death. Inflammation is characterized by the activation of microglia, and increasing evidence showed that autophagy interacts with inflammation through regulating correlative mediators and signaling pathways. In this paper, we summarized the beneficial and harmful effects of microglia in IS. In addition, we discussed the interplay between microglia autophagy and ischemic inflammation, as along with its application in the treatment of IS. We believe this could help to provide the theoretical references for further study into IS and treatments in the future.
Collapse
Affiliation(s)
- Li Peng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medicine Imaging, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Guangqiang Hu
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Qianfang Yao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ziyang He
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Guishan Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Junrong Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medicine Imaging, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Nirwane A, Yao Y. Cell-specific expression and function of laminin at the neurovascular unit. J Cereb Blood Flow Metab 2022; 42:1979-1999. [PMID: 35796497 PMCID: PMC9580165 DOI: 10.1177/0271678x221113027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022]
Abstract
Laminin, a major component of the basal lamina (BL), is a heterotrimeric protein with many isoforms. In the CNS, laminin is expressed by almost all cell types, yet different cells synthesize distinct laminin isoforms. By binding to its receptors, laminin exerts a wide variety of important functions. However, due to the reciprocal and cell-specific expression of laminin in different cells at the neurovascular unit, its functions in blood-brain barrier (BBB) maintenance and BBB repair after injury are not fully understood. In this review, we focus on the expression and functions of laminin and its receptors in the neurovascular unit under both physiological and pathological conditions. We first briefly introduce the structures of laminin and its receptors. Next, the expression and functions of laminin and its receptors in the CNS are summarized in a cell-specific manner. Finally, we identify the knowledge gap in the field and discuss key questions that need to be answered in the future. Our goal is to provide a comprehensive overview on cell-specific expression of laminin and its receptors in the CNS and their functions on BBB integrity.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
28
|
Su EJ, Lawrence DA. Diabetes and the treatment of ischemic stroke. J Diabetes Complications 2022; 36:108318. [PMID: 36228562 DOI: 10.1016/j.jdiacomp.2022.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022]
Abstract
This white paper examines the current challenges for treating ischemic stroke in diabetic patients. The need for a greater understanding of the mechanisms that underlie the relationship between diabetes and the cerebral vascular responses to ischemia is discussed. The critical need to improve the efficacy and safety of thrombolysis is addressed, as is the need for a better characterization the off-target actions of tPA, the only currently approved thrombolytic for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Enming J Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Yang G, Fan X, Mazhar M, Guo W, Zou Y, Dechsupa N, Wang L. Neuroinflammation of microglia polarization in intracerebral hemorrhage and its potential targets for intervention. Front Mol Neurosci 2022; 15:1013706. [PMID: 36304999 PMCID: PMC9592761 DOI: 10.3389/fnmol.2022.1013706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and play a key role in neurological diseases, including intracerebral hemorrhage (ICH). Microglia are activated to acquire either pro-inflammatory or anti-inflammatory phenotypes. After the onset of ICH, pro-inflammatory mediators produced by microglia at the early stages serve as a crucial character in neuroinflammation. Conversely, switching the microglial shift to an anti-inflammatory phenotype could alleviate inflammatory response and incite recovery. This review will elucidate the dynamic profiles of microglia phenotypes and their available shift following ICH. This study can facilitate an understanding of the self-regulatory functions of the immune system involving the shift of microglia phenotypes in ICH. Moreover, suggestions for future preclinical and clinical research and potential intervention strategies are discussed.
Collapse
Affiliation(s)
- Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Wubin Guo
- Department of General Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yuanxia Zou
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Li Wang Nathupakorn Dechsupa
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Li Wang Nathupakorn Dechsupa
| |
Collapse
|
30
|
Torrente D, Su EJ, Fredriksson L, Warnock M, Bushart D, Mann KM, Emal CD, Lawrence DA. Compartmentalized Actions of the Plasminogen Activator Inhibitors, PAI-1 and Nsp, in Ischemic Stroke. Transl Stroke Res 2022; 13:801-815. [PMID: 35122213 PMCID: PMC9349468 DOI: 10.1007/s12975-022-00992-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
Tissue plasminogen activator (tPA) is a multifunctional protease. In blood tPA is best understood for its role in fibrinolysis, whereas in the brain tPA is reported to regulate blood-brain barrier (BBB) function and to promote neurodegeneration. Thrombolytic tPA is used for the treatment of ischemic stroke. However, its use is associated with an increased risk of hemorrhagic transformation. In blood the primary regulator of tPA activity is plasminogen activator inhibitor 1 (PAI-1), whereas in the brain, its primary inhibitor is thought to be neuroserpin (Nsp). In this study, we compare the effects of PAI-1 and Nsp deficiency in a mouse model of ischemic stroke and show that tPA has both beneficial and harmful effects that are differentially regulated by PAI-1 and Nsp. Following ischemic stroke Nsp deficiency in mice leads to larger strokes, increased BBB permeability, and increased spontaneous intracerebral hemorrhage. In contrast, PAI-1 deficiency results in smaller infarcts and increased cerebral blood flow recovery. Mechanistically, our data suggests that these differences are largely due to the compartmentalized action of PAI-1 and Nsp, with Nsp deficiency enhancing tPA activity in the CNS which increases BBB permeability and worsens stroke outcomes, while PAI-1 deficiency enhances fibrinolysis and improves recovery. Finally, we show that treatment with a combination therapy that enhances endogenous fibrinolysis by inhibiting PAI-1 with MDI-2268 and reduces BBB permeability by inhibiting tPA-mediated PDGFRα signaling with imatinib significantly reduces infarct size compared to vehicle-treated mice and to mice with either treatment alone.
Collapse
Affiliation(s)
- Daniel Torrente
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Enming Joseph Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
| | - Linda Fredriksson
- Biomedicum, Karolinska Institute, Solnavägen 9, Quarter 6D, 17165, Solna, Sweden
| | - Mark Warnock
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
| | - David Bushart
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
- Current affiliation: Ohio State University College of Medicine, Columbus, OH, USA
| | - Kris M Mann
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
| | - Cory D Emal
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Daniel A Lawrence
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA.
| |
Collapse
|
31
|
Yu Z, Fang X, Liu W, Sun R, Zhou J, Pu Y, Zhao M, Sun D, Xiang Z, Liu P, Ding Y, Cao L, He C. Microglia Regulate Blood-Brain Barrier Integrity via MiR-126a-5p/MMP9 Axis during Inflammatory Demyelination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105442. [PMID: 35758549 PMCID: PMC9403646 DOI: 10.1002/advs.202105442] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/14/2022] [Indexed: 05/14/2023]
Abstract
Blood-brain barrier (BBB) impairment is an early prevalent feature of multiple sclerosis (MS), and remains vital for MS progression. Microglial activation precedes BBB disruption and cellular infiltrates in the brain of MS patients. However, little is known about the function of microglia in BBB impairment. Here, microglia acts as an important modulator of BBB integrity in inflammatory demyelination. Microglial depletion profoundly ameliorates BBB impairment in experimental autoimmune encephalomyelitis (EAE). Specifically, miR-126a-5p in microglia is positively correlated with BBB integrity in four types of MS plaques. Mechanistically, microglial deletion of miR-126a-5p exacerbates BBB leakage and EAE severity. The protective effect of miR-126a-5p is mimicked and restored by specific inhibition of MMP9 in microglia. Importantly, Auranofin, an FDA-approved drug, is identified to protect BBB integrity and mitigate EAE progression via a microglial miR-126a-5p dependent mechanism. Taken together, microglia can be manipulated to protect BBB integrity and ameliorate inflammatory demyelination. Targeting microglia to regulate BBB permeability merits consideration in therapeutic interventions in MS.
Collapse
Affiliation(s)
- Zhongwang Yu
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Xue Fang
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
- Department of GastroenterologyChanghai HospitalSMMUShanghai200433China
| | - Weili Liu
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Rui Sun
- Department of NeurologyChanghai HospitalSMMUShanghai200433China
| | - Jintao Zhou
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Yingyan Pu
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Ming Zhao
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Dingya Sun
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Zhenghua Xiang
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Peng Liu
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Yuqiang Ding
- Department of Laboratory Animal Scienceand State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceFudan UniversityShanghai200032China
| | - Li Cao
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Cheng He
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| |
Collapse
|
32
|
Fibrinolysis without intracranial hemorrhage. Blood 2022; 140:300-302. [PMID: 35900787 DOI: 10.1182/blood.2022016925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
|
33
|
Wu ST, Han JR, Yao N, Li YL, Zhang F, Shi Y, Shi FD, Li ZG. Activation of P2X4 receptor exacerbates acute brain injury after intracerebral hemorrhage. CNS Neurosci Ther 2022; 28:1008-1018. [PMID: 35352488 PMCID: PMC9160453 DOI: 10.1111/cns.13831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/27/2022] Open
Abstract
Introduction Intracerebral hemorrhage (ICH) accounts for 10%–15% of all strokes and culminates in high mortality and disability. After ICH, brain injury is initiated by the mass effect of hematoma, followed by secondary cytotoxic injury from dying brain cells, hematoma disintegration, and cascading brain immune response. However, the molecular mechanism of secondary cytotoxic brain injury in ICH is not completely understood. The sensitive purinergic receptor, P2X4 receptor (P2X4R), was known to recognize extracellular free ATP released by dying cells during tissue injury. Aims In this study, we aim to understand the role of P2X4R in acute brain injury triggered by ICH. Results In this study, we found that the sensitive purinergic receptor, P2X4R, was upregulated in the brain of patients with ICH as well as in a mouse model of ICH induced by collagenase injection. P2X4R blockage with the specific inhibitor 5‐BDBD attenuated brain injury in ICH mice by significantly reducing brain edema, blood–brain barrier leakage, neural death, and ultimately acute neurodeficits. Further study indicated that the protective effect of P2X4R inhibition is related to decreased pro‐inflammatory activity of microglia and recruitment of peripheral immune cells into the hemorrhagic brain. Conclusions These results suggest that the P2X4 receptor is activated by ICH stimuli which worsen brain injury following ICH.
Collapse
Affiliation(s)
- Si-Ting Wu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin-Rui Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Yao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Lin Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yao Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhi-Guo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
34
|
Li SY, Johnson R, Smyth LC, Dragunow M. Platelet-derived growth factor signalling in neurovascular function and disease. Int J Biochem Cell Biol 2022; 145:106187. [PMID: 35217189 DOI: 10.1016/j.biocel.2022.106187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
Abstract
Platelet-derived growth factors are critical for cerebrovascular development and homeostasis. Abnormalities in this signalling pathway are implicated in neurological diseases, especially those where neurovascular dysfunction and neuroinflammation plays a prominent role in disease pathologies, such as stroke and Alzheimer's disease; the angiogenic nature of this pathway also draws its significance in brain malignancies such as glioblastoma where tumour angiogenesis is profuse. In this review, we provide an updated overview of the actions of the platelet-derived growth factors on neurovascular function, their role in the regulation of perivascular cell types expressing the cognate receptors, neurological diseases associated with aberrance in signalling, and highlight the clinical relevance and therapeutic potentials of this pathway for central nervous system diseases.
Collapse
Affiliation(s)
- Susan Ys Li
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Rebecca Johnson
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Leon Cd Smyth
- Center for Brain Immunology and Glia, Department of Pathology and Immunology, Washington University in St Louis, MO, USA.
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
35
|
The Novel Nrf2 Activator Omaveloxolone Regulates Microglia Phenotype and Ameliorates Secondary Brain Injury after Intracerebral Hemorrhage in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4564471. [PMID: 35308167 PMCID: PMC8933082 DOI: 10.1155/2022/4564471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
The polarization of microglia is recognized as a crucial factor in reducing neuroinflammation and promoting hematoma clearance after intracerebral hemorrhage (ICH). Previous studies have revealed that redox components participate in the regulation of microglial polarization. Recently, the novel Nrf2 activator omaveloxolone (Omav) has been validated to improve neurological function in patients with neurodegenerative disorders by regulating antioxidant responses. In this study, we examined the efficacy of Omav in ICH. Omav significantly promoted Nrf2 nuclear accumulation and the expression of HO-1 and NQO1 in BV2 cells. In addition, both in vitro and in vivo experiments showed that Omav treatment inhibited M1-like activation and promoted the activation of the M2-like microglial phenotype. Omav inhibited OxyHb-induced ROS generation and preserved the function of mitochondria in BV2 cells. Intraperitoneal administration of Omav improved sensorimotor function in the ICH mouse model. Importantly, these effects were blocked by pretreatment with ML385, a selective inhibitor of Nrf2. Collectively, Omav modulated microglial polarization by activating Nrf2 and inhibiting ROS generation in ICH models, suggesting that it might be a promising drug candidate for the treatment of ICH.
Collapse
|
36
|
Sun Y, Langer HF. Platelets, Thromboinflammation and Neurovascular Disease. Front Immunol 2022; 13:843404. [PMID: 35309326 PMCID: PMC8930842 DOI: 10.3389/fimmu.2022.843404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
The brain and spinal cord are immune-privileged organs, but in the disease state protection mechanisms such as the blood brain barrier (BBB) are ineffective or overcome by pathological processes. In neuroinflammatory diseases, microglia cells and other resident immune cells contribute to local vascular inflammation and potentially a systemic inflammatory response taking place in parallel. Microglia cells interact with other cells impacting on the integrity of the BBB and propagate the inflammatory response through the release of inflammatory signals. Here, we discuss the activation and response mechanisms of innate and adaptive immune processes in response to neuroinflammation. Furthermore, the clinical importance of neuroinflammatory mediators and a potential translational relevance of involved mechanisms are addressed also with focus on non-classical immune cells including microglia cells or platelets. As illustrative examples, novel agents such as Anfibatide or Revacept, which result in reduced recruitment and activation of platelets, a subsequently blunted activation of the coagulation cascade and further inflammatory process, demonstrating that mechanisms of neuroinflammation and thrombosis are interconnected and should be further subject to in depth clinical and basic research.
Collapse
Affiliation(s)
- Ying Sun
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- *Correspondence: Harald F. Langer,
| |
Collapse
|
37
|
Tang MY, Gorin FA, Lein PJ. Review of evidence implicating the plasminogen activator system in blood-brain barrier dysfunction associated with Alzheimer's disease. AGEING AND NEURODEGENERATIVE DISEASES 2022; 2. [PMID: 35156107 PMCID: PMC8830591 DOI: 10.20517/and.2022.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elucidating the pathogenic mechanisms of Alzheimer’s disease (AD) to identify therapeutic targets has been the focus of many decades of research. While deposition of extracellular amyloid-beta plaques and intraneuronal neurofibrillary tangles of hyperphosphorylated tau have historically been the two characteristic hallmarks of AD pathology, therapeutic strategies targeting these proteinopathies have not been successful in the clinics. Neuroinflammation has been gaining more attention as a therapeutic target because increasing evidence implicates neuroinflammation as a key factor in the early onset of AD disease progression. The peripheral immune response has emerged as an important contributor to the chronic neuroinflammation associated with AD pathophysiology. In this context, the plasminogen activator system (PAS), also referred to as the vasculature’s fibrinolytic system, is emerging as a potential factor in AD pathogenesis. Evolving evidence suggests that the PAS plays a role in linking chronic peripheral inflammatory conditions to neuroinflammation in the brain. While the PAS is better known for its peripheral functions, components of the PAS are expressed in the brain and have been demonstrated to alter neuroinflammation and blood-brain barrier (BBB) permeation. Here, we review plasmin-dependent and -independent mechanisms by which the PAS modulates the BBB in AD pathogenesis and discuss therapeutic implications of these observations.
Collapse
Affiliation(s)
- Mei-Yun Tang
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Fredric A Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.,Department of Neurology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
38
|
Stevenson TK, Moore SJ, Murphy GG, Lawrence DA. Tissue Plasminogen Activator in Central Nervous System Physiology and Pathology: From Synaptic Plasticity to Alzheimer's Disease. Semin Thromb Hemost 2021; 48:288-300. [DOI: 10.1055/s-0041-1740265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractTissue plasminogen activator's (tPA) fibrinolytic function in the vasculature is well-established. This specific role for tPA in the vasculature, however, contrasts with its pleiotropic activities in the central nervous system. Numerous physiological and pathological functions have been attributed to tPA in the central nervous system, including neurite outgrowth and regeneration; synaptic and spine plasticity; neurovascular coupling; neurodegeneration; microglial activation; and blood–brain barrier permeability. In addition, multiple substrates, both plasminogen-dependent and -independent, have been proposed to be responsible for tPA's action(s) in the central nervous system. This review aims to dissect a subset of these different functions and the different molecular mechanisms attributed to tPA in the context of learning and memory. We start from the original research that identified tPA as an immediate-early gene with a putative role in synaptic plasticity to what is currently known about tPA's role in a learning and memory disorder, Alzheimer's disease. We specifically focus on studies demonstrating tPA's involvement in the clearance of amyloid-β and neurovascular coupling. In addition, given that tPA has been shown to regulate blood–brain barrier permeability, which is perturbed in Alzheimer's disease, this review also discusses tPA-mediated vascular dysfunction and possible alternative mechanisms of action for tPA in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Tamara K. Stevenson
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shannon J. Moore
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Geoffrey G. Murphy
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel A. Lawrence
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
39
|
Tian Y, Zhan Y, Jiang Q, Lu W, Li X. Expression and function of PDGF-C in development and stem cells. Open Biol 2021; 11:210268. [PMID: 34847773 PMCID: PMC8633783 DOI: 10.1098/rsob.210268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Platelet-derived growth factor C (PDGF-C) is a relatively new member of the PDGF family, discovered nearly 20 years after the finding of platelet-derived growth factor A (PDGF-A) and platelet-derived growth factor B (PDGF-B). PDGF-C is generally expressed in most organs and cell types. Studies from the past 20 years have demonstrated critical roles of PDGF-C in numerous biological, physiological and pathological processes, such as development, angiogenesis, tumour growth, tissue remodelling, wound healing, atherosclerosis, fibrosis, stem/progenitor cell regulation and metabolism. Understanding PDGF-C expression and activities thus will be of great importance to various research disciplines. In this review, however, we mainly discuss the expression and functions of PDGF-C and its receptors in development and stem cells.
Collapse
Affiliation(s)
- Yi Tian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Ying Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Qin Jiang
- Ophthalmic Department, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| |
Collapse
|
40
|
Role of Na +/K +-ATPase in ischemic stroke: in-depth perspectives from physiology to pharmacology. J Mol Med (Berl) 2021; 100:395-410. [PMID: 34839371 DOI: 10.1007/s00109-021-02143-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
Na+/K+-ATPase (NKA) is a large transmembrane protein expressed in all cells. It is well studied for its ion exchanging function, which is indispensable for the maintenance of electrochemical gradients across the plasma membrane and herein neuronal excitability. The widely recognized pump function of NKA closely depends on its unique structure features and conformational changes upon binding of specific ions. Various Na+-dependent secondary transport systems are rigorously controlled by the ionic gradients generated by NKA and are essential for multiple physiological processes. In addition, roles of NKA as a signal transducer have also been unveiled nowadays. Plethora of signaling cascades are defined including Src-Ras-MAPK signaling, IP3R-mediated calcium oscillation, inflammation, and autophagy though most underlying mechanisms remain elusive. Ischemic stroke occurs when the blood flow carrying nutrients and oxygen into the brain is disrupted by blood clots, which is manifested by excitotoxicity, oxidative stress, inflammation, etc. The protective effect of NKA against ischemic stress is emerging gradually with the application of specific NKA inhibitor. However, NKA-related research is limited due to the opposite effects caused by NKA inhibitor at lower doses. The present review focuses on the recent progression involving different aspects about NKA in cellular homeostasis to present an in-depth understanding of this unique protein. Moreover, essential roles of NKA in ischemic pathology are discussed to provide a platform and bright future for the improvement in clinical research on ischemic stroke.
Collapse
|
41
|
Heparin and Arginine Based Plasmin Nanoformulation for Ischemic Stroke Therapy. Int J Mol Sci 2021; 22:ijms222111477. [PMID: 34768908 PMCID: PMC8584024 DOI: 10.3390/ijms222111477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/04/2022] Open
Abstract
Ischemic stroke is the most common type of stroke and thrombolytic therapy is the only approved treatment. However, current thrombolytic therapy with tissue plasminogen activator (tPA) is often hampered by the increased risk of hemorrhage. Plasmin, a direct fibrinolytic, has a significantly superior hemostatic safety profile; however, if injected intravenously it becomes rapidly inactivated by anti-plasmin. Nanoformulations have been shown to increase drug stability and half-life and hence could be applied to increase the plasmin therapeutic efficacy. Here in this paper, we report a novel heparin and arginine-based plasmin nanoformulation that exhibits increased plasmin stability and efficacy. In vitro studies revealed significant plasmin stability in the presence of anti-plasmin and efficient fibrinolytic activity. In addition, these particles showed no significant toxicity or oxidative stress effects in human brain microvascular endothelial cells, and no significant blood brain barrier permeability. Further, in a mouse photothrombotic stroke model, plasmin nanoparticles exhibited significant efficacy in reducing stroke volume without overt intracerebral hemorrhage (ICH) compared to free plasmin treatment. The study shows the potential of a plasmin nanoformulation in ischemic stroke therapy.
Collapse
|
42
|
Kwaan HC. Nonhematologic and Hematologic Factors in Spontaneous Intracerebral Hemorrhage. Semin Thromb Hemost 2021; 48:338-343. [PMID: 34644803 DOI: 10.1055/s-0041-1735897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Spontaneous intracerebral hemorrhage is defined as nontraumatic bleeding into the brain without vascular malformations or presence of tumor. It occurs in about a third of all strokes and has a high mortality and morbidity. Risk factors that determine the outcome are incompletely understood. Known factors include older age, male gender, Asian ethnicity, hypertension, and comorbidity such as inherited or acquired bleeding diathesis and use of antithrombotic drugs. Likewise, the clinical characteristics of the hematoma such as location and volume of the hematoma and other imaging features are also important. Hematoma extension or expansion is a complication with an unfavorable outcome. Recognition of risk factors for hematoma expansion and measures to prevent it, such as blood pressure lowering, will improve the outcome. Enhanced diagnostic methods, especially in imaging techniques developed over the past decade, have not only led to a better understanding of the pathophysiology of spontaneous intracerebral hemorrhage but also of the factors that influence hematoma expansion. An improved knowledge is essential to better management, minimizing hematoma expansion and leading to a healthier outcome.
Collapse
Affiliation(s)
- Hau C Kwaan
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
43
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
44
|
Wang R, Zhu Y, Liu Z, Chang L, Bai X, Kang L, Cao Y, Yang X, Yu H, Shi MJ, Hu Y, Fan W, Zhao BQ. Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 2021; 138:91-103. [PMID: 33881503 PMCID: PMC8288643 DOI: 10.1182/blood.2020008913] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
Intracerebral hemorrhage associated with thrombolytic therapy with tissue plasminogen activator (tPA) in acute ischemic stroke continues to present a major clinical problem. Here, we report that infusion of tPA resulted in a significant increase in markers of neutrophil extracellular traps (NETs) in the ischemic cortex and plasma of mice subjected to photothrombotic middle cerebral artery occlusion. Peptidylarginine deiminase 4 (PAD4), a critical enzyme for NET formation, is also significantly upregulated in the ischemic brains of tPA-treated mice. Blood-brain barrier (BBB) disruption after ischemic challenge in an in vitro model of BBB was exacerbated after exposure to NETs. Importantly, disruption of NETs by DNase I or inhibition of NET production by PAD4 deficiency restored tPA-induced loss of BBB integrity and consequently decreased tPA-associated brain hemorrhage after ischemic stroke. Furthermore, either DNase I or PAD4 deficiency reversed tPA-mediated upregulation of the DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). Administration of cGAMP after stroke abolished DNase I-mediated downregulation of the STING pathway and type 1 interferon production and blocked the antihemorrhagic effect of DNase I in tPA-treated mice. We also show that tPA-associated brain hemorrhage after ischemic stroke was significantly reduced in cGas-/- mice. Collectively, these findings demonstrate that NETs significantly contribute to tPA-induced BBB breakdown in the ischemic brain and suggest that targeting NETs or cGAS may ameliorate thrombolytic therapy for ischemic stroke by reducing tPA-associated hemorrhage.
Collapse
Affiliation(s)
- Ranran Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuanbo Zhu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhongwang Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Luping Chang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaofei Bai
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lijing Kang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yongliang Cao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xing Yang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Huilin Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mei-Juan Shi
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yue Hu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wenying Fan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bing-Qiao Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Xin J, Ma X, Chen W, Zhou W, Dong H, Wang Z, Ji F. Regulation of blood-brain barrier permeability by Salvinorin A via alleviating endoplasmic reticulum stress in brain endothelial cell after ischemia stroke. Neurochem Int 2021; 149:105093. [PMID: 34097989 DOI: 10.1016/j.neuint.2021.105093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Inhibition of endoplasmic reticulum (ER) stress reduces blood-brain barrier (BBB) injury caused by ischemia/reperfusion (I/R), with indistinct mechanisms. Salvinorin A (SA) relieves I/R-induced BBB leakage; however, whether it is related to the suppression of ER stress is yet unclear. To address this question, we have used both a rat model of middle cerebral artery occlusion (MCAO) and human brain microvascular endothelial cells (HBMECs) with oxygen-glucose deprivation (OGD). SA was injected by tail vein at the terminal of ischemia; Norbinaltorphimine (NB), a kappa opioid antagonist, was administered 30 min prior to SA; 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, was injected intraperitoneally after the onset of ischemia; adenylate-activated protein kinase (AMPK)-specific small interfering RNAs (siRNAs) were transfected to HBMECs before OGD. The assessment was as follows: infarct volume, brain water gain, Evans blue leakage, and modified neurological severity score (mNSS) after MCAO; HBMECs apoptosis rate and permeability, ER stress-related protein, and reactive oxygen species (ROS) and calcium levels after OGD. The results showed that SA significantly reduced the BBB leakage in vivo; SA relieved the apoptotic rates and ER stress in HBMECs, protected the permeability of HBMECs, and reduced ROS and calcium ion level after OGD. Moreover, the SA function was blocked by NB in vivo and AMPK- siRNAs in vitro. We conclude that SA mitigated BBB damage and HBMEC injury after I/R and alleviated ER stress in endothelial cells via AMPK pathway.
Collapse
Affiliation(s)
- Jihua Xin
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China; Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoxiao Ma
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weiying Chen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Haiping Dong
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhenhong Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Fuhai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
46
|
Wang H, Lv J, Zhao Y, Wei H, Zhang T, Yang H, Chen Z, Jiang J. Endothelial genetic deletion of CD147 induces changes in the dual function of the blood-brain barrier and is implicated in Alzheimer's disease. CNS Neurosci Ther 2021; 27:1048-1063. [PMID: 33987940 PMCID: PMC8339530 DOI: 10.1111/cns.13659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022] Open
Abstract
AIMS The blood-brain barrier (BBB) is a specialized and indispensable structure in brain blood vessels that is damaged during Alzheimer's disease (AD). CD147 is expressed on the BBB and deeply engaged in the AD pathological process. In this study, we aimed to provide a better understanding of the roles of CD147 in BBB function in health and neurodegenerative disease. METHODS AND RESULTS We measured CD147 expression in mouse brains and demonstrated that CD147 is exclusively expressed in brain endothelial cells (BECs), and its expression decreases with age. After constructing endothelial-specific CD147 knockout mice, we performed RNA-sequencing on BECs isolated from mice of different ages as well as a range of database analyses. We found that endothelial CD147 is essential for the dual functions of the BBB, including barrier maintenance and transporter regulation. This study also shows that CD147 plays a pivotal role in neurodegenerative diseases, particularly in AD. CONCLUSIONS Our findings suggested that targeting CD147 in BECs may represent a novel therapeutic strategy, which promoted the design of future experimental investigations and the mechanistic understanding of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi’anChina
| | - Jian‐Jun Lv
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi’anChina
| | - Yu Zhao
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi’anChina
| | - Hao‐Lin Wei
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi’anChina
| | - Tian‐Jiao Zhang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi’anChina
| | - Hai‐Jiao Yang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi’anChina
| | - Zhi‐Nan Chen
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi’anChina
| | - Jian‐Li Jiang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi’anChina
| |
Collapse
|
47
|
He Z, Wang G, Wu J, Tang Z, Luo M. The molecular mechanism of LRP1 in physiological vascular homeostasis and signal transduction pathways. Biomed Pharmacother 2021; 139:111667. [PMID: 34243608 DOI: 10.1016/j.biopha.2021.111667] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Interactions between vascular smooth muscle cells (VSMCs), endothelial cells (ECs), pericytes (PCs) and macrophages (MФ), the major components of blood vessels, play a crucial role in maintaining vascular structural and functional homeostasis. Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1), a transmembrane receptor protein belonging to the LDL receptor family, plays multifunctional roles in maintaining endocytosis, homeostasis, and signal transduction. Accumulating evidence suggests that LRP1 modulates vascular homeostasis mainly by regulating vasoactive substances and specific intracellular signaling pathways, including the plasminogen activator inhibitor 1 (PAI-1) signaling pathway, platelet-derived growth factor (PDGF) signaling pathway, transforming growth factor-β (TGF-β) signaling pathway and vascular endothelial growth factor (VEGF) signaling pathway. The aim of the present review is to focus on recent advances in the discovery and mechanism of vascular homeostasis regulated by LRP1-dependent signaling pathways. These recent discoveries expand our understanding of the mechanisms controlling LRP1 as a target for studies on vascular complications.
Collapse
Affiliation(s)
- Zhaohui He
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zonghao Tang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
48
|
Liu J, Liu L, Wang X, Jiang R, Bai Q, Wang G. Microglia: A Double-Edged Sword in Intracerebral Hemorrhage From Basic Mechanisms to Clinical Research. Front Immunol 2021; 12:675660. [PMID: 34025674 PMCID: PMC8135095 DOI: 10.3389/fimmu.2021.675660] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS). It is well established that microglia are activated and polarized to acquire different inflammatory phenotypes, either pro-inflammatory or anti-inflammatory phenotypes, which act as a critical component in the neuroinflammation following intracerebral hemorrhage (ICH). Microglia produce pro-inflammatory mediators at the early stages after ICH onset, anti-inflammatory microglia with neuroprotective effects appear to be suppressed. Previous research found that driving microglia towards an anti-inflammatory phenotype could restrict inflammation and engulf cellular debris. The principal objective of this review is to analyze the phenotypes and dynamic profiles of microglia as well as their shift in functional response following ICH. The results may further the understanding of the body's self-regulatory functions involving microglia following ICH. On this basis, suggestions for future clinical development and research are provided.
Collapse
Affiliation(s)
- Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Lirong Liu
- Department of Neurology, Shanxi Medical University, Taiyuan, China
| | - Xiaoyu Wang
- Xiangya Medical College of Central South University, Changsha, China
| | - Rundong Jiang
- Xiangya Medical College of Central South University, Changsha, China
| | - Qinqin Bai
- Department of Neurology, Shanxi Medical University, Taiyuan, China
| | - Gaiqing Wang
- Department of Neurology, Sanya Central Hospital (Hainan Third People's Hospital), Sanya, China
| |
Collapse
|
49
|
Zhou S, Liu S, Liu X, Zhuang W. Bioinformatics Gene Analysis of Potential Biomarkers and Therapeutic Targets for Unstable Atherosclerotic Plaque-Related Stroke. J Mol Neurosci 2021; 71:1031-1045. [PMID: 33155176 DOI: 10.1007/s12031-020-01725-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/30/2020] [Indexed: 02/05/2023]
Abstract
Atherosclerotic plaque instability is a major cause of ischemic stroke. Researchers must develop novel strategies for the detection and treatment of unstable atherosclerotic plaque (UAP)-related stroke. We aimed to identify potential biomarkers and therapeutic targets of UAP-related stroke. Differentially expressed genes (DEGs) of UAP, ischemic stroke and smoking were identified by microarray analyses from the Gene Expression Omnibus. Gene Ontology (GO) and pathway functional enrichment analyses of DEGs were performed to analyze plaque destabilization and ischemic stroke physiopathology. An integrative analysis of UAP, ischemic stroke and smoking DEGs and functional annotations was performed to identify the underlying physiopathology and hub genes in UAP-related stroke and the relationship with smoking. Online search databases were applied to confirm hub gene biofunctions and their relationships with atherosclerosis and cerebrovascular diseases. Following integrative analysis, 18 co-DEGs of UAP and ischemic stroke, including 17 upregulated and one downregulated, were identified. Inflammation, immunity, extracellular matrix degradation, blood coagulation, apoptosis and nerve degeneration were the primary physiopathological processes in UAP-related stroke. Hub genes included MMP9, ITGAM, CCR1, NCF2 and CD163, among which MMP9 and ITGAM were top 10 genes for both UAP and stroke. Smoking may upregulate MMP9, NCF2, C5AR1 and ANPEP to accelerate plaque destabilization and UAP-related stroke. MMP9, ITGAM, CCR1, NCF2, CD163, hsa-miR-3123 and hsa-miR-144-3p are potential diagnostic and prognostic biomarkers of UAP-related stroke. MMP9 and ITGAM are potential therapeutic targets of UAP-related stroke, which will contribute to the development of novel management strategies.
Collapse
Affiliation(s)
- Shaojiong Zhou
- Shantou University Medical College, Shantou, Guangdong, China
- Neurology Department, First Affiliated Hospital of Shantou University Medical College, No.57, ChangPing Road, JinPing District, ShanTou City, 515041, Guangdong Province, China
| | - Shuo Liu
- Neurology Department, First Affiliated Hospital of Shantou University Medical College, No.57, ChangPing Road, JinPing District, ShanTou City, 515041, Guangdong Province, China
| | - Xiaoqiang Liu
- Neurology Department, First Affiliated Hospital of Shantou University Medical College, No.57, ChangPing Road, JinPing District, ShanTou City, 515041, Guangdong Province, China
| | - Weiduan Zhuang
- Neurology Department, First Affiliated Hospital of Shantou University Medical College, No.57, ChangPing Road, JinPing District, ShanTou City, 515041, Guangdong Province, China.
| |
Collapse
|
50
|
Grigolashvili MA, Mustafina RM. [The role of the inflammatory process in the development of post-stroke cognitive impairment]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:16-21. [PMID: 33908227 DOI: 10.17116/jnevro202112103216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Post-stroke cognitive impairment (PCI) is a common complication of stroke. PCI in most cases is associated with an increased risk of progression to dementia, with a progression rate of 8-15% per year. When post-stroke cognitive impairment reaches dementia, patients lose independence, professional and social maladjustment occurs, which, in turn, significantly worsen the quality of life and reduce the rehabilitation potential. According to many experimental and clinical studies, the inflammatory process has an important role in the development of PCI. Several previous studies have looked at the association between inflammatory markers and PCI, with some results conflicting with specific biomarkers. Based on the results of studies, inflammatory markers such as IL-8, IL-12 and ESR were closely associated with PCI, high ESR values are associated with worse cognitive impairment, especially memory. The relationship was not confirmed between the markers IFN-gamma, TNF-α and PCI. With regard to IL-1β, IL-6, IL-10, CRP, the results obtained are not unambiguous. Thus, the inflammatory process in the development of PCI has an important role, including a series of complex reactions, the combined effect of which induces neuronal damage and loss of synapses that ultimately leads to cognitive impairment.
Collapse
Affiliation(s)
| | - R M Mustafina
- Medical University of Karaganda, Karaganda, Kazakhstan
| |
Collapse
|