1
|
Kieliszek AM, Mobilio D, Bassey-Archibong BI, Johnson JW, Piotrowski ML, de Araujo ED, Sedighi A, Aghaei N, Escudero L, Ang P, Gwynne WD, Zhang C, Quaile A, McKenna D, Subapanditha M, Tokar T, Vaseem Shaikh M, Zhai K, Chafe SC, Gunning PT, Montenegro-Burke JR, Venugopal C, Magolan J, Singh SK. De novo GTP synthesis is a metabolic vulnerability for the interception of brain metastases. Cell Rep Med 2024; 5:101755. [PMID: 39366383 PMCID: PMC11513854 DOI: 10.1016/j.xcrm.2024.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Patients with brain metastases (BM) face a 90% mortality rate within one year of diagnosis and the current standard of care is palliative. Targeting BM-initiating cells (BMICs) is a feasible strategy to treat BM, but druggable targets are limited. Here, we apply Connectivity Map analysis to lung-, breast-, and melanoma-pre-metastatic BMIC gene expression signatures and identify inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in the de novo GTP synthesis pathway, as a target for BM. We show that pharmacological and genetic perturbation of IMPDH attenuates BMIC proliferation in vitro and the formation of BM in vivo. Metabolomic analyses and CRISPR knockout studies confirm that de novo GTP synthesis is a potent metabolic vulnerability in BM. Overall, our work employs a phenotype-guided therapeutic strategy to uncover IMPDH as a relevant target for attenuating BM outgrowth, which may provide an alternative treatment strategy for patients who are otherwise limited to palliation.
Collapse
Affiliation(s)
- Agata M Kieliszek
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Daniel Mobilio
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Blessing I Bassey-Archibong
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Jarrod W Johnson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Mathew L Piotrowski
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Elvin D de Araujo
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Abootaleb Sedighi
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Nikoo Aghaei
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Laura Escudero
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Patrick Ang
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - William D Gwynne
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Cunjie Zhang
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andrew Quaile
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Dillon McKenna
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | | | - Tomas Tokar
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Muhammad Vaseem Shaikh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Kui Zhai
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Shawn C Chafe
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Patrick T Gunning
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON, Canada
| | - J Rafael Montenegro-Burke
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Guan C, Zhang X, Yu L. A Review of Recent Advances in the Molecular Mechanisms Underlying Brain Metastasis in Lung Cancer. Mol Cancer Ther 2024; 23:627-637. [PMID: 38123448 DOI: 10.1158/1535-7163.mct-23-0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Brain metastasis from lung cancer is a prevalent mode of treatment failure associated with a poor prognosis. The incidence of brain metastasis has recently shown a dramatic increase. The early detection and risk stratification of lung cancer-related brain metastasis would be highly advantageous for patients. However, our current knowledge and comprehension of the underlying mechanisms driving brain metastasis in lung cancer pose significant challenges. This review summarizes the mechanisms underlying brain metastasis, focusing on the intricate interplay between lung cancer-derived tumor cells and the unique characteristics of the brain, recent advancements in the identification of driver genes, concomitant genes, epigenetic features, including miRNAs and long noncoding RNAs, as well as the molecular characterization of brain metastasis originating from other organs, which may further enhance risk stratification and facilitate precise treatment strategies.
Collapse
Affiliation(s)
- Chao Guan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoye Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Wu Y, Yang F, Luo S, Li X, Gu Z, Fan R, Cao Y, Wang L, Song X. Single-cell RNA sequencing reveals epithelial cells driving brain metastasis in lung adenocarcinoma. iScience 2024; 27:109258. [PMID: 38433899 PMCID: PMC10905006 DOI: 10.1016/j.isci.2024.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Brain metastases (BM) of lung adenocarcinoma (LUAD) are the most common intracranial malignancy leading to death. However, the cellular origins and drivers of BM from LUAD have not been clarified. Cellular composition was characterized by single-cell sequencing analysis of primary lung adenocarcinoma (pLUAD), BM and lymph node metastasis (LNM) samples in GSE131907. Our study briefly analyzed the tumor microenvironment (TME), focusing on the role of epithelial cells (ECs) in BM. We have discovered a population of brain metastasis-associated epithelial cells (BMAECs) expressing SPP1, SAA1, and CDKN2A, and it has been observed that this population is mainly composed of aneuploid cells from pLUAD, playing a crucial role in brain metastasis. Our study concluded that both LNM and BM in LUAD originated from pLUAD lesions, but there is currently insufficient evidence to prove a direct association between BM lesions and LNM lesions, which provides inspiration for further investigation of the TME in BM.
Collapse
Affiliation(s)
- Yonghui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujun Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shilan Luo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhan Gu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Fan
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yajuan Cao
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lixin Wang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Huang Q, Liu L, Xiao D, Huang Z, Wang W, Zhai K, Fang X, Kim J, Liu J, Liang W, He J, Bao S. CD44 + lung cancer stem cell-derived pericyte-like cells cause brain metastases through GPR124-enhanced trans-endothelial migration. Cancer Cell 2023; 41:1621-1636.e8. [PMID: 37595587 DOI: 10.1016/j.ccell.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/07/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
Brain metastasis of lung cancer causes high mortality, but the exact mechanisms underlying the metastasis remain unclear. Here we report that vascular pericytes derived from CD44+ lung cancer stem cells (CSCs) in lung adenocarcinoma (ADC) potently cause brain metastases through the G-protein-coupled receptor 124 (GPR124)-enhanced trans-endothelial migration (TEM). CD44+ CSCs in perivascular niches generate the majority of vascular pericytes in lung ADC. CSC-derived pericyte-like cells (Cd-pericytes) exhibit remarkable TEM capacity to effectively intravasate into the vessel lumina, survive in the circulation, extravasate into the brain parenchyma, and then de-differentiate into tumorigenic CSCs to form metastases. Cd-pericytes uniquely express GPR124 that activates Wnt7-β-catenin signaling to enhance TEM capacity of Cd-pericytes for intravasation and extravasation, two critical steps during tumor metastasis. Furthermore, selective disruption of Cd-pericytes, GPR124, or the Wnt7-β-catenin signaling markedly reduces brain and liver metastases of lung ADC. Our findings uncover an unappreciated cellular and molecular paradigm driving tumor metastasis.
Collapse
Affiliation(s)
- Qian Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Liping Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Dakai Xiao
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Zhi Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Wenjun Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Kui Zhai
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaoguang Fang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jongmyung Kim
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - James Liu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Wenhua Liang
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, the State Key Laboratory of Respiratory Disease, and the National Clinical Research Centre for Respiratory Disease, Guangzhou 510120, China.
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Cancer Stem Cell Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
5
|
Qin L, Yu X, Xu C, Liu Y. Prognostic impact of metastatic patterns and treatment modalities on overall survival in lung squamous cell carcinoma: A population-based study. Medicine (Baltimore) 2023; 102:e34251. [PMID: 37478210 PMCID: PMC10662909 DOI: 10.1097/md.0000000000034251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023] Open
Abstract
This study aimed to investigate the impact of distinct metastasis patterns on the overall survival (OS) of individuals diagnosed with organ metastatic lung squamous cell carcinoma (LUSC). OS was calculated using the Kaplan-Meier method, and univariate and multivariate Cox regression analyses were conducted to further assess prognostic factors. A total of 36,025 cases meeting the specified criteria were extracted from the Surveillance, Epidemiology, and End Results database. Among these patients, 30.60% (11,023/36,025) were initially diagnosed at stage IV, and 22.03% (7936/36,025) of these individuals exhibited metastasis in at least 1 organ, including the liver, bone, lung, and brain. Among the 4 types of single metastasis, patients with bone metastasis had the lowest mean OS, at 9.438 months (95% CI: 8.684-10.192). Furthermore, among patients with dual-organ metastases, those with both brain and liver metastases had the shortest mean OS, at 5.523 months (95% CI: 3.762-7.285). Multivariate Cox regression analysis revealed that metastatic site is an independent prognostic factor for OS in patients with single and dual-organ metastases. Chemotherapy was beneficial for patients with single and multiple-organ metastases; although surgery was advantageous for those with single and dual-organ metastases, it did not affect the long-term prognosis of patients with triple organ metastases. Radiotherapy only conferred benefits to patients with single-organ metastasis. LUSC patients exhibit a high incidence of metastasis at the time of initial diagnosis, with significant differences in long-term survival among patients with different patterns of metastasis. Among single-organ metastasis cases, lung metastasis is the most frequent and is associated with the longest mean OS. Regarding treatment options, patients with single-organ metastasis can benefit from chemotherapy, surgery, and radiotherapy, and those with metastasis in 2 organs can benefit from chemotherapy and surgery. Patients with metastasis in more than 2 organs, however, can only benefit from chemotherapy. Understanding the variations in metastasis patterns assists in guiding pretreatment assessments and in determining appropriate therapeutic interventions for LUSC.
Collapse
Affiliation(s)
- Lang Qin
- Department of Radiotherapy, Taixing Clinical College of Bengbu Medical College, Bengbu, China
| | - Xiangtian Yu
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chuang Xu
- Department of Orthopedics, Taixing Clinical College of Bengbu Medical College, Bengbu, China
| | - Yangchen Liu
- Department of Radiotherapy, Taixing Clinical College of Bengbu Medical College, Bengbu, China
| |
Collapse
|
6
|
Zhu Y, Cui Y, Zheng X, Zhao Y, Sun G. Small-cell lung cancer brain metastasis: From molecular mechanisms to diagnosis and treatment. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166557. [PMID: 36162624 DOI: 10.1016/j.bbadis.2022.166557] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
Lung cancer is the most malignant human cancer worldwide, also with the highest incidence rate. However, small-cell lung cancer (SCLC) accounts for 14 % of all lung cancer cases. Approximately 10 % of patients with SCLC have brain metastasis at the time of diagnosis, which is the leading cause of death of patients with SCLC worldwide. The median overall survival is only 4.9 months, and a long-tern cure exists for patients with SCLC brain metastasis due to limited common therapeutic options. Recent studies have enhanced our understanding of the molecular mechanisms leading to meningeal metastasis, and multimodality treatments have brought new hopes for a better cure for the disease. This review aimed to offer an insight into the cellular processes of different metastatic stages of SCLC revealed by the established animal models, and into the major diagnostic methods of SCLC. Additionally, it provided in-depth information on the recent advances in SCLC treatments, and highlighted several new models and biomarkers with promises to improve the prognosis of SCLC.
Collapse
Affiliation(s)
- Yingze Zhu
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Yishuang Cui
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Xuan Zheng
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Yue Zhao
- Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.
| | - Guogui Sun
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China.
| |
Collapse
|
7
|
孙 爽, 门 玉, 惠 周. [Research Progress on Risk Factors of Brain Metastasis in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:193-200. [PMID: 35340162 PMCID: PMC8976204 DOI: 10.3779/j.issn.1009-3419.2022.101.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/05/2022]
Abstract
Brain metastasis of non-small cell lung cancer (NSCLC) is a common treatment failure mode, and the median survival time of NSCLC patients with brain metastasis is only 1 mon-2 mon. Prophylactic cranial irradiation (PCI) can delay the occurrence of brain metastasis, but the survival benefits of NSCLC patients are still controversial. It is particularly important to identify the patients who are most likely to benefit from PCI. This article reviews the high risk factors of brain metastasis in NSCLC.
.
Collapse
Affiliation(s)
- 爽 孙
- 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院,北京协和医学院肿瘤医院放疗科Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - 玉 门
- 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院,北京协和医学院肿瘤医院放疗科Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院,特需医疗部Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - 周光 惠
- 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院,北京协和医学院肿瘤医院放疗科Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- 100021 北京,国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院,特需医疗部Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
8
|
Váncza L, Tátrai P, Reszegi A, Baghy K, Kovalszky I. SPOCK1 with unexpected function. The start of a new career. Am J Physiol Cell Physiol 2022; 322:C688-C693. [PMID: 35235422 DOI: 10.1152/ajpcell.00033.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SPOCK1, 2 and 3 are considered as matricellular proteoglycans without structural role. Their functions are only partly elucidated. SPOCK1 was detected in the brain as a member of the neural synapses, then in the neuromuscular junctions. It plays a role in the regulation of blood-brain barrier. Its best characterized activity was its oncogenic potential discovered in 2012. Its deleterious effect on tumor progression was detected on 36 different types of tumors by the end of 2020. However, its mode of actions is still not completely understood. Furthermore, even less was discovered about its physiological function. The fact that it was found to localize in the mitochondria and interfered with the lipid metabolism indicated, that the full discovery of SPOCK1 still waiting for us.
Collapse
Affiliation(s)
- Lóránd Váncza
- Semmelweis University 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | | | - Andrea Reszegi
- Semmelweis University 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - Kornelia Baghy
- Semmelweis University 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - Ilona Kovalszky
- Semmelweis University 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| |
Collapse
|
9
|
Váncza L, Karászi K, Péterfia B, Turiák L, Dezső K, Sebestyén A, Reszegi A, Petővári G, Kiss A, Schaff Z, Baghy K, Kovalszky I. SPOCK1 Promotes the Development of Hepatocellular Carcinoma. Front Oncol 2022; 12:819883. [PMID: 35186754 PMCID: PMC8853618 DOI: 10.3389/fonc.2022.819883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix proteoglycan SPOCK1 is increasingly recognized as a contributor to the development and progression of cancers. Here, we study how SPOCK1, which is present in non-tumorous hepatocytes at low concentrations, promotes the development and progression of malignant hepatocellular tumors. Although SPOCK1 is an extracellular matrix proteoglycan, its concentration increases in the cytoplasm of hepatocytes starting with very low expression in the normal cells and then appearing in much higher quantities in cells of cirrhotic human liver and hepatocellular carcinoma. This observation is similar to that observed after diethylnitrosamine induction of mouse hepatocarcinogenesis. Furthermore, syndecan-1, the major proteoglycan of the liver, and SPOCK1 are in inverse correlation in the course of these events. In hepatoma cell lines, the cytoplasmic SPOCK1 colocalized with mitochondrial markers, such as MitoTracker and TOMM20, a characteristic protein of the outer membrane of the mitochondrion and could be detected in the cell nucleus. SPOCK1 downregulation of hepatoma cell lines by siRNA inhibited cell proliferation, upregulated p21 and p27, and interfered with pAkt and CDK4 expression. A tyrosine kinase array revealed that inhibition of SPOCK1 in the liver cancer cells altered MAPK signaling and downregulated several members of the Sarc family, all related to the aggressivity of the hepatoma cell lines. These studies support the idea that SPOCK1 enhancement in the liver is an active contributor to human and rodent hepatocarcinogenesis and cancer progression. However, its mitochondrial localization raises the possibility that it has a currently unidentified physiological function in normal hepatocytes.
Collapse
Affiliation(s)
- Lóránd Váncza
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Karászi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Péterfia
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Katalin Dezső
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Sebestyén
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andrea Reszegi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Petővári
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Kiss
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Schaff
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- *Correspondence: Ilona Kovalszky, ;
| |
Collapse
|
10
|
Xu Y, Huang Z, Yu X, Chen K, Fan Y. Integrated genomic and DNA methylation analysis of patients with advanced non-small cell lung cancer with brain metastases. Mol Brain 2021; 14:176. [PMID: 34952628 PMCID: PMC8710019 DOI: 10.1186/s13041-021-00886-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brain metastasis is a common and lethal complication of non-small cell lung cancer (NSCLC). It is mostly diagnosed only after symptoms develop, at which point very few treatment options are available. Therefore, patients who have an increased risk of developing brain metastasis need to be identified early. Our study aimed to identify genomic and epigenomic biomarkers for predicting brain metastasis risk in NSCLC patients. METHODS Paired primary lung tumor tissues and either brain metastatic tissues or cerebrospinal fluid (CSF) samples were collected from 29 patients with treatment-naïve advanced NSCLC with central nervous system (CNS) metastases. A control group comprising 31 patients with advanced NSCLC who died without ever developing CNS metastasis was also included. Somatic mutations and DNA methylation levels were examined through capture-based targeted sequencing with a 520-gene panel and targeted bisulfite sequencing with an 80,672 CpG panel. RESULTS Compared to primary lung lesions, brain metastatic tissues harbored numerous unique copy number variations. The tumor mutational burden was comparable between brain metastatic tissue (P = 0.168)/CSF (P = 0.445) and their paired primary lung tumor samples. Kelch-like ECH-associated protein (KEAP1) mutations were detected in primary lung tumor and brain metastatic tissue samples of patients with brain metastasis. KEAP1 mutation rate was significantly higher in patients with brain metastasis than those without (P = 0.031). DNA methylation analysis revealed 15 differentially methylated blocks between primary lung tumors of patients with and without CNS metastasis. A brain metastasis risk prediction model based on these 15 differentially methylated blocks had an area under the curve of 0.94, with 87.1% sensitivity and 82.8% specificity. CONCLUSIONS Our analyses revealed 15 differentially methylated blocks in primary lung tumor tissues, which can differentiate patients with and without CNS metastasis. These differentially methylated blocks may serve as predictive biomarkers for the risk of developing CNS metastasis in NSCLC. Additional larger studies are needed to validate the predictive value of these markers.
Collapse
Affiliation(s)
- Yanjun Xu
- Department of Medical Thoracic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, China
| | - Zhiyu Huang
- Department of Medical Thoracic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, China
| | - Xiaoqing Yu
- Department of Medical Thoracic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, China
| | - Kaiyan Chen
- Department of Medical Thoracic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, China
| | - Yun Fan
- Department of Medical Thoracic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, China.
| |
Collapse
|
11
|
Singh M, Dahal A, Brastianos PK. Preclinical Solid Tumor Models to Study Novel Therapeutics in Brain Metastases. Curr Protoc 2021; 1:e284. [PMID: 34762346 PMCID: PMC8597918 DOI: 10.1002/cpz1.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metastases are the most common malignancy of the adult central nervous system and are becoming an increasingly troubling problem in oncology largely due to the lack of successful therapeutic options. The limited selection of treatments is a result of the currently poor understanding of the biological mechanisms of metastatic development, which in turn is difficult to achieve because of limited preclinical models that can accurately represent the clinical progression of metastasis. Described in this article are in vitro and in vivo model systems that are used to enhance the understanding of metastasis and to identify new therapies for the treatment of brain metastasis. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Mohini Singh
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ashish Dahal
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
12
|
A tumor microenvironment-related mRNA-ncRNA signature for prediction early relapse and chemotherapeutic sensitivity in early-stage lung adenocarcinoma. J Cancer Res Clin Oncol 2021; 147:3195-3209. [PMID: 34291356 DOI: 10.1007/s00432-021-03718-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Postoperative early relapse of early-stage lung adenocarcinoma is implicated in poor prognosis. The purpose of our study was to develop an integrated mRNA and non-coding RNA (ncRNA) signature to identify patients at high risk of early relapse in stage I-II lung adenocarcinoma who underwent complete resection. METHODS Early-stage lung adenocarcinoma data from Gene Expression Omnibus database were divided into training set and testing set. Propensity score matching analysis was performed between patients in early relapse group and long-term nonrelapse group from training set. Transcriptome analysis, random survival forest and LASSO Cox regression model were used to build an early relapse-related multigene signature. The robustness of the signature was evaluated in testing set and RNA-Seq dataset from The Cancer Genome Atlas (TCGA). The chemotherapy sensitivity, tumor microenvironment and mutation landscape related to the signature were explored using bioinformatics analysis. RESULTS Twelve mRNAs and one ncRNA were selected. The multigene signature achieved a strong power for early relapse prediction in training set (HR 3.19, 95% CI 2.16-4.72, P < 0.001) and testing set (HR 2.91, 95% CI 1.63-5.20, P = 0.002). Decision curve analyses revealed that the signature had a good clinical usefulness. Groups divided by the signature exhibited different chemotherapy sensitivity, tumor microenvironment characteristics and mutation landscapes. CONCLUSIONS Our results indicated that the integrated mRNA-ncRNA signature may be an innovative biomarker to predict early relapse of early-stage lung adenocarcinoma, and may provide more effective treatment strategies.
Collapse
|
13
|
Han J, Rong Y, Gao X. Multiomic analysis of the function of SPOCK1 across cancers: an integrated bioinformatics approach. J Int Med Res 2021; 49:300060520962659. [PMID: 34156309 PMCID: PMC8236807 DOI: 10.1177/0300060520962659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate SPARC (osteonectin), cwcv and kazal like domains proteoglycan 1 (SPOCK1) gene expression across The Cancer Genome Atlas (TCGA) cancers, both in cancer versus normal tissues and in different stages across the cancer types. Methods This integrated bioinformatics study used data from several bioinformatics databases (Cancer Cell Line Encyclopedia, Genotype-Tissue Expression, TCGA, Tumor Immune Estimation Resource [TIMER]) to define the expression pattern of the SPOCK1 gene. A survival analysis was undertaken across the cancers. The search tool for retrieval of interacting genes (STRING) database was used to identify proteins that interacted with SPOCK1. Gene Set Enrichment Analysis was conducted to determine pathway enrichment. The TIMER database was used to explore the correlation between SPOCK1 and immune cell infiltration. Results This multiomic analysis showed that the SPOCK1 gene was expressed differently between normal tissues and tumours in several cancers and that it was involved in cancer progression. The overexpression of the SPOCK1 gene was associated with poor clinical outcomes. Analysis of gene expression and tumour-infiltrating immune cells showed that SPOCK1 correlated with several immune cells across cancers. Conclusions This research showed that SPOCK1 might serve as a new target for several cancer therapies in the future.
Collapse
Affiliation(s)
- Jie Han
- Department of Hepatology, Qilu Hospital, Shandong University, Shandong, China
| | - Yihui Rong
- Infection Disease Center of Peking University International Hospital, Beijing, China
| | - Xudong Gao
- Infection Disease Center of Peking University International Hospital, Beijing, China
| |
Collapse
|
14
|
Xie S, Wu Z, Qi Y, Wu B, Zhu X. The metastasizing mechanisms of lung cancer: Recent advances and therapeutic challenges. Biomed Pharmacother 2021; 138:111450. [PMID: 33690088 DOI: 10.1016/j.biopha.2021.111450] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the common malignant tumors that threaten human life with serious incidence and high mortality. According to the histopathological characteristics, lung cancer is mainly divided into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for about 80-85% of lung cancers. In fact, lung cancer metastasis is a major cause of treatment failure in clinical patients. The underlying reason is that the mechanisms of lung cancer metastasis are still not fully understood. The metastasis of lung cancer cells is controlled by many factors, including the interaction of various components in the lung cancer microenvironment, epithelial-mesenchymal transition (EMT) transformation, and metastasis of cancer cells through blood vessels and lymphatics. The molecular relationships are even more intricate. Further study on the mechanisms of lung cancer metastasis and in search of effective therapeutic targets can bring more reference directions for clinical drug research and development. This paper focuses on the factors affecting lung cancer metastasis and connects with related molecular mechanisms of the lung cancer metastasis and mechanisms of lung cancer to specific organs, which mainly reviews the latest research progress of NSCLC metastasis. Besides, in this paper, experimental models of lung cancer and metastasis, mechanisms in SCLC transfer and the challenges about clinical management of lung cancer are also discussed. The review is intended to provide reference value for the future research in this field and promising treatment clues for clinical patients.
Collapse
Affiliation(s)
- Shimin Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zhengguo Wu
- Department of Thoracic Surgery, Yantian District People's Hospital, Shenzhen, China
| | - Yi Qi
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Binhua Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
15
|
Shan Z, Wu W, Yan X, Yang Y, Luo D, Liu Q, Li X, Goel A, Ma Y. A novel epithelial-mesenchymal transition molecular signature predicts the oncological outcomes in colorectal cancer. J Cell Mol Med 2021; 25:3194-3204. [PMID: 33660944 PMCID: PMC8034457 DOI: 10.1111/jcmm.16387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Epithelial‐mesenchymal transition (EMT), a biological process involving the transformation of epithelial cells into mesenchymal cells, promotes tumour initiation and metastasis. The aim of this study was to construct an EMT molecular signature for predicting colorectal cancer (CRC) prognosis and evaluate the efficacy of the model. The risk scoring system, constructed by log‐rank test and multivariate Cox regression analysis according to EMT‐related gene expression in CRC patients from TCGA database, demonstrated the highest correlation with prognosis compared with other parameters in CRC patients. The risk scores were significantly correlated with more lymph node metastasis, distal metastasis and advanced clinical stage of CRC. The model was further successfully validated in two independent external cohorts from GEO database. Furthermore, we developed a nomogram to integrate the EMT signature with the pathological stage of CRC, which was found to perform well in predicting the overall survival. Additionally, this risk scoring model was found to be associated with immune cell infiltration, implying a potential role of EMT involved in immunity regulation in tumour microenvironment. Taken together, our novel EMT molecular model may be useful in identifying high‐risk patients who need an intensive follow‐up and more aggressive therapy, finally contributing to more precise individualized therapeutic strategies.
Collapse
Affiliation(s)
- Zezhi Shan
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Wu
- Department of Surgery, Shanghai Pudong Hospital (Fudan University Pudong Medical Center), Shanghai, China
| | - Xuebing Yan
- Department of Oncology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Kamer I, Steuerman Y, Daniel-Meshulam I, Perry G, Izraeli S, Perelman M, Golan N, Simansky D, Barshack I, Ben Nun A, Gottfried T, Onn A, Gat-Viks I, Bar J. Predicting brain metastasis in early stage non-small cell lung cancer patients by gene expression profiling. Transl Lung Cancer Res 2020; 9:682-692. [PMID: 32676330 PMCID: PMC7354143 DOI: 10.21037/tlcr-19-477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/17/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common cause of cancer-death due to early metastatic spread, in many cases primarily to the brain. Organ-specific pattern of spread of disease might be driven by the activity of a specific signaling pathway within the primary tumors. We aimed to identify an expression signature of genes and the relevant signaling associated with the development of brain metastasis (BM) after surgical resection of NSCLC. METHODS Rapidly frozen NSCLC surgical specimens were procured from tumor banks. RNA was extracted and analyzed by RNA-sequencing (Illumina HiSeq 2500). Clinical parameters and gene expression were examined for differentiating between patients with BM, patients with metastases to sites other than brain, and patients who did not develop metastatic disease at a clinically significant follow up. Principal component analysis and pathway enrichments studies were done. RESULTS A total of 91 patients were included in this study, 32 of which developed BM. Stage of disease at diagnosis (P=0.004) and level of differentiation (P=0.007) were significantly different between BM and control group. We identified a set of 22 genes which correlated specifically with BM, and not with metastasis to other sites. This set achieved 93.4% accuracy (95% CI: 86.2-97.5%), 96.6% specificity and 87.5% sensitivity of correctly identifying BM patients in a leave-one-out internal validation analysis. The oxidative phosphorylation pathway was strongly correlated with BM risk. CONCLUSIONS Expression level of a small set of genes from primary tumors was found to predict BM development, distinctly from metastasis to other organs. These genes and the correlated oxidative phosphorylation pathway require further validation as potentially clinically useful predictors of BM and possibly as novel therapeutic targets for BM prevention.
Collapse
Affiliation(s)
- Iris Kamer
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Yael Steuerman
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Gili Perry
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Shai Izraeli
- The Pediatric Research Institute, Safra Children Hospital, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Perelman
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - Nir Golan
- Thoracic Surgery Department, Sheba Medical Center, Tel Hashomer, Israel
| | - David Simansky
- Thoracic Surgery Department, Sheba Medical Center, Tel Hashomer, Israel
| | - Iris Barshack
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - Alon Ben Nun
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Thoracic Surgery Department, Sheba Medical Center, Tel Hashomer, Israel
| | - Teodor Gottfried
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Amir Onn
- Institute of Pulmonology, Sheba Medical Center, Tel Hashomer, Israel
| | - Irit Gat-Viks
- Department of Cell Research and Immunology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jair Bar
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Sato M. Phenotypic screening using large-scale genomic libraries to identify drug targets for the treatment of cancer. Oncol Lett 2020; 19:3617-3626. [PMID: 32391087 PMCID: PMC7204489 DOI: 10.3892/ol.2020.11512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
During malignant progression to overt cancer cells, normal cells accumulate multiple genetic and non-genetic changes, which result in the acquisition of various oncogenic properties, such as uncontrolled proliferation, drug resistance, invasiveness, anoikis-resistance, the ability to bypass oncogene-induced senescence and cancer stemness. To identify potential novel drug targets contributing to these malignant phenotypes, researchers have performed large-scale genomic screening using various in vitro and in vivo screening models and identified numerous promising cancer drug target genes. However, there are issues with these identified genes, such as low reproducibility between different datasets. In the present study, the recent advances in the functional screening for identification of cancer drug target genes are summarized, and current issues and future perspectives are discussed.
Collapse
Affiliation(s)
- Mitsuo Sato
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi 461-8673, Japan
| |
Collapse
|
18
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
19
|
Abstract
Introduction: Metastatic cancers are extremely difficult to treat, and account for the vast majority of cancer-related deaths. The dissemination of tumor cells to distant sites is highly dynamic, asynchronous, and involves both tumor and host intrinsic factors. Effective therapeutic targets to block metastasis will need to disrupt key pathways that are required for multiple stages of metastasis.Areas covered: This review discusses the heterogeneity of cancers and metastasis, with an emphasis on motility as a key driver trait of metastasis. Recent metastatic cancer studies that identified either host or cancer cell intrinsic factors important for metastasis, using single gene-deficient animal models or 3D intravital imaging of avian embryo models, are also discussed. Potential metastatic blocking targets are listed as they relate to metastatic cancer therapy.Expert opinion: The development of metastatic disease is a complex interplay of genetic and epigenetic factors from the host and cancer cells acting in a patient-specific manner. Inhibiting key driver traits of metastasis should yield survival benefit at any stage of the disease, and we look forward to the next generation of personalized medicines for cancer therapy that target cancer cell motility for increased therapeutic efficacy.
Collapse
Affiliation(s)
| | - Perrin H Beatty
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Canada
| |
Collapse
|
20
|
Zhang Q, Thakur C, Fu Y, Bi Z, Wadgaonkar P, Xu L, Liu Z, Liu W, Wang J, Kidder BL, Chen F. Mdig promotes oncogenic gene expression through antagonizing repressive histone methylation markers. Theranostics 2020; 10:602-614. [PMID: 31903140 PMCID: PMC6929976 DOI: 10.7150/thno.36220] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
The mineral dust-induced gene (mdig) is overexpressed in a number of human cancers, suggesting critical roles of this gene played on the pathogenesis of cancers. Unlike several other JmjC-domain containing proteins that exhibit histone demethylase activity, it remains enigmatic whether mdig is involved in the demethylation processes of the histone proteins. Methods: To provide direct evidence suggesting contribution of mdig to the demethylation of histone proteins, we recently examined the histone methylation profiles in human bronchial epithelial cells as well as two cancer cell lines with mdig knockout through CRISPR-Cas9 gene editing. Results: Global histone methylation analysis revealed a pronounced increase of the repressive histone trimethylation in three different cell types with mdig depletion, including trimethylation of lysines 9 and 27 on histone H3 (H3K9me3, H3K27me3) and trimethylation of lysine 20 of histone H4 (H4K20me3). Importantly, data from both ChIP-seq and RNA-seq suggested that genetic disruption of mdig enriches repressive histone trimethylation and inhibits expression of target genes in the oncogenic pathways of cell growth, stemness of the cells, tissue fibrosis, and cell motility. Conclusion: Taken together, our study provides the first insight into the molecular effects of mdig as an antagonist for repressive histone methylation markers and suggests that targeting mdig may represent a new area to explore in cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yao Fu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhuoyue Bi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Avenue, West Lafayette, IN 47907, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Avenue, West Lafayette, IN 47907, USA
- Department of Pharmacology, School of Medicine, Wayne State University, 540 E. Canfield Street, Detroit, MI 48201, USA
| | - Jian Wang
- Department of Pathology, School of Medicine, Wayne State University, 540 E. Canfield Street, Detroit, MI 48201, USA
| | - Benjamin L. Kidder
- Department of Oncology and the Karmanos Cancer Institute, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- Department of Oncology and the Karmanos Cancer Institute, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA
| |
Collapse
|
21
|
Sundstrøm T, Prestegarden L, Azuaje F, Aasen SN, Røsland GV, Varughese JK, Bahador M, Bernatz S, Braun Y, Harter PN, Skaftnesmo KO, Ingham ES, Mahakian LM, Tam S, Tepper CG, Petersen K, Ferrara KW, Tronstad KJ, Lund-Johansen M, Beschorner R, Bjerkvig R, Thorsen F. Inhibition of mitochondrial respiration prevents BRAF-mutant melanoma brain metastasis. Acta Neuropathol Commun 2019; 7:55. [PMID: 30971321 PMCID: PMC6456988 DOI: 10.1186/s40478-019-0712-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/27/2019] [Indexed: 01/12/2023] Open
Abstract
Melanoma patients carry a high risk of developing brain metastases, and improvements in survival are still measured in weeks or months. Durable disease control within the brain is impeded by poor drug penetration across the blood-brain barrier, as well as intrinsic and acquired drug resistance. Augmented mitochondrial respiration is a key resistance mechanism in BRAF-mutant melanomas but, as we show in this study, this dependence on mitochondrial respiration may also be exploited therapeutically. We first used high-throughput pharmacogenomic profiling to identify potentially repurposable compounds against BRAF-mutant melanoma brain metastases. One of the compounds identified was β-sitosterol, a well-tolerated and brain-penetrable phytosterol. Here we show that β-sitosterol attenuates melanoma cell growth in vitro and also inhibits brain metastasis formation in vivo. Functional analyses indicated that the therapeutic potential of β-sitosterol was linked to mitochondrial interference. Mechanistically, β-sitosterol effectively reduced mitochondrial respiratory capacity, mediated by an inhibition of mitochondrial complex I. The net result of this action was increased oxidative stress that led to apoptosis. This effect was only seen in tumor cells, and not in normal cells. Large-scale analyses of human melanoma brain metastases indicated a significant role of mitochondrial complex I compared to brain metastases from other cancers. Finally, we observed completely abrogated BRAF inhibitor resistance when vemurafenib was combined with either β-sitosterol or a functional knockdown of mitochondrial complex I. In conclusion, based on its favorable tolerability, excellent brain bioavailability, and capacity to inhibit mitochondrial respiration, β-sitosterol represents a promising adjuvant to BRAF inhibitor therapy in patients with, or at risk for, melanoma brain metastases.
Collapse
|
22
|
Su H, Lin Z, Peng W, Hu Z. Identification of potential biomarkers of lung adenocarcinoma brain metastases via microarray analysis of cDNA expression profiles. Oncol Lett 2018; 17:2228-2236. [PMID: 30675288 PMCID: PMC6341808 DOI: 10.3892/ol.2018.9829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
Brain metastases originating from lung adenocarcinoma (LAD) occur frequently. The aim of the current study was to assess potential biomarkers for the prognosis of lung adenocarcinoma brain metastasis (LAD-BM) through the analysis of gene expression microarrays. The current study downloaded two gene expression datasets, GSE14108 and GSE10245, from the Gene Expression Omnibus database. From GSE14108 and GSE10245, 19 LAD-BM samples and 40 primary LAD samples were selected for analysis. To identify the differentially expressed genes (DEGs), the current study compared the two sample groups, using the limma R package. Subsequently, pathway enrichment analysis was conducted using the Cluster Profiler R package, and the construction of the protein-protein interaction (PPI) network was executed utilizing the Search Tool for the Retrieval of Interacting Genes database. The microRNA-target network was built using the TargetScore R package. Then, these networks were established and visualized using Cytoscape software. An array of 463 DEGs was identified in the LAD-BM samples, including 256 upregulated and 207 downregulated genes. Based on functional term enrichment analysis using the Gene Ontology database and signaling pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes database, it was identified that the overlapping DEGs were primarily involved in chemokine-associated signal transduction, which may mediate lung cancer cell metastasis to the brain. Chemokine ligand 2, lysozyme, matrix metalloproteinase-2 (MMP-2), lysyl oxidase (LOX) and granzyme B were identified as potential biomarkers according to a topological analysis of the PPI networks. Two notable nodes, MMP-2 and LOX, appeared in the PPI network and were key points in the microRNA-target network, as they were regulated by hsa-let-7d. Many DEGs and microRNAs were regarded as prognostic biomarkers for lung adenocarcinoma metastasis in the current study. These DEGs were primarily associated with chemokine-mediated signaling pathways. In addition, MMP-2 and LOX were predicted to be targets of hsa-let-7d.
Collapse
Affiliation(s)
- Haiyang Su
- Department of Neurosurgery, Peking University Ninth School of Clinical Medicine, Beijing 100038, P.R. China
| | - Zhenyang Lin
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Weicheng Peng
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Zhiqiang Hu
- Department of Neurosurgery, Peking University Ninth School of Clinical Medicine, Beijing 100038, P.R. China
| |
Collapse
|
23
|
Zhuang J, Wu Y, Chen L, Liang S, Wu M, Zhou L, Fan C, Zhang Y. Single-Cell Mobility Analysis of Metastatic Breast Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1801158. [PMID: 30581709 PMCID: PMC6299679 DOI: 10.1002/advs.201801158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/26/2018] [Indexed: 05/03/2023]
Abstract
Efforts have been taken to enhance the study of single-cells, however, the task remains challenging because most previous investigations cannot exclude the interactions between single cells or separately retrieved cells with specificity for further analyses. Here, a single-cell mobility analysis platform (SCM-Chip) is developed that can not only real-time monitor single-cell migration in independent niches but can also selectively recover target cells one by one. The design of each channel with a single-cell capture unit and an outlet enables the system to place single cells in different isolated niches with fluidic capture and to respectively collect target cells based on mobilities. SCM-Chip characterization of breast cancer cells reveals the presence of high- and low-migratory populations. Whole-cell transcriptome analysis establishes that monocyte chemotactic protein induced protein 1 (MCPIP1) is related with cell mobility; cells with a high expression of MCPIP1 exhibit low mobility in vitro and metastasis in vivo. The SCM platform provides a generic tool for accurate single-cell isolation and differentiation that can be readily adapted for the study of cancer and drug development.
Collapse
Affiliation(s)
- Jialang Zhuang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Yongjian Wu
- Department of ImmunologyZhongshan School of MedicineSun Yat‐sen University74 Zhongshan 2nd RoadGuangzhou510080P. R. China
| | - Liang Chen
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Siping Liang
- Department of ImmunologyZhongshan School of MedicineSun Yat‐sen University74 Zhongshan 2nd RoadGuangzhou510080P. R. China
| | - Minhao Wu
- Department of ImmunologyZhongshan School of MedicineSun Yat‐sen University74 Zhongshan 2nd RoadGuangzhou510080P. R. China
| | - Ledu Zhou
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Chunhai Fan
- Laboratory of Physical BiologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800P. R. China
| | - Yuanqing Zhang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006P. R. China
| |
Collapse
|
24
|
Singh M, Venugopal C, Tokar T, McFarlane N, Subapanditha MK, Qazi M, Bakhshinyan D, Vora P, Murty NK, Jurisica I, Singh SK. Therapeutic Targeting of the Premetastatic Stage in Human Lung-to-Brain Metastasis. Cancer Res 2018; 78:5124-5134. [PMID: 29986997 DOI: 10.1158/0008-5472.can-18-1022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/29/2018] [Accepted: 06/29/2018] [Indexed: 11/16/2022]
Abstract
Brain metastases (BM) result from the spread of primary tumors to the brain and are a leading cause of cancer mortality in adults. Secondary tissue colonization remains the main bottleneck in metastatic development, yet this "premetastatic" stage of the metastatic cascade, when primary tumor cells cross the blood-brain barrier and seed the brain before initiating a secondary tumor, remains poorly characterized. Current studies rely on specimens from fully developed macrometastases to identify therapeutic options in cancer treatment, overlooking the potentially more treatable "premetastatic" phase when colonizing cancer cells could be targeted before they initiate the secondary brain tumor. Here we use our established brain metastasis initiating cell (BMIC) models and gene expression analyses to characterize premetastasis in human lung-to-BM. Premetastatic BMIC engaged invasive and epithelial developmental mechanisms while simultaneously impeding proliferation and apoptosis. We identified the dopamine agonist apomorphine to be a potential premetastasis-targeting drug. In vivo treatment with apomorphine prevented BM formation, potentially by targeting premetastasis-associated genes KIF16B, SEPW1, and TESK2 Low expression of these genes was associated with poor survival of patients with lung adenocarcinoma. These results illuminate the cellular and molecular dynamics of premetastasis, which is subclinical and currently impossible to identify or interrogate in human patients with BM. These data present several novel therapeutic targets and associated pathways to prevent BM initiation.Significance: These findings unveil molecular features of the premetastatic stage of lung-to-brain metastases and offer a potential therapeutic strategy to prevent brain metastases. Cancer Res; 78(17); 5124-34. ©2018 AACR.
Collapse
Affiliation(s)
- Mohini Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Chitra Venugopal
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Tomas Tokar
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nicole McFarlane
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | | | - Maleeha Qazi
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - David Bakhshinyan
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Parvez Vora
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Naresh K Murty
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Sheila K Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada. .,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Kotecki N, Lefranc F, Devriendt D, Awada A. Therapy of breast cancer brain metastases: challenges, emerging treatments and perspectives. Ther Adv Med Oncol 2018; 10:1758835918780312. [PMID: 29977353 PMCID: PMC6024336 DOI: 10.1177/1758835918780312] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023] Open
Abstract
Brain metastases are the most common central nervous system tumors in adults, and incidence of brain metastases is increasing due to both improved diagnostic techniques (e.g. magnetic resonance imaging) and increased cancer patient survival through advanced systemic treatments. Outcomes of patients remain disappointing and treatment options are limited, usually involving multimodality approaches. Brain metastases represent an unmet medical need in solid tumor care, especially in breast cancer, where brain metastases are frequent and result in impaired quality of life and death. Challenges in the management of brain metastases have been highlighted in this review. Innovative research and treatment strategies, including prevention approaches and emerging systemic treatment options for brain metastases of breast cancer, are further discussed.
Collapse
Affiliation(s)
- Nuria Kotecki
- Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Belgium
| | - Florence Lefranc
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles, Belgium
| | - Daniel Devriendt
- Department of Radiotherapy, Institut Jules Bordet, Université Libre de Bruxelles, Belgium
| | - Ahmad Awada
- Medical Oncology Clinic, Institut Jules Bordet, 1 rue Heger Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
26
|
Singh M, Bakhshinyan D, Venugopal C, Singh SK. Preclinical Modeling and Therapeutic Avenues for Cancer Metastasis to the Central Nervous System. Front Oncol 2017; 7:220. [PMID: 28971065 PMCID: PMC5609558 DOI: 10.3389/fonc.2017.00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022] Open
Abstract
Metastasis is the dissemination of cells from the primary tumor to other locations within the body, and continues to be the predominant cause of death among cancer patients. Metastatic progression within the adult central nervous system is 10 times more frequent than primary brain tumors. Metastases affecting the brain parenchyma and leptomeninges are associated with grave prognosis, and even after successful control of the primary tumor the median survival is a dismal 2-3 months with treatment options typically limited to palliative care. Current treatment options for brain metastases (BM) and disseminated brain tumors are scarce, and the improvement of novel targeted therapies requires a broader understanding of the biological complexity that characterizes metastatic progression. In this review, we provide insight into patterns of BM progression and leptomeningeal spread, outlining the development of clinically relevant in vivo models and their contribution to the discovery of innovative cancer therapies. In vivo models paired with manipulation of in vitro methods have expanded the tools available for investigators to develop agents that can be used to prevent or treat metastatic disease. The knowledge gained from the use of such models can ultimately lead to the prevention of metastatic dissemination and can extend patient survival by transforming a uniformly fatal systemic disease into a locally controlled and eminently more treatable one.
Collapse
Affiliation(s)
- Mohini Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - David Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Surgery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|