1
|
Suzuki K, Ataka T, Kimura N, Matsubara E. Cognitive Impairment and Early-onset Cerebral Amyloid Angiopathy in a Middle-aged Man with a History of Childhood Traumatic Brain Injury. Intern Med 2024; 63:2547-2550. [PMID: 38346743 PMCID: PMC11473271 DOI: 10.2169/internalmedicine.2681-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 09/18/2024] Open
Abstract
We herein report the a 42-year-old man with early-onset cerebral amyloid angiopathy (CAA) and a history of traumatic brain injury and neurosurgery in childhood. Computed tomography revealed cognitive impairment and recurrent lobar intracerebral hemorrhaging. Magnetic resonance imaging indicated cerebral microbleeds, and Pittsburgh compound B positron emission tomography detected brain amyloid deposition, mainly in the region of trauma and occipital lobes. Interestingly, the patient had no genetic predispositions or relevant family history. This case suggests that a single traumatic brain injury or neurosurgery in childhood can cause early-onset CAA.
Collapse
Affiliation(s)
- Kosuke Suzuki
- Department of Neurology, Oita University Faculty of Medicine, Japan
| | - Takuya Ataka
- Department of Neurology, Oita University Faculty of Medicine, Japan
| | - Noriyuki Kimura
- Department of Neurology, Oita University Faculty of Medicine, Japan
| | - Etsuro Matsubara
- Department of Neurology, Oita University Faculty of Medicine, Japan
| |
Collapse
|
2
|
Banerjee G, Farmer SF, Hyare H, Jaunmuktane Z, Mead S, Ryan NS, Schott JM, Werring DJ, Rudge P, Collinge J. Iatrogenic Alzheimer's disease in recipients of cadaveric pituitary-derived growth hormone. Nat Med 2024; 30:394-402. [PMID: 38287166 PMCID: PMC10878974 DOI: 10.1038/s41591-023-02729-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 01/31/2024]
Abstract
Alzheimer's disease (AD) is characterized pathologically by amyloid-beta (Aβ) deposition in brain parenchyma and blood vessels (as cerebral amyloid angiopathy (CAA)) and by neurofibrillary tangles of hyperphosphorylated tau. Compelling genetic and biomarker evidence supports Aβ as the root cause of AD. We previously reported human transmission of Aβ pathology and CAA in relatively young adults who had died of iatrogenic Creutzfeldt-Jakob disease (iCJD) after childhood treatment with cadaver-derived pituitary growth hormone (c-hGH) contaminated with both CJD prions and Aβ seeds. This raised the possibility that c-hGH recipients who did not die from iCJD may eventually develop AD. Here we describe recipients who developed dementia and biomarker changes within the phenotypic spectrum of AD, suggesting that AD, like CJD, has environmentally acquired (iatrogenic) forms as well as late-onset sporadic and early-onset inherited forms. Although iatrogenic AD may be rare, and there is no suggestion that Aβ can be transmitted between individuals in activities of daily life, its recognition emphasizes the need to review measures to prevent accidental transmissions via other medical and surgical procedures. As propagating Aβ assemblies may exhibit structural diversity akin to conventional prions, it is possible that therapeutic strategies targeting disease-related assemblies may lead to selection of minor components and development of resistance.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Harpreet Hyare
- UCL Queen Square Institute of Neurology, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Natalie S Ryan
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Stroke Service, National Hospital for Neurology and Neurosurgery, London, UK
| | - Peter Rudge
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - John Collinge
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK.
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
3
|
Creekmore BC, Watanabe R, Lee EB. Neurodegenerative Disease Tauopathies. ANNUAL REVIEW OF PATHOLOGY 2024; 19:345-370. [PMID: 37832941 PMCID: PMC11009985 DOI: 10.1146/annurev-pathmechdis-051222-120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Tauopathies are a diverse group of progressive and fatal neurodegenerative diseases characterized by aberrant tau inclusions in the central nervous system. Tau protein forms pathologic fibrillar aggregates that are typically closely associated with neuronal cell death, leading to varied clinical phenotypes including dementia, movement disorders, and motor neuron disease. In this review, we describe the clinicopathologic features of tauopathies and highlight recent advances in understanding the mechanisms that lead to spread of pathologic aggregates through interconnected neuronal pathways. The cell-to-cell propagation of tauopathy is then linked to posttranslational modifications, tau fibril structural variants, and the breakdown of cellular protein quality control.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Ryohei Watanabe
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
4
|
Bayazid R, Orru' C, Aslam R, Cohen Y, Silva-Rohwer A, Lee SK, Occhipinti R, Kong Q, Shetty S, Cohen ML, Caughey B, Schonberger LB, Appleby BS, Cali I. A novel subtype of sporadic Creutzfeldt-Jakob disease with PRNP codon 129MM genotype and PrP plaques. Acta Neuropathol 2023; 146:121-143. [PMID: 37156880 PMCID: PMC10166463 DOI: 10.1007/s00401-023-02581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
The presence of amyloid kuru plaques is a pathological hallmark of sporadic Creutzfeldt-Jakob disease (sCJD) of the MV2K subtype. Recently, PrP plaques (p) have been described in the white matter of a small group of CJD (p-CJD) cases with the 129MM genotype and carrying resPrPD type 1 (T1). Despite the different histopathological phenotype, the gel mobility and molecular features of p-CJD resPrPD T1 mimic those of sCJDMM1, the most common human prion disease. Here, we describe the clinical features, histopathology, and molecular properties of two distinct PrP plaque phenotypes affecting the gray matter (pGM) or the white matter (pWM) of sCJD cases with the PrP 129MM genotype (sCJDMM). Prevalence of pGM- and pWM-CJD proved comparable and was estimated to be ~ 0.6% among sporadic prion diseases and ~ 1.1% among the sCJDMM group. Mean age at onset (61 and 68 years) and disease duration (~ 7 months) of pWM- and pGM-CJD did not differ significantly. PrP plaques were mostly confined to the cerebellar cortex in pGM-CJD, but were ubiquitous in pWM-CJD. Typing of resPrPD T1 showed an unglycosylated fragment of ~ 20 kDa (T120) in pGM-CJD and sCJDMM1 patients, while a doublet of ~ 21-20 kDa (T121-20) was a molecular signature of pWM-CJD in subcortical regions. In addition, conformational characteristics of pWM-CJD resPrPD T1 differed from those of pGM-CJD and sCJDMM1. Inoculation of pWM-CJD and sCJDMM1 brain extracts to transgenic mice expressing human PrP reproduced the histotype with PrP plaques only in mice challenged with pWM-CJD. Furthermore, T120 of pWM-CJD, but not T121, was propagated in mice. These data suggest that T121 and T120 of pWM-CJD, and T120 of sCJDMM1 are distinct prion strains. Further studies are required to shed light on the etiology of p-CJD cases, particularly those of T120 of the novel pGM-CJD subtype.
Collapse
Affiliation(s)
- Rabeah Bayazid
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Christina Orru'
- Laboratory of Persistent Viral Diseases, NIH, Hamilton, MT, USA
| | - Rabail Aslam
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yvonne Cohen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Amelia Silva-Rohwer
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Seong-Ki Lee
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Shashirekha Shetty
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Mark L Cohen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, NIH, Hamilton, MT, USA
| | - Lawrence B Schonberger
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brian S Appleby
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Ignazio Cali
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA.
| |
Collapse
|
5
|
Célestine M, Jacquier-Sarlin M, Borel E, Petit F, Perot JB, Hérard AS, Bousset L, Buisson A, Dhenain M. Long term worsening of amyloid pathology, cerebral function, and cognition after a single inoculation of beta-amyloid seeds with Osaka mutation. Acta Neuropathol Commun 2023; 11:66. [PMID: 37087498 PMCID: PMC10122826 DOI: 10.1186/s40478-023-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/25/2023] [Indexed: 04/24/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by intracerebral deposition of abnormal proteinaceous assemblies made of amyloid-β (Aß) peptides or tau proteins. These peptides and proteins induce synaptic dysfunctions that are strongly correlated with cognitive decline. Intracerebral infusion of well-defined Aβ seeds from non-mutated Aβ1-40 or Aβ1-42 peptides can increase Aβ depositions several months after the infusion. Familial forms of AD are associated with mutations in the amyloid precursor protein (APP) that induce the production of Aβ peptides with different structures. The Aβ Osaka (Aβosa mutation (E693Δ)) is located within the Aβ sequence and thus the Aβosa peptides have different structures and properties as compared to non-mutated Aβ1-42 peptides (Aβwt). Here, we wondered if a single exposure to this mutated Aβ can worsen AD pathology as well as downstream events including cognition, cerebral connectivity and synaptic health several months after the inoculation. To answer this question we inoculated Aβ1-42-bearing Osaka mutation (Aβosa) in the dentate gyrus of APPswe/PS1dE9 mice at the age of two months. Their cognition and cerebral connectivity were analyzed at 4 months post-inoculation by behavioral evaluation and functional MRI. Aβ pathology as well as synaptic density were evaluated by histology. The impact of Aβosa peptides on synaptic health was also measured on primary cortical neurons. Remarkably, the intracerebral administration of Aβosa induced cognitive and synaptic impairments as well as a reduction of functional connectivity between different brain regions, 4 months post-inoculation. It increased Aβ plaque depositions and increased Aβ oligomers. This is the first study showing that a single, sporadic event as Aβosa inoculation can worsen the fate of the pathology and clinical outcome several months after the event. It suggests that a single inoculation of Aβ regulates a large cascade of events for a long time.
Collapse
Affiliation(s)
- Marina Célestine
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Muriel Jacquier-Sarlin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Eve Borel
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Fanny Petit
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Jean-Baptiste Perot
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Luc Bousset
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Marc Dhenain
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France.
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| |
Collapse
|
6
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
7
|
Photocatalytic Inactivation of Viruses and Prions: Multilevel Approach with Other Disinfectants. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ag, Cu, Zn, Ti, and Au nanoparticles show enhanced photocatalytic properties. Efficient indoor disinfection strategies are imperative to manage the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Virucidal agents, such as ethanol, sodium hypochlorite, 222-nm UV light, and electrolyzed water inactivate SARS-CoV-2 in indoor environments. Tungsten trioxide (WO3) photocatalyst and visible light disinfect abiotic surfaces against SARS-CoV-2. The titanium dioxide (TiO2)/UV system inactivates SARS-CoV-2 in aerosols and on deliberately contaminated TiO2-coated glass slide surfaces in photocatalytic chambers, wherein 405-nm UV light treatment for 20 min sterilizes the environment and generates reactive oxygen species (ROS) that inactivate the virus by targeting S and envelope proteins and viral RNA. Mesoscopic calcium bicarbonate solution (CAC-717) inactivates pathogens, such as prions, influenza virus, SARS-CoV-2, and noroviruses, in fluids; it presumably acts similarly on human and animal skin. The molecular complexity of cementitious materials promotes the photocatalysis of microorganisms. In combination, the two methods can reduce the pathogen load in the environment. As photocatalysts and CAC-717 are potent disinfectants for prions, disinfectants against prionoids could be developed by combining photocatalysis, gas plasma methodology, and CAC-717 treatment, especially for surgical devices and instruments.
Collapse
|
8
|
Brackhan M, Calza G, Lundgren K, Bascuñana P, Brüning T, Soliymani R, Kumar R, Abelein A, Baumann M, Lalowski M, Pahnke J. Isotope-labeled amyloid-β does not transmit to the brain in a prion-like manner after peripheral administration. EMBO Rep 2022; 23:e54405. [PMID: 35620875 PMCID: PMC9253763 DOI: 10.15252/embr.202154405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022] Open
Abstract
Findings of early cerebral amyloid-β deposition in mice after peripheral injection of amyloid-β-containing brain extracts, and in humans following cadaveric human growth hormone treatment raised concerns that amyloid-β aggregates and possibly Alzheimer's disease may be transmissible between individuals. Yet, proof that Aβ actually reaches the brain from the peripheral injection site is lacking. Here, we use a proteomic approach combining stable isotope labeling of mammals and targeted mass spectrometry. Specifically, we generate 13 C-isotope-labeled brain extracts from mice expressing human amyloid-β and track 13 C-lysine-labeled amyloid-β after intraperitoneal administration into young amyloid precursor protein-transgenic mice. We detect injected amyloid-β in the liver and lymphoid tissues for up to 100 days. In contrast, injected 13 C-lysine-labeled amyloid-β is not detectable in the brain whereas the mice incorporate 13 C-lysine from the donor brain extracts into endogenous amyloid-β. Using a highly sensitive and specific proteomic approach, we demonstrate that amyloid-β does not reach the brain from the periphery. Our study argues against potential transmissibility of Alzheimer's disease while opening new avenues to uncover mechanisms of pathophysiological protein deposition.
Collapse
Affiliation(s)
- Mirjam Brackhan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway.,LIED, University of Lübeck, Lübeck, Germany
| | - Giulio Calza
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kristiina Lundgren
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Pablo Bascuñana
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Thomas Brüning
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Rakesh Kumar
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Marc Baumann
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Maciej Lalowski
- Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway.,LIED, University of Lübeck, Lübeck, Germany.,Department of Pharmacology, Faculty of Medicine, University of Latvia, Riga, Latvia
| |
Collapse
|
9
|
Kellie JF, Campbell BCV, Watson R, Praeger AJ, Nair G, Murugasu A, Rowe CC, Masters CL, Collins S, McLean C, Yassi N. Amyloid-β (Aβ)-Related Cerebral Amyloid Angiopathy Causing Lobar Hemorrhage Decades After Childhood Neurosurgery. Stroke 2022; 53:e369-e374. [PMID: 35770667 DOI: 10.1161/strokeaha.121.038364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent reports raise the possibility of cerebral amyloid angiopathy (CAA) leading to intracerebral hemorrhage in young adults following childhood neurosurgery, suggesting transmission of amyloid-β (Aβ) through neurosurgical procedures including dura mater grafting. Parenchymal Aβ deposition, and to a lesser extent tau aggregation, similar to that seen in Alzheimer disease, have also been described. METHODS We conducted a database review of 634 consecutive intracerebral hemorrhage patients aged <65 years at a tertiary stroke center over 20 years to identify such patients. RESULTS We identified 3 patients aged in their thirties who presented with spontaneous lobar intracerebral hemorrhage, with imaging or neuropathology consistent with CAA, and a history of childhood neurosurgery. Two of these patients had undergone a dural repair using cadaveric dura mater (Lyodura). In addition to CAA, both patients had neuropathologically confirmed parenchymal Aβ and tau deposits, characteristic of Alzheimer disease. CONCLUSIONS Our findings support the concept of neurosurgical Aβ transmission but suggest that such cases are rare in standard clinical practice.
Collapse
Affiliation(s)
- Jeremy F Kellie
- Departments of Medicine and Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Australia (J.F.K., B.C.V.C., N.Y.)
| | - Bruce C V Campbell
- Departments of Medicine and Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Australia (J.F.K., B.C.V.C., N.Y.)
| | - Rosie Watson
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Australia (R.W., S.C.).,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Australia (R.W., N.Y.)
| | - Adrian J Praeger
- Department of Neurosurgery, The Royal Melbourne Hospital, Australia. (A.J.P., G.N.)
| | - Girish Nair
- Department of Neurosurgery, The Royal Melbourne Hospital, Australia. (A.J.P., G.N.)
| | - Anand Murugasu
- Department of Pathology, The Royal Melbourne Hospital, Australia. (A.M.)
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Australia (C.C.R.)
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, Australia (C.L.M., S.C.)
| | - Steven Collins
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Australia (R.W., S.C.).,The Florey Institute of Neuroscience and Mental Health, Australia (C.L.M., S.C.)
| | - Catriona McLean
- Department of Anatomical Pathology, The Alfred Hospital, Australia (C.M.)
| | - Nawaf Yassi
- Departments of Medicine and Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Australia (J.F.K., B.C.V.C., N.Y.).,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Australia (R.W., N.Y.)
| |
Collapse
|
10
|
Nebie O, Buée L, Blum D, Burnouf T. Can the administration of platelet lysates to the brain help treat neurological disorders? Cell Mol Life Sci 2022; 79:379. [PMID: 35750991 PMCID: PMC9243829 DOI: 10.1007/s00018-022-04397-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Neurodegenerative disorders of the central nervous system (CNS) and brain traumatic insults are characterized by complex overlapping pathophysiological alterations encompassing neuroinflammation, alterations of synaptic functions, oxidative stress, and progressive neurodegeneration that eventually lead to irreversible motor and cognitive dysfunctions. A single pharmacological approach is unlikely to provide a complementary set of molecular therapeutic actions suitable to resolve these complex pathologies. Recent preclinical data are providing evidence-based scientific rationales to support biotherapies based on administering neurotrophic factors and extracellular vesicles present in the lysates of human platelets collected from healthy donors to the brain. Here, we present the most recent findings on the composition of the platelet proteome that can activate complementary signaling pathways in vivo to trigger neuroprotection, synapse protection, anti-inflammation, antioxidation, and neurorestoration. We also report experimental data where the administration of human platelet lysates (HPL) was safe and resulted in beneficial neuroprotective effects in established rodent models of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, traumatic brain injury, and stroke. Platelet-based biotherapies, prepared from collected platelet concentrates (PC), are emerging as a novel pragmatic and accessible translational therapeutic strategy for treating neurological diseases. Based on this assumption, we further elaborated on various clinical, manufacturing, and regulatory issues that need to be addressed to ensure the ethical supply, quality, and safety of HPL preparations for treating neurodegenerative and traumatic pathologies of the CNS. HPL made from PC may become a unique approach for scientifically based treatments of neurological disorders readily accessible in low-, middle-, and high-income countries.
Collapse
Affiliation(s)
- Ouada Nebie
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France.
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France.
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thierry Burnouf
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Brain and Consciousness Research Centre, Taipei Medical University Shuang-Ho Hospital, New Taipei City, 23561, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Xu G, Fromholt S, Borchelt DR. Modeling the Competition between Misfolded Aβ Conformers That Produce Distinct Types of Amyloid Pathology in Alzheimer's Disease. Biomolecules 2022; 12:886. [PMID: 35883442 PMCID: PMC9313290 DOI: 10.3390/biom12070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/26/2022] Open
Abstract
The amyloid pathology characteristic of Alzheimer's disease (AD) can be broadly classified as either fibrillary amyloid or diffuse amyloid. Fibrillary amyloid is found in cored-neuritic deposits, fibrillar deposits, and vascular deposits, and binds strongly to the amyloid revealing dyes Thioflavin-S or Congo Red. Diffuse amyloid can appear as wispy dispersed deposits or compact tufted deposits dispersed in neuropil, and binds amyloid dyes weakly if at all. In AD brains, both types of pathology are detected. Homogenates from AD brains, or the brains of transgenic mice modeling AD-amyloidosis, have been used to seed pathology in vulnerable host transgenic models. These studies suggest that pathologies may arise from distinct conformers or strains of misfolded Aβ, similar to propagating prions. Using Aβ strains sourced from four different AD-amyloidosis models, we injected pathological seeds into the brains of newborn mice from three different transgenic hosts with distinctive Aβ pathologies. Two of the seeding sources were from mice that primarily develop cored-neuritic Aβ deposits (cored strain) while the other two seeding sources were from mice that develop diffuse Aβ deposits (diffuse strain). These seeds were injected into host APP mice in which the resident strain was either diffuse or cored-neuritic pathology. Seeding-homogenates were injected into the brains of newborn mice to initiate propagation as early as possible. Depending upon the level of transgene expression in the host, we show that the injected strains of misfolded Aβ from the seeding homogenate were able to outcompete the resident strain of the APP host model. In serial passaging experiments, it appeared that the diffuse strain was more easily propagated than the cored strain. Collectively, our studies align with the idea that different types of Aβ pathology in AD brains arise from different populations of Aβ conformers that compete to populate the brain.
Collapse
Affiliation(s)
- Guilian Xu
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.X.); (S.F.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Susan Fromholt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.X.); (S.F.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - David R. Borchelt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.X.); (S.F.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
Non-human primates in prion diseases. Cell Tissue Res 2022; 392:7-20. [PMID: 35661921 DOI: 10.1007/s00441-022-03644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
The fascinating history of prion diseases is intimately linked to the use of nonhuman primates as experimental models, which brought so fundamental and founding information about transmissibility, pathogenesis, and resistance of prions. These models are still of crucial need for risk assessment of human health and may contribute to pave a new way towards the moving field of prion-like entities which now includes the main human neurodegenerative diseases (especially Alzheimer's and Parkinson's diseases).
Collapse
|
13
|
Lopes DM, Llewellyn SK, Harrison IF. Propagation of tau and α-synuclein in the brain: therapeutic potential of the glymphatic system. Transl Neurodegener 2022; 11:19. [PMID: 35314000 PMCID: PMC8935752 DOI: 10.1186/s40035-022-00293-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease, are characterised by the accumulation of misfolded protein deposits in the brain, leading to a progressive destabilisation of the neuronal network and neuronal death. Among the proteins that can abnormally accumulate are tau and α-synuclein, which can propagate in a prion-like manner and which upon aggregation, represent the most common intracellular proteinaceous lesions associated with neurodegeneration. For years it was thought that these intracellular proteins and their accumulation had no immediate relationship with extracellular homeostasis pathways such as the glymphatic clearance system; however, mounting evidence has now suggested that this is not the case. The involvement of the glymphatic system in neurodegenerative disease is yet to be fully defined; however, it is becoming increasingly clear that this pathway contributes to parenchymal solute clearance. Importantly, recent data show that proteins prone to intracellular accumulation are subject to glymphatic clearance, suggesting that this system plays a key role in many neurological disorders. In this review, we provide a background on the biology of tau and α-synuclein and discuss the latest findings on the cell-to-cell propagation mechanisms of these proteins. Importantly, we discuss recent data demonstrating that manipulation of the glymphatic system may have the potential to alleviate and reduce pathogenic accumulation of propagation-prone intracellular cytotoxic proteins. Furthermore, we will allude to the latest potential therapeutic opportunities targeting the glymphatic system that might have an impact as disease modifiers in neurodegenerative diseases.
Collapse
|
14
|
Hamaguchi T, Ono K, Yamada M. Transmission of Cerebral β-Amyloidosis Among Individuals. Neurochem Res 2022; 47:2469-2477. [PMID: 35277809 DOI: 10.1007/s11064-022-03566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022]
Abstract
Deposition of amyloid β protein (Aβ) in the brain (cerebral β-amyloidosis) is a hallmark of Alzheimer's disease (AD). So far, there have been increasing number of experimental studies using AD mouse model that cerebral β-amyloidosis could be transmitted among individuals as prion-like mechanism. Furthermore, several pathological studies using autopsied patients with iatrogenic Creutzfeldt-Jakob disease (CJD) showed that cerebral β-amyloidosis in addition to the CJD pathology could be transmitted among humans via medical procedures, such as human growth hormone derived from cadaver injection and cadaveric dura mater graft. In addition, although cerebral amyloid angiopathy (CAA), which is Aβ deposition in the cerebral vessels, related cerebral hemorrhage rarely develops in young people, several patients with CAA-related cerebral hemorrhage under the age of 55 with histories of neurosurgeries with and without dura mater graft in early childhood have been reported. These patients might show that Aβ pathology is often recognized as Aβ-CAA rather than parenchymal Aβ deposition in the transmission of cerebral β-amyloidosis in humans, and we proposed an emerging concept, "acquired CAA". Considering that there have been several patients with acquired CAA with an incubation period from neurosurgery and the onset of CAA related cerebral hemorrhage of longer than 40 years, the number of cases is likely to increase in the future, and detailed epidemiological investigation is required. It is necessary to continue to elucidate the pathomechanisms of acquired CAA and urgently establish a method for preventing the transmission of cerebral β-amyloidosis among individuals.
Collapse
Affiliation(s)
- Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
| | - Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
- Division of Neurology, Department of Internal Medicine, Kudanzaka Hospital, Tokyo, Japan.
| |
Collapse
|
15
|
Nakano H, Hamaguchi T, Ikeda T, Watanabe‐Nakayama T, Ono K, Yamada M. Inactivation of seeding activity of amyloid β‐protein aggregates in vitro. J Neurochem 2021; 160:499-516. [DOI: 10.1111/jnc.15563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroto Nakano
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Tokuhei Ikeda
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
- Department of Neurology Ishikawa Prefectural Central Hospital Kanazawa Japan
| | - Takahiro Watanabe‐Nakayama
- World Premier International Research Center Initiative (WPI)‐Nano Life Science Institute Kanazawa University Kanazawa Japan
| | - Kenjiro Ono
- Division of Neurology Department of Internal Medicine Showa University Tokyo Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
- Department of Internal Medicine Department of Neurology Kudanzaka Hospital Tokyo Japan
| |
Collapse
|
16
|
Lam S, Petit F, Hérard AS, Boluda S, Eddarkaoui S, Guillermier M, Letournel F, Martin-Négrier ML, Faisant M, Godfraind C, Boutonnat J, Maurage CA, Deramecourt V, Duchesne M, Meyronet D, Fenouil T, de Paula AM, Rigau V, Vandenbos-Burel F, Seilhean D, Duyckaerts C, Boluda S, Plu I, Chiforeanu DC, Laquerrière A, Marguet F, Lannes B, Lhermitte B, Buée L, Duyckaerts C, Haïk S, Picq JL, Dhenain M. Transmission of amyloid-beta and tau pathologies is associated with cognitive impairments in a primate. Acta Neuropathol Commun 2021; 9:165. [PMID: 34641980 PMCID: PMC8507137 DOI: 10.1186/s40478-021-01266-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022] Open
Abstract
Amyloid-β (Aβ) pathology transmission has been described in patients following iatrogenic exposure to compounds contaminated with Aβ proteins. It can induce cerebral Aβ angiopathy resulting in brain hemorrhages and devastating clinical impacts. Iatrogenic transmission of tau pathology is also suspected but not experimentally proven. In both scenarios, lesions were detected several decades after the putatively triggering medico-surgical act. There is however little information regarding the cognitive repercussions in individuals who do not develop cerebral hemorrhages. In the current study, we inoculated the posterior cingulate cortex and underlying corpus callosum of young adult primates (Microcebus murinus) with either Alzheimer's disease or control brain extracts. This led to widespread Aβ and tau pathologies in all of the Alzheimer-inoculated animals following a 21-month-long incubation period (n = 12) whereas none of the control brain extract-inoculated animals developed such lesions (n = 6). Aβ deposition affected almost all cortical regions. Tau pathology was also detected in Aβ-deposit-free regions distant from the inoculation sites (e.g. in the entorhinal cortex), while some regions adjacent, but not connected, to the inoculation sites were spared (e.g. the occipital cortex). Alzheimer-inoculated animals developed cognitive deficits and cerebral atrophy compared to controls. These pathologies were induced using two different batches of Alzheimer brain extracts. This is the first experimental demonstration that tau can be transmitted by human brain extracts inoculations in a primate. We also showed for the first time that the transmission of widespread Aβ and tau pathologies can be associated with cognitive decline. Our results thus reinforce the need to organize a systematic monitoring of individuals who underwent procedures associated with a risk of Aβ and tau iatrogenic transmission. They also provide support for Alzheimer brain-inoculated primates as relevant models of Alzheimer pathology.
Collapse
|
17
|
Blood cell-produced amyloid-β induces cerebral Alzheimer-type pathologies and behavioral deficits. Mol Psychiatry 2021; 26:5568-5577. [PMID: 32681097 DOI: 10.1038/s41380-020-0842-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
It is traditionally believed that cerebral amyloid-beta (Aβ) deposits are derived from the brain itself in Alzheimer's disease (AD). Peripheral cells such as blood cells also produce Aβ. The role of peripherally produced Aβ in the pathogenesis of AD remains unknown. In this study, we established a bone marrow transplantation model to investigate the contribution of blood cell-produced Aβ to AD pathogenesis. We found that bone marrow cells (BMCs) transplanted from APPswe/PS1dE9 transgenic mice into wild-type (Wt) mice at 3 months of age continuously expressed human Aβ in the blood, and caused AD phenotypes including Aβ plaques, cerebral amyloid angiopathy (CAA), tau hyperphosphorylation, neuronal degeneration, neuroinflammation, and behavioral deficits in the Wt recipient mice at 12 months after transplantation. Bone marrow reconstitution in APPswe/PS1dE9 mice with Wt-BMCs at 3 months of age reduced blood Aβ levels, and alleviated brain Aβ burden, neuronal degeneration, neuroinflammation, and behavioral deficits in the AD model mice at 12 months after transplantation. Our study demonstrated that blood cell-produced Aβ plays a significant role in AD pathogenesis, and the elimination of peripheral production of Aβ can decrease brain Aβ deposition and represents a novel therapeutic approach for AD.
Collapse
|
18
|
Hamaguchi T, Kim JH, Hasegawa A, Goto R, Sakai K, Ono K, Itoh Y, Yamada M. Exogenous Aβ seeds induce Aβ depositions in the blood vessels rather than the brain parenchyma, independently of Aβ strain-specific information. Acta Neuropathol Commun 2021; 9:151. [PMID: 34507620 PMCID: PMC8431898 DOI: 10.1186/s40478-021-01252-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
Little is known about the effects of parenchymal or vascular amyloid β peptide (Aβ) deposition in the brain. We hypothesized that Aβ strain-specific information defines whether Aβ deposits on the brain parenchyma or blood vessels. We investigated 12 autopsied patients with different severities of Aβ plaques and cerebral amyloid angiopathy (CAA), and performed a seeding study using an Alzheimer’s disease (AD) mouse model in which brain homogenates derived from the autopsied patients were injected intracerebrally. Based on the predominant pathological features, we classified the autopsied patients into four groups: AD, CAA, AD + CAA, and less Aβ. One year after the injection, the pathological and biochemical features of Aβ in the autopsied human brains were not preserved in the human brain extract-injected mice. The CAA counts in the mice injected with all four types of human brain extracts were significantly higher than those in mice injected with PBS. Interestingly, parenchymal and vascular Aβ depositions were observed in the mice that were injected with the human brain homogenate from the less Aβ group. The Aβ and CAA seeding activities, which had significant positive correlations with the Aβ oligomer ratio in the human brain extracts, were significantly higher in the human brain homogenate from the less Aβ group than in the other three groups. These results indicate that exogenous Aβ seeds from different Aβ pathologies induced Aβ deposition in the blood vessels rather than the brain parenchyma without being influenced by Aβ strain-specific information, which might be why CAA is a predominant feature of Aβ pathology in iatrogenic transmission cases. Furthermore, our results suggest that iatrogenic transmission of Aβ pathology might occur due to contamination of brain tissues from patients with little Aβ pathology, and the development of inactivation methods for Aβ seeding activity to prevent iatrogenic transmission is urgently required.
Collapse
|
19
|
Abstract
Tauopathies consist of over 25 different neurodegenerative diseases that include argyrophilic grain disease (AGD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick’s disease (PiD). Tauopathies are defined by brain accumulation of microtubule-associated protein tau in fibrillar aggregates, whose prevalence strongly correlates with dementia. Dominant mutations in tau cause neurodegenerative diseases, and most increase its aggregation propensity. Pathogenesis of tauopathies may involve pathological tau conformers that serve as templates to recruit native protein into growing assemblies and also move between brain cells to cause disease progression, similar to prions. Prions adopt pathological conformations, termed “strains,” that stably propagate in living systems, and create unique patterns of neuropathology. Data from multiple laboratories now suggest that tau acts as a prion. It propagates unique strains indefinitely in cultured cells, and when these are inoculated into mouse models, they create defined neuropathological patterns, which establish a direct link between conformation and disease. In humans, distinct fibril structures are associated with different diseases, but causality has not been established as in mice. Cryo-EM structures of tau fibrils isolated from tauopathy brains reveal distinct fibril cores across disease. Interestingly, the conformation of the tau monomer unit within different fibril subtypes from the same patient appears relatively preserved. This is consistent with data that the tau monomer samples an ensemble of conformations that act as distinct pathologic templates in the formation of restricted numbers of strains. The propensity of a tau monomer to adopt distinct conformations appears to be linked to defined local motifs that expose different patterns of amyloidogenic amino acid sequences. The prion hypothesis, which predicts that protein structure dictates resultant disease, has proved particularly useful to understand the diversity of human tauopathies. The challenge now is to develop methods to rapidly classify patients according to the structure of the underlying pathological protein assemblies to achieve more accurate diagnosis and effective therapy.
Collapse
|
20
|
Jaunmuktane Z, Banerjee G, Paine S, Parry-Jones A, Rudge P, Grieve J, Toma AK, Farmer SF, Mead S, Houlden H, Werring DJ, Brandner S. Alzheimer's disease neuropathological change three decades after iatrogenic amyloid-β transmission. Acta Neuropathol 2021; 142:211-215. [PMID: 34047818 PMCID: PMC8217014 DOI: 10.1007/s00401-021-02326-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/13/2023]
Affiliation(s)
- Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| | - Gargi Banerjee
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK
| | - Simon Paine
- Neuropathology Laboratory, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, NG7 2UH, UK
| | - Adrian Parry-Jones
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance, University of Manchester, Manchester, M13 9PL, UK
- Division of Cardiovascular Sciences, School of Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Peter Rudge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Joan Grieve
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| | - Ahmed K Toma
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| | - Simon F Farmer
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Neurology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Henry Houlden
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - David J Werring
- Department of Neurology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
21
|
Lau HHC, Ingelsson M, Watts JC. The existence of Aβ strains and their potential for driving phenotypic heterogeneity in Alzheimer's disease. Acta Neuropathol 2021; 142:17-39. [PMID: 32743745 DOI: 10.1007/s00401-020-02201-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
Reminiscent of the human prion diseases, there is considerable clinical and pathological variability in Alzheimer's disease, the most common human neurodegenerative condition. As in prion disorders, protein misfolding and aggregation is a hallmark feature of Alzheimer's disease, where the initiating event is thought to be the self-assembly of Aβ peptide into aggregates that deposit in the central nervous system. Emerging evidence suggests that Aβ, similar to the prion protein, can polymerize into a conformationally diverse spectrum of aggregate strains both in vitro and within the brain. Moreover, certain types of Aβ aggregates exhibit key hallmarks of prion strains including divergent biochemical attributes and the ability to induce distinct pathological phenotypes when intracerebrally injected into mouse models. In this review, we discuss the evidence demonstrating that Aβ can assemble into distinct strains of aggregates and how such strains may be primary drivers of the phenotypic heterogeneity in Alzheimer's disease.
Collapse
|
22
|
Hamaguchi T, Sakai K, Kobayashi A, Kitamoto T, Ae R, Nakamura Y, Sanjo N, Arai K, Koide M, Katada F, Harada M, Murai H, Murayama S, Tsukamoto T, Mizusawa H, Yamada M. Characterization of Sporadic Creutzfeldt-Jakob Disease and History of Neurosurgery to Identify Potential Iatrogenic Cases. Emerg Infect Dis 2021; 26:1140-1146. [PMID: 32442393 PMCID: PMC7258447 DOI: 10.3201/eid2606.181969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We previously reported a phenotype of Creutzfeldt-Jakob disease (CJD), CJD-MMiK, that could help identify iatrogenic CJD. To find cases mimicking CJD-MMiK, we investigated clinical features and pathology of 1,155 patients with diagnosed sporadic CJD or unclassified CJD with and without history of neurosurgery. Patients with history of neurosurgery more frequently had an absence of periodic sharp-wave complexes on electroencephalogram than patients without a history of neurosurgery. Among 27 patients with history of neurosurgery, 5 had no periodic sharp-wave complexes on electroencephalogram. We confirmed 1 case of CJD-MMiK and suspected another. Both had methionine homozygosity at codon 129 of the prion protein gene and hyperintensity lesions in the thalamus on magnetic resonance images of the brain, which might be a clinical marker of CJD-MMiK. A subgroup with a history of neurosurgery and clinical features mimicking dura mater graft-associated CJD might have been infected during neurosurgery and had symptoms develop after many years.
Collapse
|
23
|
Ruiz-Riquelme A, Mao A, Barghash MM, Lau HHC, Stuart E, Kovacs GG, Nilsson KPR, Fraser PE, Schmitt-Ulms G, Watts JC. Aβ43 aggregates exhibit enhanced prion-like seeding activity in mice. Acta Neuropathol Commun 2021; 9:83. [PMID: 33971978 PMCID: PMC8112054 DOI: 10.1186/s40478-021-01187-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
When injected into genetically modified mice, aggregates of the amyloid-β (Aβ) peptide from the brains of Alzheimer’s disease (AD) patients or transgenic AD mouse models seed cerebral Aβ deposition in a prion-like fashion. Within the brain, Aβ exists as a pool of distinct C-terminal variants with lengths ranging from 37 to 43 amino acids, yet the relative contribution of individual C-terminal Aβ variants to the seeding behavior of Aβ aggregates remains unknown. Here, we have investigated the relative seeding activities of Aβ aggregates composed exclusively of recombinant Aβ38, Aβ40, Aβ42, or Aβ43. Cerebral Aβ42 levels were not increased in AppNL−F knock-in mice injected with Aβ38 or Aβ40 aggregates and were only increased in a subset of mice injected with Aβ42 aggregates. In contrast, significant accumulation of Aβ42 was observed in the brains of all mice inoculated with Aβ43 aggregates, and the extent of Aβ42 induction was comparable to that in mice injected with brain-derived Aβ seeds. Mice inoculated with Aβ43 aggregates exhibited a distinct pattern of cerebral Aβ pathology compared to mice injected with brain-derived Aβ aggregates, suggesting that recombinant Aβ43 may polymerize into a unique strain. Our results indicate that aggregates containing longer Aβ C-terminal variants are more potent inducers of cerebral Aβ deposition and highlight the potential role of Aβ43 seeds as a crucial factor in the initial stages of Aβ pathology in AD.
Collapse
|
24
|
Asher DM, Belay E, Bigio E, Brandner S, Brubaker SA, Caughey B, Clark B, Damon I, Diamond M, Freund M, Hyman BT, Jucker M, Keene CD, Lieberman AP, Mackiewicz M, Montine TJ, Morgello S, Phelps C, Safar J, Schneider JA, Schonberger LB, Sigurdson C, Silverberg N, Trojanowski JQ, Frosch MP. Risk of Transmissibility From Neurodegenerative Disease-Associated Proteins: Experimental Knowns and Unknowns. J Neuropathol Exp Neurol 2021; 79:1141-1146. [PMID: 33000167 PMCID: PMC7577514 DOI: 10.1093/jnen/nlaa109] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies in animal models demonstrate that certain misfolded proteins associated with neurodegenerative diseases can support templated misfolding of cognate native proteins, to propagate across neural systems, and to therefore have some of the properties of classical prion diseases like Creutzfeldt-Jakob disease. The National Institute of Aging convened a meeting to discuss the implications of these observations for research priorities. A summary of the discussion is presented here, with a focus on limitations of current knowledge, highlighting areas that appear to require further investigation in order to guide scientific practice while minimizing potential exposure or risk in the laboratory setting. The committee concluded that, based on all currently available data, although neurodegenerative disease-associated aggregates of several different non-prion proteins can be propagated from humans to experimental animals, there is currently insufficient evidence to suggest more than a negligible risk, if any, of a direct infectious etiology for the human neurodegenerative disorders defined in part by these proteins. Given the importance of this question, the potential for noninvasive human transmission of proteopathic disorders is deserving of further investigation.
Collapse
Affiliation(s)
- David M Asher
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Ermias Belay
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eileen Bigio
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology Queen Square, London
| | - Scott A Brubaker
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Brychan Clark
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Inger Damon
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marc Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michelle Freund
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Miroslaw Mackiewicz
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California
| | - Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Creighton Phelps
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Jiri Safar
- Departments of Pathology and Neurology, Case Western Reserve University, Cleveland, Ohio
| | - Julie A Schneider
- Department of Neurological Sciences, Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Lawrence B Schonberger
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina Sigurdson
- Department of Pathology, University of California - San Diego, San Diego, California
| | - Nina Silverberg
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew P Frosch
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, University of Washington, Seattle, Washington.,C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Ritchie DL, Barria MA. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules 2021; 11:biom11020207. [PMID: 33540845 PMCID: PMC7912988 DOI: 10.3390/biom11020207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.
Collapse
|
26
|
Billant O, Friocourt G, Roux P, Voisset C. p53, A Victim of the Prion Fashion. Cancers (Basel) 2021; 13:E269. [PMID: 33450819 PMCID: PMC7828285 DOI: 10.3390/cancers13020269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
Identified in the late 1970s as an oncogene, a driving force leading to tumor development, p53 turned out to be a key tumor suppressor gene. Now p53 is considered a master gene regulating the transcription of over 3000 target genes and controlling a remarkable number of cellular functions. The elevated prevalence of p53 mutations in human cancers has led to a recurring questioning about the roles of mutant p53 proteins and their functional consequences. Both mutants and isoforms of p53 have been attributed dominant-negative and gain of function properties among which is the ability to form amyloid aggregates and behave in a prion-like manner. This report challenges the ongoing "prion p53" hypothesis by reviewing evidence of p53 behavior in light of our current knowledge regarding amyloid proteins, prionoids and prions.
Collapse
Affiliation(s)
| | - Gaëlle Friocourt
- Inserm, Université de Bretagne Occidentale, EFS, UMR 1078, GGB, F-29200 Brest, France;
| | - Pierre Roux
- CRBM, CNRS, UMR5234, 34293 Montpellier, France;
| | - Cécile Voisset
- Inserm, Université de Bretagne Occidentale, EFS, UMR 1078, GGB, F-29200 Brest, France;
| |
Collapse
|
27
|
Hérard AS, Petit F, Gary C, Guillermier M, Boluda S, Garin CM, Lam S, Dhenain M. Induction of amyloid-β deposits from serially transmitted, histologically silent, Aβ seeds issued from human brains. Acta Neuropathol Commun 2020; 8:205. [PMID: 33250056 PMCID: PMC7702698 DOI: 10.1186/s40478-020-01081-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/15/2020] [Indexed: 11/15/2022] Open
Abstract
In humans, iatrogenic transmission of cerebral amyloid-β (Aβ)-amyloidosis is suspected following inoculation of pituitary-derived hormones or dural grafts presumably contaminated with Aβ proteins as well as after cerebral surgeries. Experimentally, intracerebral inoculation of brain homogenate extracts containing misfolded Aβ can seed Aβ deposition in transgenic mouse models of amyloidosis or in non-human primates. The transmission of cerebral Aβ is governed by the host and by the inoculated samples. It is critical to better characterize the propensities of different hosts to develop Aβ deposition after contamination by an Aβ-positive sample as well as to better assess which biological samples can transmit this lesion. Aβ precursor protein (huAPPwt) mice express humanized non-mutated forms of Aβ precursor protein and do not spontaneously develop Aβ or amyloid deposits. We found that inoculation of Aβ-positive brain extracts from Alzheimer patients in these mice leads to a sparse Aβ deposition close to the alveus 18 months post-inoculation. However, it does not induce cortical or hippocampal Aβ deposition. Secondary inoculation of apparently amyloid deposit-free hippocampal extracts from these huAPPwt mice to APPswe/PS1dE9 mouse models of amyloidosis enhanced Aβ deposition in the alveus 9 months post-inoculation. This suggests that Aβ seeds issued from human brain samples can persist in furtive forms in brain tissues while maintaining their ability to foster Aβ deposition in receptive hosts that overexpress endogenous Aβ. This work emphasizes the need for high-level preventive measures, especially in the context of neurosurgery, to prevent the risk of iatrogenic transmission of Aβ lesions from samples with sparse amyloid markers.
Collapse
|
28
|
Gomez-Gutierrez R, Morales R. The prion-like phenomenon in Alzheimer's disease: Evidence of pathology transmission in humans. PLoS Pathog 2020; 16:e1009004. [PMID: 33119726 PMCID: PMC7595341 DOI: 10.1371/journal.ppat.1009004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ruben Gomez-Gutierrez
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
- * E-mail:
| |
Collapse
|
29
|
Rouaud T, Corbillé AG, Leclair-Visonneau L, de Guilhem de Lataillade A, Lionnet A, Preterre C, Damier P, Derkinderen P. Pathophysiology of Parkinson's disease: Mitochondria, alpha-synuclein and much more…. Rev Neurol (Paris) 2020; 177:260-271. [PMID: 33032797 DOI: 10.1016/j.neurol.2020.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a complex, age-related, neurodegenerative disease whose pathogenesis remains incompletely understood. Here, we give an overview of the progress that has been made over the past four decades in our understanding of this disorder. We review the role of mitochondria, environmental toxicants, alpha-synuclein and neuroinflammation in the development of PD. We also discuss more recent data from genetics, which strongly support the endosomal-lysosomal pathways and mitophagy as being central to PD. Finally, we discuss the emerging role of the gut-brain axis as a modulator of PD progression. This article is intended to provide a comprehensive, general and practical review of PD pathogenesis for the general neurologist.
Collapse
Affiliation(s)
- T Rouaud
- CHU de Nantes, Centre expert Parkinson, Department of Neurology, 44093 Nantes, France.
| | - A-G Corbillé
- CHU de Nantes, Centre expert Parkinson, Department of Neurology, 44093 Nantes, France.
| | | | | | - A Lionnet
- CHU de Nantes, Centre expert Parkinson, Department of Neurology, 44093 Nantes, France.
| | - C Preterre
- CHU de Nantes, Centre expert Parkinson, Department of Neurology, 44093 Nantes, France.
| | - P Damier
- CHU de Nantes, Centre expert Parkinson, Department of Neurology, 44093 Nantes, France.
| | - P Derkinderen
- CHU de Nantes, Centre expert Parkinson, Department of Neurology, 44093 Nantes, France.
| |
Collapse
|
30
|
Jaunmuktane Z, Brandner S. Invited Review: The role of prion-like mechanisms in neurodegenerative diseases. Neuropathol Appl Neurobiol 2020; 46:522-545. [PMID: 31868945 PMCID: PMC7687189 DOI: 10.1111/nan.12592] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/30/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
The prototype of transmissible neurodegenerative proteinopathies is prion diseases, characterized by aggregation of abnormally folded conformers of the native prion protein. A wealth of mechanisms has been proposed to explain the conformational conversion from physiological protein into misfolded, pathological form, mode of toxicity, propagation from cell-to-cell and regional spread. There is increasing evidence that other neurodegenerative diseases, most notably Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), frontotemporal dementia (TDP43, tau or FUS) and motor neurone disease (TDP43), exhibit at least some of the misfolded prion protein properties. In this review, we will discuss to what extent each of the properties of misfolded prion protein is known to occur for Aβ, tau, α-synuclein and TDP43, with particular focus on self-propagation through seeding, conformational strains, selective cellular and regional vulnerability, stability and resistance to inactivation, oligomers, toxicity and summarize the most recent literature on transmissibility of neurodegenerative disorders.
Collapse
Affiliation(s)
- Z. Jaunmuktane
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation Trust
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders
| | - S. Brandner
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation Trust
- Department of Neurodegenerative diseaseQueen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
31
|
Lauwers E, Lalli G, Brandner S, Collinge J, Compernolle V, Duyckaerts C, Edgren G, Haïk S, Hardy J, Helmy A, Ivinson AJ, Jaunmuktane Z, Jucker M, Knight R, Lemmens R, Lin IC, Love S, Mead S, Perry VH, Pickett J, Poppy G, Radford SE, Rousseau F, Routledge C, Schiavo G, Schymkowitz J, Selkoe DJ, Smith C, Thal DR, Theys T, Tiberghien P, van den Burg P, Vandekerckhove P, Walton C, Zaaijer HL, Zetterberg H, De Strooper B. Potential human transmission of amyloid β pathology: surveillance and risks. Lancet Neurol 2020; 19:872-878. [PMID: 32949547 DOI: 10.1016/s1474-4422(20)30238-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/05/2023]
Abstract
Studies in experimental animals show transmissibility of amyloidogenic proteins associated with prion diseases, Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Although these data raise potential concerns for public health, convincing evidence for human iatrogenic transmission only exists for prions and amyloid β after systemic injections of contaminated growth hormone extracts or dura mater grafts derived from cadavers. Even though these procedures are now obsolete, some reports raise the possibility of iatrogenic transmission of amyloid β through putatively contaminated neurosurgical equipment. Iatrogenic transmission of amyloid β might lead to amyloid deposition in the brain parenchyma and blood vessel walls, potentially resulting in cerebral amyloid angiopathy after several decades. Cerebral amyloid angiopathy can cause life-threatening brain haemorrhages; yet, there is no proof that the transmission of amyloid β can also lead to Alzheimer's dementia. Large, long-term epidemiological studies and sensitive, cost-efficient tools to detect amyloid are needed to better understand any potential routes of amyloid β transmission and to clarify whether other similar proteopathic seeds, such as tau or α-synuclein, can also be transferred iatrogenically.
Collapse
Affiliation(s)
- Elsa Lauwers
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Giovanna Lalli
- UK Dementia Research Institute, University College London, London, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London National Health Service Foundation Trust, London, UK
| | - John Collinge
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Veerle Compernolle
- Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Charles Duyckaerts
- Institut du Cerveau et de la Moelle épinière, Sorbonne University, INSERM, CNRS UMR, Paris, France; Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France
| | - Gustaf Edgren
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| | - Stéphane Haïk
- Institut du Cerveau et de la Moelle épinière, Sorbonne University, INSERM, CNRS UMR, Paris, France; Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France; Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France
| | - John Hardy
- UK Dementia Research Institute, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK; National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| | - Adel Helmy
- Department of Clinical Neuroscience, Division of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Adrian J Ivinson
- UK Dementia Research Institute, University College London, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London National Health Service Foundation Trust, London, UK
| | - Mathias Jucker
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Richard Knight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK; National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Western General Hospital, Edinburgh, UK
| | - Robin Lemmens
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - I-Chun Lin
- UK Dementia Research Institute, University College London, London, UK
| | - Seth Love
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Simon Mead
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - V Hugh Perry
- UK Dementia Research Institute, University College London, London, UK
| | - James Pickett
- Alzheimer's Society, London, London, UK; Epilepsy Research UK, London, UK
| | - Guy Poppy
- Biological Sciences, University of Southampton, Southampton, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, UK; Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Dietmar R Thal
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Tom Theys
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine St Denis, France; Unité Mixte de Recherche, INSERM, Université de Franche-Comté, Besançon, France
| | - Peter van den Burg
- European Blood Alliance, Brussels, Belgium; Department of Transfusion Medicine, Sanquin, Amsterdam, Netherlands
| | - Philippe Vandekerckhove
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Clare Walton
- Alzheimer's Society, London, London, UK; Multiple Sclerosis International Federation, London, UK
| | - Hans L Zaaijer
- Department of Blood-borne Infections, Sanquin, Amsterdam, Netherlands
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
32
|
Zhao J, Liu X, Xia W, Zhang Y, Wang C. Targeting Amyloidogenic Processing of APP in Alzheimer's Disease. Front Mol Neurosci 2020; 13:137. [PMID: 32848600 PMCID: PMC7418514 DOI: 10.3389/fnmol.2020.00137] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of senile dementia, characterized by neurofibrillary tangle and amyloid plaque in brain pathology. Major efforts in AD drug were devoted to the interference with the production and accumulation of amyloid-β peptide (Aβ), which plays a causal role in the pathogenesis of AD. Aβ is generated from amyloid precursor protein (APP), by consecutive cleavage by β-secretase and γ-secretase. Therefore, β-secretase and γ-secretase inhibition have been the focus for AD drug discovery efforts for amyloid reduction. Here, we review β-secretase inhibitors and γ-secretase inhibitors/modulators, and their efficacies in clinical trials. In addition, we discussed the novel concept of specifically targeting the γ-secretase substrate APP. Targeting amyloidogenic processing of APP is still a fundamentally sound strategy to develop disease-modifying AD therapies and recent advance in γ-secretase/APP complex structure provides new opportunities in designing selective inhibitors/modulators for AD.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Xinyue Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Weiming Xia
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
33
|
Houben S, de Fisenne MA, Ando K, Vanden Dries V, Poncelet L, Yilmaz Z, Mansour S, De Decker R, Brion JP, Leroy K. Intravenous Injection of PHF-Tau Proteins From Alzheimer Brain Exacerbates Neuroinflammation, Amyloid Beta, and Tau Pathologies in 5XFAD Transgenic Mice. Front Mol Neurosci 2020; 13:106. [PMID: 32765217 PMCID: PMC7381181 DOI: 10.3389/fnmol.2020.00106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 02/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation in the brain of intraneuronal aggregates of abnormally and hyperphosphorylated tau proteins and of extracellular deposits of amyloid-β surrounded by dystrophic neurites. Numerous experimental models have shown that tau pathology develops in the brain after intracerebral injection of brain homogenates or pathological tau [paired helical filaments (PHF)-tau)] from AD brains. Further investigations are however necessary to identify or exclude potential extracerebral routes of tau pathology transmission, e.g., through the intravascular route. In this study, we have analyzed the effect of intravenous injection of PHF-tau proteins from AD brains on the formation of tau and amyloid pathologies in the brain of wild-type (WT) mice and of 5XFAD mice (an amyloid model). We observed that 5XFAD mice with a disrupted blood-brain barrier showed increased plaque-associated astrogliosis, microgliosis, and increased deposits of Aβ40 and Aβ42 after intravenous injection of PHF-tau proteins. In addition, an increased phosphotau immunoreactivity was observed in plaque-associated dystrophic neurites. These results suggest that blood products contaminated by PHF-tau proteins could potentially induce an exacerbation of neuroinflammation and AD pathologies.
Collapse
Affiliation(s)
- Sarah Houben
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie-Ange de Fisenne
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Virginie Vanden Dries
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Luc Poncelet
- Laboratory of Anatomy, Biomechanics and Organogenesis, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Salwa Mansour
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert De Decker
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
34
|
Abstract
Most neurodegenerative diseases are characterized by the intracellular or extracellular aggregation of misfolded proteins such as amyloid-β and tau in Alzheimer disease, α-synuclein in Parkinson disease, and TAR DNA-binding protein 43 in amyotrophic lateral sclerosis. Accumulating evidence from both human studies and disease models indicates that intercellular transmission and the subsequent templated amplification of these misfolded proteins are involved in the onset and progression of various neurodegenerative diseases. The misfolded proteins that are transferred between cells are referred to as 'pathological seeds'. Recent studies have made exciting progress in identifying the characteristics of different pathological seeds, particularly those isolated from diseased brains. Advances have also been made in our understanding of the molecular mechanisms that regulate the transmission process, and the influence of the host cell on the conformation and properties of pathological seeds. The aim of this Review is to summarize our current knowledge of the cell-to-cell transmission of pathological proteins and to identify key questions for future investigation.
Collapse
|
35
|
Thierry M, Boluda S, Delatour B, Marty S, Seilhean D, Potier MC, Duyckaerts C. Human subiculo-fornico-mamillary system in Alzheimer's disease: Tau seeding by the pillar of the fornix. Acta Neuropathol 2020; 139:443-461. [PMID: 31822997 DOI: 10.1007/s00401-019-02108-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
In Alzheimer's disease (AD), Tau and Aβ aggregates involve sequentially connected regions, sometimes distantly separated. These alterations were studied in the pillar of the fornix (PoF), an axonal tract, to analyse the role of axons in their propagation. The PoF axons mainly originate from the subicular neurons and project to the mamillary body. Forty-seven post-mortem cases at various Braak stages (Tau) and Thal phases (Aβ) were analysed by immunohistochemistry. The distribution of the lesions showed that the subiculum was affected before the mamillary body, but neither Tau aggregation nor Aβ deposition was consistently first. The subiculum and the mamillary body contained Gallyas positive neurofibrillary tangles, immunolabelled by AT8, TG3, PHF1, Alz50 and C3 Tau antibodies. In the PoF, only thin and fragmented threads were observed, exclusively in the cases with neurofibrillary tangles in the subiculum. The threads were made of Gallyas negative, AT8 and TG3 positive Tau. They were intra-axonal and devoid of paired helical filaments at electron microscopy. We tested PoF homogenates containing Tau AT8 positive axons in a Tau P301S biosensor HEK cell line and found a seeding activity. There was no Aβ immunoreactivity detected in the PoF. We could follow microcryodissected AT8 positive axons entering the mamillary body; contacts between Tau positive endings and Aβ positive diffuse or focal deposits were observed in CLARITY-cleared mamillary body. In conclusion, we show that non-fibrillary, hyperphosphorylated Tau is transported by the axons of the PoF from the subiculum to the mamillary body and has a seeding activity. Either Tau aggregation or Aβ accumulation may occur first in this system: this inconstant order is incompatible with a cause-and-effects relationship. However, both pathologies were correlated and intimately associated, indicating an interaction of the two processes, once initiated.
Collapse
Affiliation(s)
- Manon Thierry
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
- Laboratoire de Neuropathologie Raymond Escourolle, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, 47, Blvd de l'Hôpital, 75651, Paris Cedex 13, France
| | - Susana Boluda
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
- Laboratoire de Neuropathologie Raymond Escourolle, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, 47, Blvd de l'Hôpital, 75651, Paris Cedex 13, France
| | - Benoît Delatour
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
| | - Serge Marty
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
| | - Danielle Seilhean
- Laboratoire de Neuropathologie Raymond Escourolle, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, 47, Blvd de l'Hôpital, 75651, Paris Cedex 13, France
| | - Marie-Claude Potier
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
| | - Charles Duyckaerts
- Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France.
- Laboratoire de Neuropathologie Raymond Escourolle, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, 47, Blvd de l'Hôpital, 75651, Paris Cedex 13, France.
| |
Collapse
|
36
|
McAllister BB, Lacoursiere SG, Sutherland RJ, Mohajerani MH. Intracerebral seeding of amyloid-β and tau pathology in mice: Factors underlying prion-like spreading and comparisons with α-synuclein. Neurosci Biobehav Rev 2020; 112:1-27. [PMID: 31996301 DOI: 10.1016/j.neubiorev.2020.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is characterized neuropathologically by progressive neurodegeneration and by the presence of amyloid plaques and neurofibrillary tangles. These plaques and tangles are composed, respectively, of amyloid-beta (Aβ) and tau proteins. While long recognized as hallmarks of AD, it remains unclear what causes the formation of these insoluble deposits. One theory holds that prion-like templated misfolding of Aβ and tau induces these proteins to form pathological aggregates, and propagation of this misfolding causes the stereotyped progression of pathology commonly seen in AD. Supporting this theory, numerous studies have been conducted in which aggregated Aβ, tau, or α-synuclein is injected intracerebrally into pathology-free host animals, resulting in robust formation of pathology. Here, we review this literature, focusing on in vivo intracerebral seeding of Aβ and tau in mice. We compare the results of these experiments to what is known about the seeding and spread of α-synuclein pathology, and we discuss how this research informs our understanding of the factors underlying the onset, progression, and outcomes of proteinaceous pathologies.
Collapse
Affiliation(s)
- Brendan B McAllister
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Sean G Lacoursiere
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Robert J Sutherland
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This study, taking the example of Alzheimer's and Parkinson's diseases, presents the experimental and human data that support the hypothesis that Aβ, tau, and α-synuclein may seed and propagate the pathology and consider the potential clinical consequences. RECENT FINDINGS Aβ aggregates transmit Aβ pathology to experimental animals. Interhuman transmission of Aβ pathology has also been observed in iatrogenic Creutzfeldt-Jakob disease, or after dural graft. Tau aggregates also transmit the pathology to mice when injected in the brain and propagates along neuronal pathways. Evidence of interhuman transmission is weak. Finally α-synuclein aggregates, when injected in specific areas of the brain may recapitulate Lewy pathology of Parkinson's disease but there is currently no hint of human to human transmission. SUMMARY Since the first evidence that at least Aβ pathology of Alzheimer's disease could be transmitted to the animal, data have accumulated indicating that misfolded proteins characteristic of neurodegenerative diseases may seed and propagate pathology in a prion-like manner. The term propagon has been proposed to describe those proteins that act as prions at different levels. Taking the example of Alzheimer's and Parkinson's diseases, the experimental and human data supporting the hypothesis that Aβ, tau, and α-synuclein are indeed propagons are presented with their clinical consequences.
Collapse
|
38
|
Clavaguera F, Duyckaerts C, Haïk S. Prion-like properties of Tau assemblies. Curr Opin Neurobiol 2020; 61:49-57. [PMID: 31923760 DOI: 10.1016/j.conb.2019.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
Emerging evidences linking pathological mechanisms of prions and tauopathies are accumulating. However, Tau assemblies do not yet fulfill all the criteria of prions. Here, we review recent data pointing similarities between prions and tauopathies and discuss the still existing uncertainties.
Collapse
Affiliation(s)
- Florence Clavaguera
- Sorbonne Université, INSERM, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.
| | - Charles Duyckaerts
- Sorbonne Université, INSERM, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; AP-HP, Hôpital de la Pitié-Salpêtrière, Laboratoire de Neuropathologie R Escourolle, Paris, France
| | - Stéphane Haïk
- Sorbonne Université, INSERM, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; AP-HP, Hôpital de la Pitié-Salpêtrière, Laboratoire de Neuropathologie R Escourolle, Paris, France; AP-HP, Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
39
|
Seilhean D. Neuropathology in Pitié-Salpêtrière hospital: Past, present and prospect. Neuropathology 2019; 40:3-13. [PMID: 31802544 DOI: 10.1111/neup.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 11/30/2022]
Abstract
Pitié and La Salpêtrière, both founded in the17th century, were for long two distinct hospitals until they merged in 1964. The name La Salpêtrière is inherited from the initial purpose of the buildings designed to produce saltpeter for gun powder. But the place was soon transformed into an asylum to shelter the poor and the insane. From the care of this underprivileged population, alienists such as Pinel have paved the way for modern medicine for the mentally ill at the time of the French Revolution. In the second half of the 19th century, Jean-Martin Charcot and his students laid the foundations of modern neurology from the observation of the large population hosted in La Salpêtrière, mostly women with severe chronic diseases. Charcot led clinicopathological studies in almost all the fields of nervous system disorders. His successors (including Raymond, Dejerine, Pierre Marie) maintained the same close relationship between clinical neurology and neuropathology. In parallel with the development of neurosurgery at Pitié hospital, neuropathology first spread through small laboratories attached to clinical departments. The merger of the two hospitals in the early '60s coincided with the creation of a large university hospital in which the care and study of diseases of the nervous system were preponderant. An independent laboratory of neuropathology was created, led by Raymond Escourolle. This period was on the eve of important developments in neuroscience around the world. Today, the Pitié-Salpêtrière neuropathology laboratory still plays a central role between neurology and neurosurgery clinics and major research institutes such as the Brain Institute, callled Institut du Cerveau et de la Moelle (ICM), and the Institute of Myology.
Collapse
Affiliation(s)
- Danielle Seilhean
- Raymond Escourolle Department of Neuropathology, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| |
Collapse
|
40
|
Mrdjen D, Fox EJ, Bukhari SA, Montine KS, Bendall SC, Montine TJ. The basis of cellular and regional vulnerability in Alzheimer's disease. Acta Neuropathol 2019; 138:729-749. [PMID: 31392412 PMCID: PMC6802290 DOI: 10.1007/s00401-019-02054-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) differentially and specifically affects brain regions and neuronal cell types in a predictable pattern. Damage to the brain appears to spread and worsens with time, taking over more regions and activating multiple stressors that can converge to promote vulnerability of certain cell types. At the same time, other cell types and brain regions remain intact in the face of this onslaught of neuropathology. Although neuropathologic descriptions of AD have been extensively expanded and mapped over the last several decades, our understanding of the mechanisms underlying how certain regions and cell populations are specifically vulnerable or resistant has lagged behind. In this review, we detail what is known about the selectivity of local initiation of AD pathology in the hippocampus, its proposed spread via synaptic connections, and the diversity of clinical phenotypes and brain atrophy patterns that may arise from different fibrillar strains of pathologic proteins or genetic predispositions. We summarize accumulated and emerging knowledge of the cellular and molecular basis for neuroanatomic selectivity, consider potential disease-relevant differences between vulnerable and resistant neuronal cell types and isolate molecular markers to identify them.
Collapse
Affiliation(s)
- Dunja Mrdjen
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Edward J Fox
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Syed A Bukhari
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Kathleen S Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sean C Bendall
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
41
|
Ezpeleta J, Baudouin V, Arellano-Anaya ZE, Boudet-Devaud F, Pietri M, Baudry A, Haeberlé AM, Bailly Y, Kellermann O, Launay JM, Schneider B. Production of seedable Amyloid-β peptides in model of prion diseases upon PrP Sc-induced PDK1 overactivation. Nat Commun 2019; 10:3442. [PMID: 31371707 PMCID: PMC6672003 DOI: 10.1038/s41467-019-11333-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
The presence of amyloid beta (Aβ) plaques in the brain of some individuals with Creutzfeldt-Jakob or Gertsmann-Straussler-Scheinker diseases suggests that pathogenic prions (PrPSc) would have stimulated the production and deposition of Aβ peptides. We here show in prion-infected neurons and mice that deregulation of the PDK1-TACE α-secretase pathway reduces the Amyloid Precursor Protein (APP) α-cleavage in favor of APP β-processing, leading to Aβ40/42 accumulation. Aβ predominates as monomers, but is also found as trimers and tetramers. Prion-induced Aβ peptides do not affect prion replication and infectivity, but display seedable properties as they can deposit in the mouse brain only when seeds of Aβ trimers are co-transmitted with PrPSc. Importantly, brain Aβ deposition accelerates death of prion-infected mice. Our data stress that PrPSc, through deregulation of the PDK1-TACE-APP pathway, provokes the accumulation of Aβ, a prerequisite for the onset of an Aβ seeds-induced Aβ pathology within a prion-infectious context. Aβ plaques have been detected in brains of patients with prion diseases. Here, using mice, the authors show that prion infection enhances Aβ production via a PDK1-TACE mechanism and that brain deposition of Aβ induced by Aβ seeds co-transmitted with PrPSc contributes to mortality in prion disease.
Collapse
Affiliation(s)
- Juliette Ezpeleta
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France.,INSERM, UMR 1124, 75006, Paris, France
| | - Vincent Baudouin
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France.,INSERM, UMR 1124, 75006, Paris, France
| | - Zaira E Arellano-Anaya
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France.,INSERM, UMR 1124, 75006, Paris, France
| | - François Boudet-Devaud
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France.,INSERM, UMR 1124, 75006, Paris, France
| | - Mathéa Pietri
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France.,INSERM, UMR 1124, 75006, Paris, France
| | - Anne Baudry
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France.,INSERM, UMR 1124, 75006, Paris, France
| | - Anne-Marie Haeberlé
- Trafic Membranaire dans les Cellules du Système Nerveux, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 67000, Strasbourg, France
| | - Yannick Bailly
- Trafic Membranaire dans les Cellules du Système Nerveux, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 67000, Strasbourg, France
| | - Odile Kellermann
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France.,INSERM, UMR 1124, 75006, Paris, France
| | - Jean-Marie Launay
- Assistance Publique des Hôpitaux de Paris, INSERM UMR 942, Hôpital Lariboisière, 75010, Paris, France. .,Pharma Research Department, Hoffmann La Roche Ltd, 4070, Basel, Switzerland.
| | - Benoit Schneider
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, 75006, Paris, France. .,INSERM, UMR 1124, 75006, Paris, France.
| |
Collapse
|
42
|
Derkinderen P. Could it be that neurodegenerative diseases are infectious? Rev Neurol (Paris) 2019; 175:427-430. [PMID: 31358351 DOI: 10.1016/j.neurol.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
The cell-to-cell transmission of the major pathogenic proteins of Parkinson's disease and Alzheimer's disease is reminiscent of the prion protein, which is defined as a proteinaceous infectious particle that causes human and animal transmissible spongiform encephalopathies. The possibility has raised that the pathogenic proteins of Parkinson's and Alzheimer's disease are infectious, i.e. that they can transmit disease from human to human. In this review, we address this question by comparing the similarities and differences between Alzheimer's disease/Parkinson's disease pathological proteins and prions and by discussing the possible consequences for disease transmission risk.
Collapse
Affiliation(s)
- P Derkinderen
- Department of Neurology, CHU de Nantes, boulevard Jacques-Monod, 44093 Nantes, France.
| |
Collapse
|
43
|
Abstract
Prion diseases are progressive, incurable and fatal neurodegenerative conditions. The term 'prion' was first nominated to express the revolutionary concept that a protein could be infectious. We now know that prions consist of PrPSc, the pathological aggregated form of the cellular prion protein PrPC. Over the years, the term has been semantically broadened to describe aggregates irrespective of their infectivity, and the prion concept is now being applied, perhaps overenthusiastically, to all neurodegenerative diseases that involve protein aggregation. Indeed, recent studies suggest that prion diseases (PrDs) and protein misfolding disorders (PMDs) share some common disease mechanisms, which could have implications for potential treatments. Nevertheless, the transmissibility of bona fide prions is unique, and PrDs should be considered as distinct from other PMDs.
Collapse
Affiliation(s)
- Claudia Scheckel
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
44
|
Yamada M, Hamaguchi T, Sakai K. Acquired cerebral amyloid angiopathy: An emerging concept. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:85-95. [PMID: 31699330 DOI: 10.1016/bs.pmbts.2019.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is commonly found in older people and in patients with Alzheimer's disease (AD) accompanying cerebrovascular disorders and dementia. Early-onset CAA cases generally have been found only in rare genetic forms of CAA. Interestingly, however, CAA-related hemorrhages have been recently reported in younger people who had histories of neurosurgery with or without evidence of cadaveric dura mater grafts in childhood. It has been established in experimental settings that amyloid β-protein (Aβ) pathology can be transmitted inter-individually with Aβ seeds. Incidental Aβ pathology, predominantly Aβ-CAA, has been recognized in recipients of cadaveric dura mater grafts or cadaveric human growth hormone. These findings suggest that transmission of Aβ seeds through dura mater grafts and other contaminated materials could lead to development of CAA. In addition, neurosurgery or brain injury may contribute to cerebrovascular Aβ deposition through the disturbance of vascular Aβ drainage pathways. Thus, a novel concept, "acquired CAA," has emerged.
Collapse
Affiliation(s)
- Masahito Yamada
- Department of Neurology & Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Tsuyoshi Hamaguchi
- Department of Neurology & Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kenji Sakai
- Department of Neurology & Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
45
|
Rossi M, Kai H, Baiardi S, Bartoletti-Stella A, Carlà B, Zenesini C, Capellari S, Kitamoto T, Parchi P. The characterization of AD/PART co-pathology in CJD suggests independent pathogenic mechanisms and no cross-seeding between misfolded Aβ and prion proteins. Acta Neuropathol Commun 2019; 7:53. [PMID: 30961668 PMCID: PMC6454607 DOI: 10.1186/s40478-019-0706-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
Current evidence indicating a role of the human prion protein (PrP) in amyloid-beta (Aβ) formation or a synergistic effect between Aβ and prion pathology remains controversial. Conflicting results also concern the frequency of the association between the two protein misfolding disorders and the issue of whether the apolipoprotein E gene (APOE) and the prion protein gene (PRNP), the major modifiers of Aβ- and PrP-related pathologies, also have a pathogenic role in other proteinopathies, including tau neurofibrillary degeneration. Here, we thoroughly characterized the Alzheimer's disease/primary age-related tauopathy (AD/PART) spectrum in a series of 450 cases with definite sporadic or genetic Creutzfeldt-Jakob disease (CJD). Moreover, we analyzed: (i) the effect of variables known to affect CJD pathogenesis and the co-occurring Aβ- and tau-related pathologies; (II) the influence of APOE genotype on CJD pathology, and (III) the effect of AD/PART co-pathology on the clinical CJD phenotype. AD/PART characterized 74% of CJD brains, with 53.3% and 8.2% showing low or intermediate-high levels of AD pathology, and 12.4 and 11.8% definite or possible PART. There was no significant correlation between variables affecting CJD (i.e., disease subtype, prion strain, PRNP genotype) and those defining the AD/PART spectrum (i.e., ABC score, Thal phase, prevalence of CAA and Braak stage), and no difference in the distribution of APOE ε4 and ε2 genotypes among CJD subtypes. Moreover, AD/PART co-pathology did not significantly affect the clinical presentation of typical CJD, except for a tendency to increase the frequency of cognitive symptoms. Altogether, the present results seem to exclude an increased prevalence AD/PART co-pathology in sporadic and genetic CJD, and indicate that largely independent pathogenic mechanisms drive AD/PART and CJD pathology even when they coexist in the same brain.
Collapse
Affiliation(s)
- Marcello Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Hideaki Kai
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
- Department of Neurological Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Bartoletti-Stella
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Benedetta Carlà
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Tetsuyuki Kitamoto
- Department of Neurological Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| |
Collapse
|
46
|
De Sousa PA, Ritchie D, Green A, Chandran S, Knight R, Head MW. Renewed assessment of the risk of emergent advanced cell therapies to transmit neuroproteinopathies. Acta Neuropathol 2019; 137:363-377. [PMID: 30483944 PMCID: PMC6514076 DOI: 10.1007/s00401-018-1941-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 12/18/2022]
Abstract
The inadvertent transmission of long incubating, untreatable and fatal neurodegenerative prionopathies, notably iatrogenic Creutzfeldt–Jakob disease, following transplantation of cadaver-derived corneas, pituitary growth, hormones and dura mater, constitutes a historical precedent which has underpinned the application of precautionary principles to modern day advanced cell therapies. To date these have been reflected by geographic or medical history risk-based deferral of tissue donors. Emergent understanding of other prion-like proteinopathies, their potential independence from prions as a transmissible agent and the variable capability of scalably manufacturable stem cells and derivatives to take up and clear or to propagate prions, substantiate further commitment to qualifying neurodegenerative proteinopathy transmission risks. This is especially so for those involving direct or facilitated access to a recipient’s brain or connected visual or nervous system such as for the treatment of stroke, retinal and adult onset neurodegenerative diseases, treatments for which have already commenced. In this review, we assess the prospective global dissemination of advanced cell therapies founded on transplantation or exposure to allogeneic human cells, recap lessons learned from the historical precedents of CJD transmission and review recent advances and current limits in understanding of prion and other neurodegenerative disease prion-like susceptibility and transmission. From these we propose grounds for a reassessment of the risks of emergent advanced cell therapies to transmit neuroproteinopathies and suggestions to ACT developers and regulators for risk mitigation and extension of criteria for deferrals.
Collapse
|
47
|
Baiardi S, Rossi M, Capellari S, Parchi P. Recent advances in the histo-molecular pathology of human prion disease. Brain Pathol 2019; 29:278-300. [PMID: 30588685 DOI: 10.1111/bpa.12695] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are progressive neurodegenerative disorders affecting humans and other mammalian species. The term prion, originally put forward to propose the concept that a protein could be infectious, refers to PrPSc , a misfolded isoform of the cellular prion protein (PrPC ) that represents the pathogenetic hallmark of these disorders. The discovery that other proteins characterized by misfolding and seeded aggregation can spread from cell to cell, similarly to PrPSc , has increased interest in prion diseases. Among neurodegenerative disorders, however, prion diseases distinguish themselves for the broader phenotypic spectrum, the fastest disease progression and the existence of infectious forms that can be transmitted through the exposure to diseased tissues via ingestion, injection or transplantation. The main clinicopathological phenotypes of human prion disease include Creutzfeldt-Jakob disease, by far the most common, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann-Sträussler-Scheinker disease. However, clinicopathological manifestations extend even beyond those predicted by this classification. Because of their transmissibility, the phenotypic diversity of prion diseases can also be propagated into syngenic hosts as prion strains with distinct characteristics, such as incubation period, pattern of PrPSc distribution and regional severity of histopathological changes in the brain. Increasing evidence indicates that different PrPSc conformers, forming distinct ordered aggregates, encipher the phenotypic variants related to prion strains. In this review, we summarize the most recent advances concerning the histo-molecular pathology of human prion disease focusing on the phenotypic spectrum of the disease including co-pathologies, the characterization of prion strains by experimental transmission and their correlation with the physicochemical properties of PrPSc aggregates.
Collapse
Affiliation(s)
- Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
48
|
|
49
|
‘Transmissible’ Alzheimer’s theory gains traction. Nature 2018. [DOI: 10.1038/d41586-018-07735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Purro SA, Farrow MA, Linehan J, Nazari T, Thomas DX, Chen Z, Mengel D, Saito T, Saido T, Rudge P, Brandner S, Walsh DM, Collinge J. Transmission of amyloid-β protein pathology from cadaveric pituitary growth hormone. Nature 2018; 564:415-419. [PMID: 30546139 PMCID: PMC6708408 DOI: 10.1038/s41586-018-0790-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023]
Abstract
We previously reported1 the presence of amyloid-β protein (Aβ) deposits in individuals with Creutzfeldt-Jakob disease (CJD) who had been treated during childhood with human cadaveric pituitary-derived growth hormone (c-hGH) contaminated with prions. The marked deposition of parenchymal and vascular Aβ in these relatively young individuals with treatment-induced (iatrogenic) CJD (iCJD), in contrast to other prion-disease patients and population controls, allied with the ability of Alzheimer's disease brain homogenates to seed Aβ deposition in laboratory animals, led us to argue that the implicated c-hGH batches might have been contaminated with Aβ seeds as well as with prions. However, this was necessarily an association, and not an experimental, study in humans and causality could not be concluded. Given the public health importance of our hypothesis, we proceeded to identify and biochemically analyse archived vials of c-hGH. Here we show that certain c-hGH batches to which patients with iCJD and Aβ pathology were exposed have substantial levels of Aβ40, Aβ42 and tau proteins, and that this material can seed the formation of Aβ plaques and cerebral Aβ-amyloid angiopathy in intracerebrally inoculated mice expressing a mutant, humanized amyloid precursor protein. These results confirm the presence of Aβ seeds in archived c-hGH vials and are consistent with the hypothesized iatrogenic human transmission of Aβ pathology. This experimental confirmation has implications for both the prevention and the treatment of Alzheimer's disease, and should prompt a review of the risk of iatrogenic transmission of Aβ seeds by medical and surgical procedures long recognized to pose a risk of accidental prion transmission2,3.
Collapse
Affiliation(s)
- Silvia A Purro
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - Mark A Farrow
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | | | - Tamsin Nazari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - David X Thomas
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - Zhicheng Chen
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David Mengel
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Japan
| | - Peter Rudge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - Sebastian Brandner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Dominic M Walsh
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK.
| |
Collapse
|