1
|
Gritsch D, Brastianos PK. Molecular evolution of central nervous system metastasis and therapeutic implications. Trends Mol Med 2024:S1471-4914(24)00265-X. [PMID: 39424530 DOI: 10.1016/j.molmed.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
The increasing prevalence and poor prognosis of central nervous system (CNS) metastases pose a significant challenge in oncology, necessitating improved therapeutic strategies. Recent research has shed light on the complex genomic landscape of brain metastases, identifying unique and potentially actionable genetic alterations. These insights offer new avenues for targeted therapy, highlighting the potential of precision medicine approaches in treating CNS metastases. However, translating these discoveries into clinical practice requires overcoming challenges such as availability of tissue for characterization, access to molecular testing, drug delivery across the blood-brain barrier (BBB) and addressing intra- and intertumoral genetic heterogeneity. This review explores novel insights into the evolution of CNS metastases, the molecular mechanisms underlying their development, and implications for therapeutic interventions.
Collapse
Affiliation(s)
- David Gritsch
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Yuzhalin AE, Lowery FJ, Saito Y, Yuan X, Yao J, Duan Y, Ding J, Acharya S, Zhang C, Fajardo A, Chen HN, Wei Y, Sun Y, Zhang L, Xiao Y, Li P, Lorenzi PL, Huse JT, Fan H, Zhao Z, Hung MC, Yu D. Astrocyte-induced Cdk5 expedites breast cancer brain metastasis by suppressing MHC-I expression to evade immune recognition. Nat Cell Biol 2024; 26:1773-1789. [PMID: 39304713 DOI: 10.1038/s41556-024-01509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
Brain metastases (BrMs) evade the immune response to develop in the brain, yet the mechanisms of BrM immune evasion remains unclear. This study shows that brain astrocytes induce the overexpression of neuronal-specific cyclin-dependent kinase 5 (Cdk5) in breast cancer-derived BrMs, which facilitates BrM outgrowth in mice. Cdk5-overexpressing BrMs exhibit reduced expression and function of the class I major histocompatibility complex (MHC-I) and antigen-presentation pathway, which are restored by inhibiting Cdk5 genetically or pharmacologically, as evidenced by single-cell RNA sequencing and functional studies. Mechanistically, Cdk5 suppresses MHC-I expression on the cancer cell membrane through the Irf2bp1-Stat1-importin α-Nlrc5 pathway, enabling BrMs to avoid recognition by T cells. Treatment with roscovitine-a clinically applicable Cdk5 inhibitor-alone or combined with immune checkpoint inhibitors, significantly reduces BrM burden and increases tumour-infiltrating functional CD8+ lymphocytes in mice. Thus, astrocyte-induced Cdk5 overexpression endorses BrM immune evasion, whereas therapeutically targeting Cdk5 markedly improves the efficacy of immune checkpoint inhibitors and inhibits BrM growth.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank J Lowery
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yohei Saito
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangliang Yuan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yimin Duan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingzhen Ding
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Acharya
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chenyu Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abigail Fajardo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hao-Nien Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huihui Fan
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX, USA
- John P and Katherine G McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung City, Taiwan
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Wu Y, Yang F, Luo S, Li X, Gu Z, Fan R, Cao Y, Wang L, Song X. Single-cell RNA sequencing reveals epithelial cells driving brain metastasis in lung adenocarcinoma. iScience 2024; 27:109258. [PMID: 38433899 PMCID: PMC10905006 DOI: 10.1016/j.isci.2024.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Brain metastases (BM) of lung adenocarcinoma (LUAD) are the most common intracranial malignancy leading to death. However, the cellular origins and drivers of BM from LUAD have not been clarified. Cellular composition was characterized by single-cell sequencing analysis of primary lung adenocarcinoma (pLUAD), BM and lymph node metastasis (LNM) samples in GSE131907. Our study briefly analyzed the tumor microenvironment (TME), focusing on the role of epithelial cells (ECs) in BM. We have discovered a population of brain metastasis-associated epithelial cells (BMAECs) expressing SPP1, SAA1, and CDKN2A, and it has been observed that this population is mainly composed of aneuploid cells from pLUAD, playing a crucial role in brain metastasis. Our study concluded that both LNM and BM in LUAD originated from pLUAD lesions, but there is currently insufficient evidence to prove a direct association between BM lesions and LNM lesions, which provides inspiration for further investigation of the TME in BM.
Collapse
Affiliation(s)
- Yonghui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujun Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shilan Luo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhan Gu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Fan
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yajuan Cao
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lixin Wang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Hasanov E, Jonasch E. Management of Brain Metastases in Metastatic Renal Cell Carcinoma. Hematol Oncol Clin North Am 2023; 37:1005-1014. [PMID: 37270383 DOI: 10.1016/j.hoc.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The development of brain metastases is a poor prognostic indicator in renal cell carcinoma. Regular imaging and clinical examinations are necessary to monitor the brain before or during systemic therapy. Central nervous system-targeted radiation therapy, including stereotactic radiosurgery, whole-brain radiation therapy, and surgical resection, is a standard treatment option. Clinical trials are currently investigating the role of targeted therapy and immune checkpoint inhibitor combinations in treating brain metastases and decreasing intracranial disease progression.
Collapse
Affiliation(s)
- Elshad Hasanov
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard FC11.3055, Houston, TX 77030, USA.
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard Unit 1374, Houston, TX 77030, USA.
| |
Collapse
|
5
|
El-Botty R, Morriset L, Montaudon E, Tariq Z, Schnitzler A, Bacci M, Lorito N, Sourd L, Huguet L, Dahmani A, Painsec P, Derrien H, Vacher S, Masliah-Planchon J, Raynal V, Baulande S, Larcher T, Vincent-Salomon A, Dutertre G, Cottu P, Gentric G, Mechta-Grigoriou F, Hutton S, Driouch K, Bièche I, Morandi A, Marangoni E. Oxidative phosphorylation is a metabolic vulnerability of endocrine therapy and palbociclib resistant metastatic breast cancers. Nat Commun 2023; 14:4221. [PMID: 37452026 PMCID: PMC10349040 DOI: 10.1038/s41467-023-40022-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Resistance to endocrine treatments and CDK4/6 inhibitors is considered a near-inevitability in most patients with estrogen receptor positive breast cancers (ER + BC). By genomic and metabolomics analyses of patients' tumours, metastasis-derived patient-derived xenografts (PDX) and isogenic cell lines we demonstrate that a fraction of metastatic ER + BC is highly reliant on oxidative phosphorylation (OXPHOS). Treatment by the OXPHOS inhibitor IACS-010759 strongly inhibits tumour growth in multiple endocrine and palbociclib resistant PDX. Mutations in the PIK3CA/AKT1 genes are significantly associated with response to IACS-010759. At the metabolic level, in vivo response to IACS-010759 is associated with decreased levels of metabolites of the glutathione, glycogen and pentose phosphate pathways in treated tumours. In vitro, endocrine and palbociclib resistant cells show increased OXPHOS dependency and increased ROS levels upon IACS-010759 treatment. Finally, in ER + BC patients, high expression of OXPHOS associated genes predict poor prognosis. In conclusion, these results identify OXPHOS as a promising target for treatment resistant ER + BC patients.
Collapse
Affiliation(s)
- Rania El-Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Ludivine Morriset
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Elodie Montaudon
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Zakia Tariq
- Department of Genetics, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Anne Schnitzler
- Department of Genetics, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Marina Bacci
- Dept. of Experimental and Clinical Biomedical Sciences, Viale Morgagni, 50 - 50134, Florence, Italy
| | - Nicla Lorito
- Dept. of Experimental and Clinical Biomedical Sciences, Viale Morgagni, 50 - 50134, Florence, Italy
| | - Laura Sourd
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Léa Huguet
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Pierre Painsec
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Heloise Derrien
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | | | - Virginie Raynal
- ICGex - NGS platform, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Sylvain Baulande
- ICGex - NGS platform, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Thibaut Larcher
- INRA, APEX-PAnTher, Oniris, 44322, Rue de la Géraudière, Nantes, France
| | - Anne Vincent-Salomon
- Department of Pathology, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Guillaume Dutertre
- Department of Surgery, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Paul Cottu
- Department of Medical Oncology, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Géraldine Gentric
- "Stress and Cancer" Laboratory, Institut Curie - Inserm U830, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Fatima Mechta-Grigoriou
- "Stress and Cancer" Laboratory, Institut Curie - Inserm U830, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Scott Hutton
- Metabolon Inc., 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Keltouma Driouch
- Department of Genetics, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France
- Paris City University, Inserm U1016, Faculty of Pharmaceutical and Biological Sciences, 75005, Paris, France
| | - Andrea Morandi
- Dept. of Experimental and Clinical Biomedical Sciences, Viale Morgagni, 50 - 50134, Florence, Italy
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
6
|
Najjary S, Kros JM, de Koning W, Vadgama D, Lila K, Wolf J, Mustafa DAM. Tumor lineage-specific immune response in brain metastatic disease: opportunities for targeted immunotherapy regimen? Acta Neuropathol Commun 2023; 11:64. [PMID: 37061716 PMCID: PMC10105417 DOI: 10.1186/s40478-023-01542-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/05/2023] [Indexed: 04/17/2023] Open
Abstract
Metastases in the brain are the most severe and devastating complication of cancer. The incidence of brain metastasis is increasing. Therefore, the need of finding specific druggable targets for brain metastasis is demanding. The aim of this study was to compare the brain (immune) response to brain metastases of the most common tumor lineages, viz., lung adenocarcinoma and breast cancer. Targeted gene expression profiles of 11 brain metastasis of lung adenocarcinoma (BM-LUAD) were compared to 11 brain metastasis of breast cancer (BCBM) using NanoString nCounter PanCancer IO 360™ Panel. The most promising results were validated spatially using the novel GeoMx™ Digital Spatial Profiler (DSP) Technology. Additionally, Immune cell profiles and expression of drug targets were validated by multiplex immunohistochemistry. We found a more active immune response in BM-LUAD as compared to BCBM. In the BM-LUAD, 138 genes were upregulated as compared to BCBM (adj. p ≤ 0.05). Conversely, in BCBM 28 genes were upregulated (adj. p ≤ 0.05). Additionally, genes related to CD45 + cells, T cells, and cytotoxic T cells showed to be expressed higher in BM-LUAD compared to BCBM (adj. p = 0.01, adj. p = 0.023, adj. p = 0.023, respectively). The spatial quantification of the immune cells using the GeoMx DSP technique revealed the significantly higher quantification of CD14 and CD163 in tumor regions of BM-LUAD as compared to BCBM. Importantly, the immune checkpoint VISTA and IDO1 were identified as highly expressed in the BM-LUAD. Multiplex immunohistochemistry confirmed the finding and showed that VISTA is expressed mainly in BM-LUAD tumor cells, CD3 + cells, and to fewer levels in some microglial cells in BM-LUAD. This is the first report on differences in the brain immune response between metastatic tumors of different lineages. We found a far more extensive infiltration of immune cells in BM-LUAD as compared to BCBM. In addition, we found higher expression of VISTA and IDO1 in BM-LUAD. Taken together, targeted immune therapy should be considered to treat patients with BM-LUAD.
Collapse
Affiliation(s)
- Shiva Najjary
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Willem de Koning
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Disha Vadgama
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Karishma Lila
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Janina Wolf
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Tissue Medicine and Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Dana A M Mustafa
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Alimonti P, Gonzalez Castro LN. The Current Landscape of Immune Checkpoint Inhibitor Immunotherapy for Primary and Metastatic Brain Tumors. Antibodies (Basel) 2023; 12:antib12020027. [PMID: 37092448 PMCID: PMC10123751 DOI: 10.3390/antib12020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Antibodies against immune checkpoint inhibitors (ICIs) have revolutionized the treatment of multiple aggressive malignancies, including melanoma and non-small cell lung cancer. ICIs for the treatment of primary and metastatic brain tumors have been used with varying degrees of success. Here, we discuss the available evidence for the use of ICIs in the treatment of primary and metastatic brain tumors, highlighting challenges and opportunities for furthering this type of cancer immunotherapy in neuro-oncology.
Collapse
Affiliation(s)
- Paolo Alimonti
- Department of Medicine, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milano, Italy
| | - L Nicolas Gonzalez Castro
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
8
|
Álvarez-Prado ÁF, Maas RR, Soukup K, Klemm F, Kornete M, Krebs FS, Zoete V, Berezowska S, Brouland JP, Hottinger AF, Daniel RT, Hegi ME, Joyce JA. Immunogenomic analysis of human brain metastases reveals diverse immune landscapes across genetically distinct tumors. Cell Rep Med 2023; 4:100900. [PMID: 36652909 PMCID: PMC9873981 DOI: 10.1016/j.xcrm.2022.100900] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/20/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
Brain metastases (BrMs) are the most common form of brain tumors in adults and frequently originate from lung and breast primary cancers. BrMs are associated with high mortality, emphasizing the need for more effective therapies. Genetic profiling of primary tumors is increasingly used as part of the effort to guide targeted therapies against BrMs, and immune-based strategies for the treatment of metastatic cancer are gaining momentum. However, the tumor immune microenvironment (TIME) of BrM is extremely heterogeneous, and whether specific genetic profiles are associated with distinct immune states remains unknown. Here, we perform an extensive characterization of the immunogenomic landscape of human BrMs by combining whole-exome/whole-genome sequencing, RNA sequencing of immune cell populations, flow cytometry, immunofluorescence staining, and tissue imaging analyses. This revealed unique TIME phenotypes in genetically distinct lung- and breast-BrMs, thereby enabling the development of personalized immunotherapies tailored by the genetic makeup of the tumors.
Collapse
Affiliation(s)
- Ángel F Álvarez-Prado
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center, 1011 Lausanne, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Roeltje R Maas
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center, 1011 Lausanne, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Klara Soukup
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Florian Klemm
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Mara Kornete
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center, 1011 Lausanne, Switzerland
| | - Fanny S Krebs
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vincent Zoete
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sabina Berezowska
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jean-Philippe Brouland
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland; Brain and Spine Tumor Center, Departments of Clinical Neurosciences and Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roy T Daniel
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Monika E Hegi
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center, 1011 Lausanne, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland.
| |
Collapse
|
9
|
Andrews LJ, Thornton ZA, Saleh R, Dawson S, Short SC, Daly R, Higgins JPT, Davies P, Kurian KM. Genomic landscape and actionable mutations of brain metastases derived from non-small cell lung cancer: A systematic review. Neurooncol Adv 2023; 5:vdad145. [PMID: 38130901 PMCID: PMC10734675 DOI: 10.1093/noajnl/vdad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Brain metastases derived from non-small cell lung cancer (NSCLC) represent a significant clinical problem. We aim to characterize the genomic landscape of brain metastases derived from NSCLC and assess clinical actionability. Methods We searched Embase, MEDLINE, Web of Science, and BIOSIS from inception to 18/19 May 2022. We extracted information on patient demographics, smoking status, genomic data, matched primary NSCLC, and programmed cell death ligand 1 expression. Results We found 72 included papers and data on 2346 patients. The most frequently mutated genes from our data were EGFR (n = 559), TP53 (n = 331), KRAS (n = 328), CDKN2A (n = 97), and STK11 (n = 72). Common missense mutations included EGFR L858R (n = 80) and KRAS G12C (n = 17). Brain metastases of ever versus never smokers had differing missense mutations in TP53 and EGFR, except for L858R and T790M in EGFR, which were seen in both subgroups. Of the top 10 frequently mutated genes that had primary NSCLC data, we found 37% of the specific mutations assessed to be discordant between the primary NSCLC and brain metastases. Conclusions To our knowledge, this is the first systematic review to describe the genomic landscape of brain metastases derived from NSCLC. These results provide a comprehensive outline of frequently mutated genes and missense mutations that could be clinically actionable. These data also provide evidence of differing genomic landscapes between ever versus never smokers and primary NSCLC compared to the BM. This information could have important consequences for the selection and development of targeted drugs for these patients.
Collapse
Affiliation(s)
- Lily J Andrews
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, UK
| | - Zak A Thornton
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, UK
| | - Ruqiya Saleh
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Susan C Short
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Richard Daly
- Cellular Pathology Department, North Bristol NHS Trust, Bristol, UK
| | - Julian P T Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Philippa Davies
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, UK
| | - Kathreena M Kurian
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, UK
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
10
|
Molecular Mechanisms Driving the Formation of Brain Metastases. Cancers (Basel) 2022; 14:cancers14194963. [PMID: 36230886 PMCID: PMC9563727 DOI: 10.3390/cancers14194963] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Brain metastases are the most common brain tumor in adults and are associated with poor prognosis. The propensity of different solid tumors to metastasize varies greatly, with lung, breast, and melanoma primary tumors commonly leading to brain metastases, while other primaries such as prostate rarely metastasize to the brain. The molecular mechanisms that predispose and facilitate brain metastasis development are poorly understood. In this review, we present the current data on the genomic landscape of brain metastases that arise from various primary cancers and also outline potential molecular mechanisms that drive the formation of distant metastases in the brain. Abstract Targeted therapies for cancers have improved primary tumor response rates, but concomitantly, brain metastases (BM) have become the most common brain tumors in adults and are associated with a dismal prognosis of generally less than 6 months, irrespective of the primary cancer type. They most commonly occur in patients with primary breast, lung, or melanoma histologies; however, they also appear in patients with other primary cancers including, but not limited to, prostate cancer, colorectal cancer, and renal cell carcinoma. Historically, molecular biomarkers have normally been identified from primary tumor resections. However, clinically informative genomic alterations can occur during BM development and these potentially actionable alterations are not always detected in the primary tumor leading to missed opportunities for effective targeted therapy. The molecular mechanisms that facilitate and drive metastasis to the brain are poorly understood. Identifying the differences between the brain and other extracranial sties of metastasis, and between primary tumors and BM, is essential to improving our understanding of BM development and ultimately patient management and survival. In this review, we present the current data on the genomic landscape of BM from various primary cancers which metastasize to the brain and outline potential mechanisms which may play a role in promoting the formation of the distant metastases in the brain.
Collapse
|
11
|
Aizer AA, Lamba N, Ahluwalia MS, Aldape K, Boire A, Brastianos PK, Brown PD, Camidge DR, Chiang VL, Davies MA, Hu LS, Huang RY, Kaufmann T, Kumthekar P, Lam K, Lee EQ, Lin NU, Mehta M, Parsons M, Reardon DA, Sheehan J, Soffietti R, Tawbi H, Weller M, Wen PY. Brain metastases: A Society for Neuro-Oncology (SNO) consensus review on current management and future directions. Neuro Oncol 2022; 24:1613-1646. [PMID: 35762249 PMCID: PMC9527527 DOI: 10.1093/neuonc/noac118] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Brain metastases occur commonly in patients with advanced solid malignancies. Yet, less is known about brain metastases than cancer-related entities of similar incidence. Advances in oncologic care have heightened the importance of intracranial management. Here, in this consensus review supported by the Society for Neuro-Oncology (SNO), we review the landscape of brain metastases with particular attention to management approaches and ongoing efforts with potential to shape future paradigms of care. Each coauthor carried an area of expertise within the field of brain metastases and initially composed, edited, or reviewed their specific subsection of interest. After each subsection was accordingly written, multiple drafts of the manuscript were circulated to the entire list of authors for group discussion and feedback. The hope is that the these consensus guidelines will accelerate progress in the understanding and management of patients with brain metastases, and highlight key areas in need of further exploration that will lead to dedicated trials and other research investigations designed to advance the field.
Collapse
Affiliation(s)
- Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Nayan Lamba
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA
| | | | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Adrienne Boire
- Department of Neurology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Priscilla K Brastianos
- Departments of Neuro-Oncology and Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - D Ross Camidge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Veronica L Chiang
- Departments of Neurosurgery and Radiation Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, Arizona, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Priya Kumthekar
- Department of Neurology at The Feinberg School of Medicine at Northwestern University and The Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Keng Lam
- Department of Neurology, Kaiser Permanente, Los Angeles Medical Center, Los Angeles, California, USA
| | - Eudocia Q Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Minesh Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| | - Michael Parsons
- Departments of Oncology and Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Stejerean-Todoran I, Gimotty PA, Watters A, Brafford P, Krepler C, Godok T, Li H, Bonilla Del Rio Z, Zieseniss A, Katschinski DM, Sertel SM, Rizzoli SO, Garman B, Nathanson KL, Xu X, Chen Q, Oswald JH, Lotem M, Mills GB, Davies MA, Schön MP, Bogeski I, Herlyn M, Vultur A. A distinct pattern of growth and RAC1 signaling in melanoma brain metastasis cells. Neuro Oncol 2022; 25:674-686. [PMID: 36054930 PMCID: PMC10076948 DOI: 10.1093/neuonc/noac212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Melanoma, the deadliest of skin cancers, has a high propensity to form brain metastases that are associated with a markedly worsened prognosis. In spite of recent therapeutic advances, melanoma brain lesions remain a clinical challenge, biomarkers predicting brain dissemination are not clear and differences with other metastatic sites are poorly understood. METHODS We examined a genetically diverse panel of human-derived melanoma brain metastasis (MBM) and extracranial cell lines using targeted sequencing, a Reverse Phase Protein Array, protein expression analyses, and functional studies in vitro and in vivo. RESULTS Brain-specific genetic alterations were not detected; however, MBM cells in vitro displayed lower proliferation rates and MBM-specific protein expression patterns associated with proliferation, DNA damage, adhesion, and migration. MBM lines displayed higher levels of RAC1 expression, involving a distinct RAC1-PAK1-JNK1 signaling network. RAC1 knockdown or treatment with small molecule inhibitors contributed to a less aggressive MBM phenotype in vitro, while RAC1 knockdown in vivo led to reduced tumor volumes and delayed tumor appearance. Proliferation, adhesion, and migration were higher in MBM vs. non-MBM lines in the presence of insulin or brain-derived factors and were affected by RAC1 levels. CONCLUSIONS Our findings indicate that despite their genetic variability, MBM engage specific molecular processes such as RAC1 signaling to adapt to the brain microenvironment and this can be used for the molecular characterization and treatment of brain metastases.
Collapse
Affiliation(s)
- Ioana Stejerean-Todoran
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Phyllis A Gimotty
- Department of Biostatistics, Informatics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Andrea Watters
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Patricia Brafford
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Clemens Krepler
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Tetiana Godok
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Haiyin Li
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Zuriñe Bonilla Del Rio
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Anke Zieseniss
- Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dörthe M Katschinski
- Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Sinem M Sertel
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Bradley Garman
- Department of Medicine, Div. Translational Medicine and Human Genetics; Abramson Cancer Center; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Katherine L Nathanson
- Department of Medicine, Div. Translational Medicine and Human Genetics; Abramson Cancer Center; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qing Chen
- Immunology Microenvironment & Metastasis, The Wistar Institute, Philadelphia, PA, USA
| | - Jack H Oswald
- Immunology Microenvironment & Metastasis, The Wistar Institute, Philadelphia, PA, USA
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, IL
| | - Gordon B Mills
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Meenhard Herlyn
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Adina Vultur
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany.,Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
13
|
Biermann J, Melms JC, Amin AD, Wang Y, Caprio LA, Karz A, Tagore S, Barrera I, Ibarra-Arellano MA, Andreatta M, Fullerton BT, Gretarsson KH, Sahu V, Mangipudy VS, Nguyen TTT, Nair A, Rogava M, Ho P, Koch PD, Banu M, Humala N, Mahajan A, Walsh ZH, Shah SB, Vaccaro DH, Caldwell B, Mu M, Wünnemann F, Chazotte M, Berhe S, Luoma AM, Driver J, Ingham M, Khan SA, Rapisuwon S, Slingluff CL, Eigentler T, Röcken M, Carvajal R, Atkins MB, Davies MA, Agustinus A, Bakhoum SF, Azizi E, Siegelin M, Lu C, Carmona SJ, Hibshoosh H, Ribas A, Canoll P, Bruce JN, Bi WL, Agrawal P, Schapiro D, Hernando E, Macosko EZ, Chen F, Schwartz GK, Izar B. Dissecting the treatment-naive ecosystem of human melanoma brain metastasis. Cell 2022; 185:2591-2608.e30. [PMID: 35803246 PMCID: PMC9677434 DOI: 10.1016/j.cell.2022.06.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 10/17/2022]
Abstract
Melanoma brain metastasis (MBM) frequently occurs in patients with advanced melanoma; yet, our understanding of the underlying salient biology is rudimentary. Here, we performed single-cell/nucleus RNA-seq in 22 treatment-naive MBMs and 10 extracranial melanoma metastases (ECMs) and matched spatial single-cell transcriptomics and T cell receptor (TCR)-seq. Cancer cells from MBM were more chromosomally unstable, adopted a neuronal-like cell state, and enriched for spatially variably expressed metabolic pathways. Key observations were validated in independent patient cohorts, patient-derived MBM/ECM xenograft models, RNA/ATAC-seq, proteomics, and multiplexed imaging. Integrated spatial analyses revealed distinct geography of putative cancer immune evasion and evidence for more abundant intra-tumoral B to plasma cell differentiation in lymphoid aggregates in MBM. MBM harbored larger fractions of monocyte-derived macrophages and dysfunctional TOX+CD8+ T cells with distinct expression of immune checkpoints. This work provides comprehensive insights into MBM biology and serves as a foundational resource for further discovery and therapeutic exploration.
Collapse
Affiliation(s)
- Jana Biermann
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Program for Mathematical Genomics, Columbia University, New York, NY 10032, USA
| | - Johannes C Melms
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Amit Dipak Amin
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yiping Wang
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Program for Mathematical Genomics, Columbia University, New York, NY 10032, USA
| | - Lindsay A Caprio
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alcida Karz
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Somnath Tagore
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Irving Barrera
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Miguel A Ibarra-Arellano
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, 69120 Heidelberg, Germany
| | - Massimo Andreatta
- Department of Oncology UNIL CHUV, Lausanne Branch, Ludwig Institute for Cancer Research Lausanne, CHUV and University of Lausanne, Lausanne, 1066 Épalinges, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Benjamin T Fullerton
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kristjan H Gretarsson
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Varun Sahu
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Vaibhav S Mangipudy
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Trang T T Nguyen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ajay Nair
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Meri Rogava
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Patricia Ho
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter D Koch
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Matei Banu
- Department of Neurological Surgery, New York Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nelson Humala
- Department of Neurological Surgery, New York Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, New York Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zachary H Walsh
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Shivem B Shah
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daniel H Vaccaro
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Blake Caldwell
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael Mu
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Florian Wünnemann
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, 69120 Heidelberg, Germany
| | - Margot Chazotte
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, 69120 Heidelberg, Germany
| | - Simon Berhe
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Adrienne M Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Center, Boston, MA 02215, USA
| | - Joseph Driver
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Ingham
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shaheer A Khan
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Suthee Rapisuwon
- Division of Hematology/Oncology, Medstar Washington Cancer Institute, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Craig L Slingluff
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Thomas Eigentler
- Department of Dermatology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venereology and Allergology, 10117, Berlin, Germany
| | - Martin Röcken
- Department of Dermatology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Richard Carvajal
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael B Atkins
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Albert Agustinus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Samuel F Bakhoum
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elham Azizi
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
| | - Markus Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Santiago J Carmona
- Department of Oncology UNIL CHUV, Lausanne Branch, Ludwig Institute for Cancer Research Lausanne, CHUV and University of Lausanne, Lausanne, 1066 Épalinges, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Antoni Ribas
- Department of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90024, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, New York Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Praveen Agrawal
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Denis Schapiro
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, 69120 Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gary K Schwartz
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Program for Mathematical Genomics, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Rojas F, Hernandez S, Lazcano R, Laberiano-Fernandez C, Parra ER. Multiplex Immunofluorescence and the Digital Image Analysis Workflow for Evaluation of the Tumor Immune Environment in Translational Research. Front Oncol 2022; 12:889886. [PMID: 35832550 PMCID: PMC9271766 DOI: 10.3389/fonc.2022.889886] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
A robust understanding of the tumor immune environment has important implications for cancer diagnosis, prognosis, research, and immunotherapy. Traditionally, immunohistochemistry (IHC) has been regarded as the standard method for detecting proteins in situ, but this technique allows for the evaluation of only one cell marker per tissue sample at a time. However, multiplexed imaging technologies enable the multiparametric analysis of a tissue section at the same time. Also, through the curation of specific antibody panels, these technologies enable researchers to study the cell subpopulations within a single immunological cell group. Thus, multiplexed imaging gives investigators the opportunity to better understand tumor cells, immune cells, and the interactions between them. In the multiplexed imaging technology workflow, once the protocol for a tumor immune micro environment study has been defined, histological slides are digitized to produce high-resolution images in which regions of interest are selected for the interrogation of simultaneously expressed immunomarkers (including those co-expressed by the same cell) by using an image analysis software and algorithm. Most currently available image analysis software packages use similar machine learning approaches in which tissue segmentation first defines the different components that make up the regions of interest and cell segmentation, then defines the different parameters, such as the nucleus and cytoplasm, that the software must utilize to segment single cells. Image analysis tools have driven dramatic evolution in the field of digital pathology over the past several decades and provided the data necessary for translational research and the discovery of new therapeutic targets. The next step in the growth of digital pathology is optimization and standardization of the different tasks in cancer research, including image analysis algorithm creation, to increase the amount of data generated and their accuracy in a short time as described herein. The aim of this review is to describe this process, including an image analysis algorithm creation for multiplex immunofluorescence analysis, as an essential part of the optimization and standardization of the different processes in cancer research, to increase the amount of data generated and their accuracy in a short time.
Collapse
|
15
|
Alvarez-Breckenridge C, Remon J, Piña Y, Nieblas-Bedolla E, Forsyth P, Hendriks L, Brastianos PK. Emerging Systemic Treatment Perspectives on Brain Metastases: Moving Toward a Better Outlook for Patients. Am Soc Clin Oncol Educ Book 2022; 42:1-19. [PMID: 35522917 DOI: 10.1200/edbk_352320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The diagnosis of brain metastases has historically been a dreaded, end-stage complication of systemic disease. Additionally, with the increasing effectiveness of systemic therapies that prolong life expectancy and improved imaging tools, the incidence of intracranial progression is becoming more common. Within this context, there has been increasing attention directed at understanding the molecular underpinnings of intracranial progression. Exploring the unique features of brain metastases compared with their extracranial counterparts to identify aberrant signaling pathways, which can be targeted pharmacologically, may help lead to new treatments for this patient population. Additionally, critical discoveries outside the sphere of the central nervous system are increasingly being applied to brain metastases with the emergence of immune checkpoint inhibition, becoming a prevalent treatment option for patients with brain metastases across multiple histologies. As novel treatment strategies are considered, they require thoughtful incorporation of agents that can cross the blood-brain barrier and can synergize with pre-existing agents through rational combinations. Lastly, as clinicians and scientists continue to understand key molecular features of these tumors, they will continue to influence the treatment algorithms that are developing for the management of these patients. Due to the complexity of treatment decisions for patients with brain metastases, an emerging tool is the utilization of multidisciplinary brain metastasis tumor boards to ensure optimal treatment decisions are made and that patients are provided access to applicable clinical trials. Looking to the future, the collective effort to understand the various tumor-intrinsic and tumor-extrinsic factors that promote central nervous system seeding and propagation will have the potential to change the clinical trajectory for these patients.
Collapse
Affiliation(s)
| | - Jordi Remon
- Department of Medical Oncology, HM CIOCC Barcelona (Centro Integral Oncológico Clara Campal), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Yolanda Piña
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL
| | | | - Peter Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL
| | - Lizza Hendriks
- Department of Pulmonary Diseases - GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | | |
Collapse
|
16
|
Villodre ES, Hu X, Eckhardt BL, Larson R, Huo L, Yoon EC, Gong Y, Song J, Liu S, Ueno NT, Krishnamurthy S, Pusch S, Tripathy D, Woodward WA, Debeb BG. NDRG1 in Aggressive Breast Cancer Progression and Brain Metastasis. J Natl Cancer Inst 2022; 114:579-591. [PMID: 34893874 PMCID: PMC9002276 DOI: 10.1093/jnci/djab222] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND N-Myc downstream regulated gene 1 (NDRG1) suppresses metastasis in many human malignancies, including breast cancer, yet has been associated with worse survival in patients with inflammatory breast cancer. The role of NDRG1 in the pathobiology of aggressive breast cancers remains elusive. METHODS To study the role of NDRG1 in tumor growth and brain metastasis in vivo, we transplanted cells into cleared mammary fat pads or injected them in tail veins of SCID/Beige mice (n = 7-10 per group). NDRG1 protein expression in patient breast tumors (n = 216) was assessed by immunohistochemical staining. Kaplan-Meier method with 2-sided log-rank test was used to analyze the associations between NDRG1 and time-to-event outcomes. A multivariable Cox regression model was used to determine independent prognostic factors. All statistical tests were 2-sided. RESULTS We generated new sublines that exhibited a distinct propensity to metastasize to the brain. NDRG1-high-expressing cells produced more prevalent brain metastases (100% vs 44.4% for NDRG1-low sublines, P = .01, Fisher's exact test), greater tumor burden, and reduced survival in mice. In aggressive breast cancer cell lines, silencing NDRG1 led to reduced migration, invasion, and tumor-initiating cell subpopulations. In xenograft models, depleting NDRG1 inhibited primary tumor growth and brain metastasis. In patient breast tumors, NDRG1 was associated with aggressiveness: NDRG1-high expression was also associated with shorter overall survival (hazard ratio [HR] = 2.27, 95% confidence interval [95% CI] = 1.20 to 4.29, P = .009) and breast cancer-specific survival (HR = 2.19, 95% CI = 1.07 to 4.48, P = .03). Multivariable analysis showed NDRG1 to be an independent predictor of overall survival (HR = 2.17, 95% CI = 1.10 to 4.30, P = .03) and breast cancer-specific survival rates (HR = 2.27, 95% CI = 1.05 to 4.92, P = .04). CONCLUSIONS We demonstrated that NDRG1 drives tumor progression and brain metastasis in aggressive breast cancers and that NDRG1-high expression correlates with worse clinical outcomes, suggesting that NDRG1 may serve as a therapeutic target and prognostic biomarker in aggressive breast cancers.
Collapse
Affiliation(s)
- Emilly S Villodre
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoding Hu
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bedrich L Eckhardt
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Richard Larson
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ester C Yoon
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Gong
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juhee Song
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuying Liu
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Savitri Krishnamurthy
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefan Pusch
- German Cancer Consortium Clinical Cooperation Unit Neuropathology, German Cancer Research Center, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy A Woodward
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bisrat G Debeb
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
17
|
Saberian C, Davies MA. Re-thinking therapeutic development for CNS metastatic disease. Exp Dermatol 2022; 31:74-81. [PMID: 34152638 PMCID: PMC11373440 DOI: 10.1111/exd.14413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
There has been unprecedented progress in the development of systemic therapies for patients with metastatic melanoma over the last decade. There is now tremendous potential and momentum to further and markedly reduce the impact of this disease. However, developing more effective treatments for metastases to the CNS remains a critical challenge for patients with melanoma. Melanoma patients with active CNS metastases have largely been excluded from both early-phase and registration trials for all currently approved targeted and immune therapies for this disease. While this exclusion has generally been justified in clinical research due to concerns about poor prognosis, lack of CNS penetration of agents and/or risk of toxicities, recent post-approval trials have shown the feasibility, safety and clinical benefit of clinical investigation in these patients. These trials have also identified key areas for which more effective strategies are needed. In parallel, recent translational and preclinical research has provided insights into novel immune, molecular and metabolic features of melanoma brain metastases that may mediate the aggressive biology and therapeutic resistance of these tumors. Together, these advances suggest the need for new paradigms for therapeutic development for melanoma patients with CNS metastasis.
Collapse
Affiliation(s)
- Chantal Saberian
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Srinivasan ES, Deshpande K, Neman J, Winkler F, Khasraw M. The microenvironment of brain metastases from solid tumors. Neurooncol Adv 2021; 3:v121-v132. [PMID: 34859239 PMCID: PMC8633769 DOI: 10.1093/noajnl/vdab121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Brain metastasis (BrM) is an area of unmet medical need that poses unique therapeutic challenges and heralds a dismal prognosis. The intracranial tumor microenvironment (TME) presents several challenges, including the therapy-resistant blood-brain barrier, a unique immune milieu, distinct intercellular interactions, and specific metabolic conditions, that are responsible for treatment failures and poor clinical outcomes. There is a complex interplay between malignant cells that metastasize to the central nervous system (CNS) and the native TME. Cancer cells take advantage of vascular, neuronal, immune, and anatomical vulnerabilities to proliferate with mechanisms specific to the CNS. In this review, we discuss unique aspects of the TME in the context of brain metastases and pathways through which the TME may hold the key to the discovery of new and effective therapies for patients with BrM.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina, USA
| | - Krutika Deshpande
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Josh Neman
- Department of Neurological Surgery, Physiology and Neuroscience, USC Brain Tumor Center, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Mustafa Khasraw
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
19
|
Saberian C, Sperduto P, Davies MA. Targeted therapy strategies for melanoma brain metastasis. Neurooncol Adv 2021; 3:v75-v85. [PMID: 34859235 PMCID: PMC8633745 DOI: 10.1093/noajnl/vdab131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Melanoma is the most aggressive of the common forms of skin cancer. Metastasis to the central nervous system is one of the most common and deadly complications of this disease. Historically, melanoma patients with brain metastases had a median survival of less than 6 months. However, outcomes of melanoma patients have markedly improved over the last decade due to new therapeutic approaches, including immune and targeted therapies. Targeted therapies leverage the high rate of driver mutations in this disease, which result in the activation of multiple key signaling pathways. The RAS-RAF-MEK-ERK pathway is activated in the majority of cutaneous melanomas, most commonly by point mutations in the Braf serine-threonine kinase. While most early targeted therapy studies excluded melanoma patients with brain metastases, subsequent studies have shown that BRAF inhibitors, now generally given concurrently with MEK inhibitors, achieve high rates of tumor response and disease control in Braf-mutant melanoma brain metastases (MBMs). Unfortunately, the duration of these responses is generally relatively short- and shorter than is observed in extracranial metastases. This review will summarize current data regarding the safety and efficacy of targeted therapies for MBMs and discuss rational combinatorial strategies that may improve outcomes further.
Collapse
Affiliation(s)
- Chantal Saberian
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul Sperduto
- Minneapolis Radiation Oncology, Minneapolis, Minnesota, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
20
|
Wang J, Tawbi HA. Emergent immunotherapy approaches for brain metastases. Neurooncol Adv 2021; 3:v43-v51. [PMID: 34859232 PMCID: PMC8633738 DOI: 10.1093/noajnl/vdab138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain metastases from solid tumors are increasing in incidence, especially as outcomes of systemic therapies continue to extend patients’ overall survival. The long-held notion that the brain is an immune sanctuary has now been largely refuted with increasing evidence that immunotherapy can induce durable responses in brain metastases. Single agent immune checkpoint inhibition with anti-CTLA4 and anti-PD1 antibodies induces durable responses in 15%–20% in melanoma brain metastases as long as patients are asymptomatic and do not require corticosteroids. The combination of anti-CTLA4 with anti-PD-1 antibodies induces an intracranial response in over 50% of asymptomatic melanoma patients, and much lower rate of otherwise durable responses (20%) in symptomatic patients or those on steroids. Data in other cancers, such as renal cell carcinoma, are accumulating indicating a role for immunotherapy. Emerging immunotherapy approaches will have to focus on increasing response rates, decreasing toxicity, and decreasing steroid dependency. The path to those advances will have to include a better understanding of the mechanisms of response and resistance to immunotherapy in brain metastases, the use of novel agents such as anti-LAG3 checkpoint inhibitors, targeted therapy (oncogene directed or TKIs), and possibly surgery and SRS to improve the outcomes of patients with brain metastases.
Collapse
Affiliation(s)
- Jianbo Wang
- Department of Genitourinary Malignancies, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
21
|
Luo Y, Wang Y, Ma Y, Wang P, Zhong J, Chu Y. Augmented Renal Clearance: What Have We Known and What Will We Do? Front Pharmacol 2021; 12:723731. [PMID: 34795579 PMCID: PMC8593401 DOI: 10.3389/fphar.2021.723731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023] Open
Abstract
Augmented renal clearance (ARC) is a phenomenon of increased renal function in patients with risk factors. Sub-therapeutic drug concentrations and antibacterial exposure in ARC patients are the main reasons for clinical treatment failure. Decades of increased research have focused on these phenomena, but there are still some existing disputes and unresolved issues. This article reviews information on some important aspects of what we have known and provides suggestion on what we will do regarding ARC. In this article, we review the current research progress and its limitations, including clinical identification, special patients, risk factors, metabolism, animal models and clinical treatments, and provide some promising directions for further research in this area.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, China.,School of Pharmacy, China Medical University, Shenyang, China
| | - Yidan Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, China.,School of Pharmacy, China Medical University, Shenyang, China
| | - Yue Ma
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, China.,School of Pharmacy, China Medical University, Shenyang, China
| | - Puxiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, China.,School of Pharmacy, China Medical University, Shenyang, China
| | - Jian Zhong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yang Chu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, China.,School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
22
|
Genomic and Transcriptomic Profiling of Brain Metastases. Cancers (Basel) 2021; 13:cancers13225598. [PMID: 34830758 PMCID: PMC8615723 DOI: 10.3390/cancers13225598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Brain metastases (BM) are the most common brain tumors in adults and are the main cause of cancer-associated death. Omics analysis of BM will allow for a better understanding of metastatic progression, prognosis and therapeutic targeting. In this study, BM samples underwent comprehensive molecular profiling with genomics and transcriptomics. Mutational signatures suggested that most mutations were gained prior to metastasis. A novel copy number event centered around the MCL1 gene was found in 75% of all samples. Transcriptomics revealed that melanoma BM formed a distinct cluster in comparison to other subtypes. Poor survival correlated to self-identified black race and absence of radiation treatment but not molecular profiles. These data identify potential new drivers of brain metastatic progression, implicate that melanoma BM are distinctive and likely responsive to unique therapies, and further investigation of sociodemographic and clinical features are needed in BM cohorts. Abstract Brain metastases (BM) are the most common brain tumors in adults occurring in up to 40% of all cancer patients. Multi-omics approaches allow for understanding molecular mechanisms and identification of markers with prognostic significance. In this study, we profile 130 BM using genomics and transcriptomics and correlate molecular characteristics to clinical parameters. The most common tumor origins for BM were lung (40%) followed by melanoma (21%) and breast (15%). Melanoma and lung BMs contained more deleterious mutations than other subtypes (p < 0.001). Mutational signatures suggested that the bulk of the mutations were gained before metastasis. A novel copy number event centered around the MCL1 gene was found in 75% of all samples, suggesting a broader role in promoting metastasis. Unsupervised hierarchical cluster analysis of transcriptional signatures available in 65 samples based on the hallmarks of cancer revealed four distinct clusters. Melanoma samples formed a distinctive cluster in comparison to other BM subtypes. Characteristics of molecular profiles did not correlate with survival. However, patients with self-identified black race or those who did not receive radiation correlated with poor survival. These data identify potential new drivers of brain metastatic progression. Our data also suggest further investigation of sociodemographic and clinical features is needed in BM cohorts.
Collapse
|
23
|
Villodre ES, Hu X, Larson R, Finetti P, Gomez K, Balema W, Stecklein SR, Santiago‐Sanchez G, Krishnamurthy S, Song J, Su X, Ueno NT, Tripathy D, Van Laere S, Bertucci F, Vivas‐Mejía P, Woodward WA, Debeb BG. Lipocalin 2 promotes inflammatory breast cancer tumorigenesis and skin invasion. Mol Oncol 2021; 15:2752-2765. [PMID: 34342930 PMCID: PMC8486564 DOI: 10.1002/1878-0261.13074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022] Open
Abstract
Inflammatory breast cancer (IBC) is an aggressive form of primary breast cancer characterized by rapid onset and high risk of metastasis and poor clinical outcomes. The biological basis for the aggressiveness of IBC is still not well understood and no IBC-specific targeted therapies exist. In this study, we report that lipocalin 2 (LCN2), a small secreted glycoprotein belonging to the lipocalin superfamily, is expressed at significantly higher levels in IBC vs non-IBC tumors, independently of molecular subtype. LCN2 levels were also significantly higher in IBC cell lines and in their culture media than in non-IBC cell lines. High expression was associated with poor-prognosis features and shorter overall survival in IBC patients. Depletion of LCN2 in IBC cell lines reduced colony formation, migration, and cancer stem cell populations in vitro and inhibited tumor growth, skin invasion, and brain metastasis in mouse models of IBC. Analysis of our proteomics data showed reduced expression of proteins involved in cell cycle and DNA repair in LCN2-silenced IBC cells. Our findings support that LCN2 promotes IBC tumor aggressiveness and offer a new potential therapeutic target for IBC.
Collapse
Affiliation(s)
- Emilly S. Villodre
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Xiaoding Hu
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Richard Larson
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Pascal Finetti
- Laboratory of Predictive OncologyAix‐Marseille UniversityInsermCNRSInstitut Paoli‐CalmettesCRCMMarseilleFrance
| | - Kristen Gomez
- Department of Biological SciencesThe University of Texas at BrownsvilleTXUSA
| | - Wintana Balema
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Shane R. Stecklein
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Ginette Santiago‐Sanchez
- Department Biochemistry and Cancer CenterUniversity of Puerto Rico Medical Sciences CampusSan Juan, Puerto Rico
| | - Savitri Krishnamurthy
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of PathologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Juhee Song
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Xiaoping Su
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Naoto T. Ueno
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Debu Tripathy
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Steven Van Laere
- Center for Oncological Research (CORE)Integrated Personalized and Precision Oncology Network (IPPON)University of AntwerpBelgium
| | - François Bertucci
- Laboratory of Predictive OncologyAix‐Marseille UniversityInsermCNRSInstitut Paoli‐CalmettesCRCMMarseilleFrance
| | - Pablo Vivas‐Mejía
- Department Biochemistry and Cancer CenterUniversity of Puerto Rico Medical Sciences CampusSan Juan, Puerto Rico
| | - Wendy A. Woodward
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Bisrat G. Debeb
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| |
Collapse
|
24
|
Lee HW. Multidiscipline Immunotherapy-Based Rational Combinations for Robust and Durable Efficacy in Brain Metastases from Renal Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22126290. [PMID: 34208157 PMCID: PMC8230742 DOI: 10.3390/ijms22126290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced imaging techniques for diagnosis have increased awareness on the benefits of brain screening, facilitated effective control of extracranial disease, and prolonged life expectancy of metastatic renal cell carcinoma (mRCC) patients. Brain metastasis (BM) in patients with mRCC (RCC-BM) is associated with grave prognoses, a high degree of morbidity, dedicated assessment, and unresponsiveness to conventional systemic therapeutics. The therapeutic landscape of RCC-BM is rapidly changing; however, survival outcomes remain poor despite standard surgery and radiation, highlighting the unmet medical needs and the requisite for advancement in systemic therapies. Immune checkpoint inhibitors (ICIs) are one of the most promising strategies to treat RCC-BM. Understanding the role of brain-specific tumor immune microenvironment (TIME) is important for developing rationale-driven ICI-based combination strategies that circumvent tumor intrinsic and extrinsic factors and complex positive feedback loops associated with resistance to ICIs in RCC-BM via combination with ICIs involving other immunological pathways, anti-antiangiogenic multiple tyrosine kinase inhibitors, and radiotherapy; therefore, novel combination approaches are being developed for synergistic potential against RCC-BM; however, further prospective investigations with longer follow-up periods are required to improve the efficacy and safety of combination treatments and to elucidate dynamic predictive biomarkers depending on the interactions in the brain TIME.
Collapse
Affiliation(s)
- Hye-Won Lee
- Center for Urologic Cancer, National Cancer Center, Department of Urology, Goyang 10408, Korea
| |
Collapse
|