1
|
Li Y, Liu P, Lin Q, Zhou D, An D. Postoperative seizure and memory outcome of temporal lobe epilepsy with hippocampal sclerosis: A systematic review. Epilepsia 2023; 64:2845-2860. [PMID: 37611927 DOI: 10.1111/epi.17757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
We conducted a systematic review and meta-analysis to evaluate postoperative seizure and memory outcomes of temporal lobe epilepsy with different hippocampal sclerosis (HS) subtypes classified by International League Against Epilepsy (ILAE) Consensus Guidelines in 2013. Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and MOOSE (Meta-Analysis of Observational Studies in Epidemiology) guidelines, we searched PubMed, Embase, Web of Science, and Cochrane Library from January 1, 2013 to August 6, 2023. Observational studies reporting seizure and memory outcomes among different HS subtypes were included. We used the Newcastle-Ottawa scale to assess the risk of bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to grade the quality of evidence. Seizure freedom and improved outcome (Engel 1 or ILAE class 1-2) ≥1 year after surgery were defined as the primary and secondary seizure outcome. A random-effects meta-analysis by DerSimonian and Laird method was performed to obtain pooled risk ratio (RRs) with 95% confidence interval (CIs). The memory impairment was narratively reviewed because of various evaluation tools. Fifteen cohort studies with 2485 patients were eligible for the meta-analysis of seizure outcome. Six cohorts with detailed information on postoperative memory outcome were included. The pooled RRs of seizure freedom, with moderate to substantial heterogeneity, were .98 (95% CI = .84-1.15) between HS type 2 and type 1, 1.11 (95% CI = .82-1.52) between type 3 and type 1, and .80 (95% CI = .62-1.03) between the no-HS and HS groups. No significant difference of improved outcome was found between different subtypes (p > .05). The quality of evidence was deemed to be low to very low according to GRADE. The long-term seizure outcome (≥5 years after surgery) and memory impairment remained controversial.
Collapse
Affiliation(s)
- Yuming Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Peiwen Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuxing Lin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Twible C, Abdo R, Zhang Q. Astrocyte Role in Temporal Lobe Epilepsy and Development of Mossy Fiber Sprouting. Front Cell Neurosci 2021; 15:725693. [PMID: 34658792 PMCID: PMC8514632 DOI: 10.3389/fncel.2021.725693] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy affects approximately 50 million people worldwide, with 60% of adult epilepsies presenting an onset of focal origin. The most common focal epilepsy is temporal lobe epilepsy (TLE). The role of astrocytes in the presentation and development of TLE has been increasingly studied and discussed within the literature. The most common histopathological diagnosis of TLE is hippocampal sclerosis. Hippocampal sclerosis is characterized by neuronal cell loss within the Cornu ammonis and reactive astrogliosis. In some cases, mossy fiber sprouting may be observed. Mossy fiber sprouting has been controversial in its contribution to epileptogenesis in TLE patients, and the mechanisms surrounding the phenomenon have yet to be elucidated. Several studies have reported that mossy fiber sprouting has an almost certain co-existence with reactive astrogliosis within the hippocampus under epileptic conditions. Astrocytes are known to play an important role in the survival and axonal outgrowth of central and peripheral nervous system neurons, pointing to a potential role of astrocytes in TLE and associated cellular alterations. Herein, we review the recent developments surrounding the role of astrocytes in the pathogenic process of TLE and mossy fiber sprouting, with a focus on proposed signaling pathways and cellular mechanisms, histological observations, and clinical correlations in human patients.
Collapse
Affiliation(s)
- Carolyn Twible
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada
| | - Rober Abdo
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Qi Zhang
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Pathology and Lab Medicine, London Health Sciences Centre, University Hospital, London, ON, Canada
| |
Collapse
|
3
|
Freiman TM, Häussler U, Zentner J, Doostkam S, Beck J, Scheiwe C, Brandt A, Haas CA, Puhahn-Schmeiser B. Mossy fiber sprouting into the hippocampal region CA2 in patients with temporal lobe epilepsy. Hippocampus 2021; 31:580-592. [PMID: 33720466 DOI: 10.1002/hipo.23323] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/28/2023]
Abstract
Hippocampal sclerosis (HS) in Temporal Lobe Epilepsy (TLE) shows neuronal death in cornu ammonis (CA)1, CA3, and CA4. It is known that granule cells and CA2 neurons survive and their axons, the mossy fibers (MF), lose their target cells in CA3 and CA4 and sprout to the granule cell layer and molecular layer. We examined in TLE patients and in a mouse epilepsy model, whether MF sprouting is directed to the dentate gyrus or extends to distant CA regions and whether sprouting is associated with death of target neurons in CA3 and CA4. In 319 TLE patients, HS was evaluated by Wyler grade and International League against Epilepsy (ILAE) types using immunohistochemistry against neuronal nuclei (NeuN). Synaptoporin was used to colocalize MF. In addition, transgenic Thy1-eGFP mice were intrahippocampally injected with kainate and sprouting of eGFP-positive MFs was analyzed together with immunocytochemistry for regulator of G-protein signaling 14 (RGS14). In human HS Wyler III and IV as well as in ILAE 1, 2, and 3 specimens, we found synaptoporin-positive axon terminals in CA2 and even in CA1, associated with the extent of granule cell dispersion. Sprouting was seen in cases with cell death of target neurons in CA3 and CA4 (classical severe HS ILAE type 1) but also without this cell death (atypical HS ILAE type 2). Similarly, in epileptic mice eGFP-positive MFs sprouted to CA2 and beyond. The presence of MF terminals in the CA2 pyramidal cell layer and in CA1 was also correlated with the extent of granule cell dispersion. The similarity of our findings in human specimens and in the mouse model highlights the importance and opens up new chances of using translational approaches to determine mechanisms underlying TLE.
Collapse
Affiliation(s)
- Thomas M Freiman
- Department of Neurosurgery, Rostock University Medical Center, Rostock, Germany
| | - Ute Häussler
- Department of Neurosurgery, Experimental Epilepsy Research, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Josef Zentner
- Faculty of Medicine, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Soroush Doostkam
- Faculty of Medicine, Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Faculty of Medicine, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Christian Scheiwe
- Faculty of Medicine, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Armin Brandt
- Epilepsy Center, University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - Carola A Haas
- Department of Neurosurgery, Experimental Epilepsy Research, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Barbara Puhahn-Schmeiser
- Faculty of Medicine, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Masaki H, Watanabe K, Kakeda S, Ide S, Sugimoto K, Ueda I, Hamamura T, Hisanaga S, Toyota T, Akamatsu N, Shimajiri S, Yamamoto J, Nishizawa S, Adachi H, Korogi Y. Hippocampal sclerosis without visually detectable hippocampal MRI abnormalities: automated subfield volumetric analysis. Jpn J Radiol 2020; 38:1020-1027. [PMID: 32653988 DOI: 10.1007/s11604-020-01019-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/19/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE This study aims to investigate hippocampal subfield volumes in patients with hippocampal sclerosis (HS) without visually detectable MRI abnormalities and to determine the diagnostic accuracy using hippocampal subfield volumes. MATERIALS AND METHODS We examined 46 patients with unilateral HS who had a histopathological diagnosis, and 54 controls. The patients were divided into two groups; visually detectable HS (n = 26) and undetectable HS (n = 20) on MRI. The volumes of hippocampal subfield using FreeSurfer were compared among the three groups. Diagnostic accuracy was calculated as the AUC of ROC using cutoff values for each individual subfield. RESULTS Compared with the controls, visually detectable HS showed significantly reduced volumes of all the hippocampal subfields and entire hippocampus, whereas visually undetectable HS showed significant atrophy only in the CA3 and hippocampus-amygdala-transition-area. To diagnose visually undetectable HS, the CA3 volumes had AUC of 0.719, which was higher than AUC of 0.614 based on the entire hippocampal volumes. CONCLUSION Visually undetectable HS demonstrated volume reductions in the CA3. Further, the CA3 volumes was more useful to diagnose visually undetectable HS compared with the entire hippocampal volumes.
Collapse
Affiliation(s)
- Hiromi Masaki
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Keita Watanabe
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan. .,Open Innovation Institute, Kyoto University, Kyoto, Japan.
| | - Shingo Kakeda
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.,Department of Diagnostic Radiology, Hirosaki University Graduate School of Medicine Radiology, Aomori, Japan
| | - Satoru Ide
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kohichiro Sugimoto
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Issei Ueda
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Toshihiko Hamamura
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Sachi Hisanaga
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tomoko Toyota
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Naoki Akamatsu
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan.,Department of Neurology, School of Medicine, International University of Health and Welfare, Otawara, Japan
| | - Shohei Shimajiri
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shigeru Nishizawa
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Yukunori Korogi
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
5
|
Seizures in patients with a phaeochromocytoma/paraganglioma (PPGL): A review of clinical cases and postulated pathological mechanisms. Rev Neurol (Paris) 2019; 175:495-505. [PMID: 31133278 DOI: 10.1016/j.neurol.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/30/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
Abstract
The purpose of this work was to expound on the postulated pathological mechanisms through which pheochromocytoma/paraganglioma (PPGL) can cause seizures by conducting a comprehensive review of ten cases and several pathogenic mechanisms. The goal was to enhance awareness amongst doctors and researchers about patients with PPGL presenting with seizures. This would help decrease the risk of misdiagnosis and mismanagement in future clinics. Additionally, this review was written with the purpose to attract more attention to etiological explorations, particularly concerning rare causes of seizures, which is consistent with the idea that League Against Epilepsy (ILAE) has emphasized in the new version of the ILAE position paper published in 2017. It is of great importance to keep in mind the fact that seizures can constitute an atypical presentation of PPGL and to establish early diagnosis and accurate cure for these patients, especially in the presence of paroxysmal hypertension or other suggestive symptoms of PPGL.
Collapse
|
6
|
Bernhardt BC, Fadaie F, Liu M, Caldairou B, Gu S, Jefferies E, Smallwood J, Bassett DS, Bernasconi A, Bernasconi N. Temporal lobe epilepsy: Hippocampal pathology modulates connectome topology and controllability. Neurology 2019; 92:e2209-e2220. [PMID: 31004070 DOI: 10.1212/wnl.0000000000007447] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/08/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To assess whether hippocampal sclerosis (HS) severity is mirrored at the level of large-scale networks. METHODS We studied preoperative high-resolution anatomical and diffusion-weighted MRI of 44 temporal lobe epilepsy (TLE) patients with histopathologic diagnosis of HS (n = 25; TLE-HS) and isolated gliosis (n = 19; TLE-G) and 25 healthy controls. Hippocampal measurements included surface-based subfield mapping of atrophy and T2 hyperintensity indexing cell loss and gliosis, respectively. Whole-brain connectomes were generated via diffusion tractography and examined using graph theory along with a novel network control theory paradigm that simulates functional dynamics from structural network data. RESULTS Compared to controls, we observed markedly increased path length and decreased clustering in TLE-HS compared to controls, indicating lower global and local network efficiency, while TLE-G showed only subtle alterations. Similarly, network controllability was lower in TLE-HS only, suggesting limited range of functional dynamics. Hippocampal imaging markers were positively associated with macroscale network alterations, particularly in ipsilateral CA1-3. Systematic assessment across several networks revealed maximal changes in the hippocampal circuity. Findings were consistent when correcting for cortical thickness, suggesting independence from gray matter atrophy. CONCLUSIONS Severe HS is associated with marked remodeling of connectome topology and structurally governed functional dynamics in TLE, as opposed to isolated gliosis, which has negligible effects. Cell loss, particularly in CA1-3, may exert a cascading effect on brain-wide connectomes, underlining coupled disease processes across multiple scales.
Collapse
Affiliation(s)
- Boris C Bernhardt
- From the Neuroimaging of Epilepsy Laboratory (B.C.B., F.F., M.L., B.C., A.B., N.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Canada; Department of Bioengineering and Electrical and Systems Engineering (S.G., D.S.B.), University of Pennsylvania, Philadelphia; and York Neuroimaging Center (E.J., J.S.), University of York, UK
| | - Fatemeh Fadaie
- From the Neuroimaging of Epilepsy Laboratory (B.C.B., F.F., M.L., B.C., A.B., N.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Canada; Department of Bioengineering and Electrical and Systems Engineering (S.G., D.S.B.), University of Pennsylvania, Philadelphia; and York Neuroimaging Center (E.J., J.S.), University of York, UK
| | - Min Liu
- From the Neuroimaging of Epilepsy Laboratory (B.C.B., F.F., M.L., B.C., A.B., N.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Canada; Department of Bioengineering and Electrical and Systems Engineering (S.G., D.S.B.), University of Pennsylvania, Philadelphia; and York Neuroimaging Center (E.J., J.S.), University of York, UK
| | - Benoit Caldairou
- From the Neuroimaging of Epilepsy Laboratory (B.C.B., F.F., M.L., B.C., A.B., N.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Canada; Department of Bioengineering and Electrical and Systems Engineering (S.G., D.S.B.), University of Pennsylvania, Philadelphia; and York Neuroimaging Center (E.J., J.S.), University of York, UK
| | - Shi Gu
- From the Neuroimaging of Epilepsy Laboratory (B.C.B., F.F., M.L., B.C., A.B., N.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Canada; Department of Bioengineering and Electrical and Systems Engineering (S.G., D.S.B.), University of Pennsylvania, Philadelphia; and York Neuroimaging Center (E.J., J.S.), University of York, UK
| | - Elizabeth Jefferies
- From the Neuroimaging of Epilepsy Laboratory (B.C.B., F.F., M.L., B.C., A.B., N.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Canada; Department of Bioengineering and Electrical and Systems Engineering (S.G., D.S.B.), University of Pennsylvania, Philadelphia; and York Neuroimaging Center (E.J., J.S.), University of York, UK
| | - Jonathan Smallwood
- From the Neuroimaging of Epilepsy Laboratory (B.C.B., F.F., M.L., B.C., A.B., N.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Canada; Department of Bioengineering and Electrical and Systems Engineering (S.G., D.S.B.), University of Pennsylvania, Philadelphia; and York Neuroimaging Center (E.J., J.S.), University of York, UK
| | - Danielle S Bassett
- From the Neuroimaging of Epilepsy Laboratory (B.C.B., F.F., M.L., B.C., A.B., N.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Canada; Department of Bioengineering and Electrical and Systems Engineering (S.G., D.S.B.), University of Pennsylvania, Philadelphia; and York Neuroimaging Center (E.J., J.S.), University of York, UK
| | - Andrea Bernasconi
- From the Neuroimaging of Epilepsy Laboratory (B.C.B., F.F., M.L., B.C., A.B., N.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Canada; Department of Bioengineering and Electrical and Systems Engineering (S.G., D.S.B.), University of Pennsylvania, Philadelphia; and York Neuroimaging Center (E.J., J.S.), University of York, UK
| | - Neda Bernasconi
- From the Neuroimaging of Epilepsy Laboratory (B.C.B., F.F., M.L., B.C., A.B., N.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Canada; Department of Bioengineering and Electrical and Systems Engineering (S.G., D.S.B.), University of Pennsylvania, Philadelphia; and York Neuroimaging Center (E.J., J.S.), University of York, UK.
| |
Collapse
|
7
|
Godale CM, Danzer SC. Signaling Pathways and Cellular Mechanisms Regulating Mossy Fiber Sprouting in the Development of Epilepsy. Front Neurol 2018; 9:298. [PMID: 29774009 PMCID: PMC5943493 DOI: 10.3389/fneur.2018.00298] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/17/2018] [Indexed: 02/04/2023] Open
Abstract
The sprouting of hippocampal dentate granule cell axons, termed mossy fibers, into the dentate inner molecular layer is one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy. Decades of research in animal models have revealed that mossy fiber sprouting creates de novo recurrent excitatory connections in the hippocampus, fueling speculation that the pathology may drive temporal lobe epileptogenesis. Conducting definitive experiments to test this hypothesis, however, has been challenging due to the difficulty of dissociating this sprouting from the many other changes occurring during epileptogenesis. The field has been largely driven, therefore, by correlative data. Recently, the development of powerful transgenic mouse technologies and the discovery of novel drug targets has provided new tools to assess the role of mossy fiber sprouting in epilepsy. We can now selectively manipulate hippocampal granule cells in rodent epilepsy models, providing new insights into the granule cell subpopulations that participate in mossy fiber sprouting. The cellular pathways regulating this sprouting are also coming to light, providing new targets for pharmacological intervention. Surprisingly, many investigators have found that blocking mossy fiber sprouting has no effect on seizure occurrence, while seizure frequency can be reduced by treatments that have no effect on this sprouting. These results raise new questions about the role of mossy fiber sprouting in epilepsy. Here, we will review these findings with particular regard to the contributions of new granule cells to mossy fiber sprouting and the regulation of this sprouting by the mTOR signaling pathway.
Collapse
Affiliation(s)
- Christin M Godale
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.,Department of Anesthesia, University of Cincinnati, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
8
|
Schmeiser B, Li J, Brandt A, Zentner J, Doostkam S, Freiman TM. Different mossy fiber sprouting patterns in ILAE hippocampal sclerosis types. Epilepsy Res 2017; 136:115-122. [DOI: 10.1016/j.eplepsyres.2017.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/07/2017] [Accepted: 08/05/2017] [Indexed: 12/28/2022]
|
9
|
Extent of mossy fiber sprouting in patients with mesiotemporal lobe epilepsy correlates with neuronal cell loss and granule cell dispersion. Epilepsy Res 2017; 129:51-58. [DOI: 10.1016/j.eplepsyres.2016.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/20/2016] [Indexed: 11/21/2022]
|
10
|
Wang C, Yang L, Zhang J, Lin Z, Qi J, Duan S. Higher expression of monocyte chemoattractant protein 1 and its receptor in brain tissue of intractable epilepsy patients. J Clin Neurosci 2016; 28:134-40. [PMID: 26810469 DOI: 10.1016/j.jocn.2015.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/23/2015] [Accepted: 07/24/2015] [Indexed: 11/19/2022]
Abstract
We aimed to explore the pathogenesis of monocyte chemoattractant protein-1 (MCP1) and CC chemokine receptor 2 (CCR2) in brain tissue of patients with intractable epilepsy (IE). Hippocampi or temporal lobe tissues were obtained from 40 patients with IE and five patients without IE who had undergone surgical decompression and debridement. The levels of MCP1 and CCR2 were evaluated using immunohistochemistry. Pearson correlation analysis was employed to evaluate the correlation between levels of MCP1 and CCR2 in IE with or without hippocampal sclerosis (HS) and the disease duration, along with age. Higher levels of MCP1 (11.68±4.68% versus 1.72±1.54%) and CCR2 (11.54±4.65% versus 1.52±1.29%; P<0.05) were observed in IE patients compared to controls. Expression levels of MCP1 (R=0.867) and CCR2 (R=0.835) in IE patients with HS were correlated with the disease duration. However, no correlation was found in IE patients without HS. There was also no correlation between levels of MCP1 and CCR2 in IE patients with age, either with HS or without HS. These results suggest that MCP1 and its receptor may play a role in the pathogenesis and progression of IE.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Lihua Yang
- Department of Neurology, The People's Hospital of Cangzhou, Cangzhou, China
| | - Jiadong Zhang
- Department of Neurology, The First Hospital of Harbin, Harbin, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiping Qi
- Department of Pathology, The First Hospital Affiliated of Harbin Medical University, Harbin, China
| | - Shurong Duan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
11
|
Deleo F, Garbelli R, Milesi G, Gozzo F, Bramerio M, Villani F, Cardinale F, Tringali G, Spreafico R, Tassi L. Short- and long-term surgical outcomes of temporal lobe epilepsy associated with hippocampal sclerosis: Relationships with neuropathology. Epilepsia 2015; 57:306-15. [DOI: 10.1111/epi.13277] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Francesco Deleo
- Clinical Epileptology and Experimental Neurophysiology Unit; C. Besta Neurological Institute Foundation; Milan Italy
| | - Rita Garbelli
- Clinical Epileptology and Experimental Neurophysiology Unit; C. Besta Neurological Institute Foundation; Milan Italy
| | - Gloria Milesi
- Clinical Epileptology and Experimental Neurophysiology Unit; C. Besta Neurological Institute Foundation; Milan Italy
| | - Francesca Gozzo
- Epilepsy Surgery Centre C. Munari; Niguarda Hospital; Milan Italy
| | | | - Flavio Villani
- Clinical Epileptology and Experimental Neurophysiology Unit; C. Besta Neurological Institute Foundation; Milan Italy
| | | | - Giovanni Tringali
- Neurosurgery Unit; C. Besta Neurological Institute Foundation; Milan Italy
| | - Roberto Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit; C. Besta Neurological Institute Foundation; Milan Italy
| | - Laura Tassi
- Epilepsy Surgery Centre C. Munari; Niguarda Hospital; Milan Italy
| |
Collapse
|
12
|
van der Hel WS, Hessel EVS, Bos IWM, Mulder SD, Verlinde SAMW, van Eijsden P, de Graan PNE. Persistent reduction of hippocampal glutamine synthetase expression after status epilepticus in immature rats. Eur J Neurosci 2014; 40:3711-9. [PMID: 25350774 DOI: 10.1111/ejn.12756] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 09/13/2014] [Accepted: 09/22/2014] [Indexed: 01/16/2023]
Abstract
Mesiotemporal sclerosis (MTS), the most frequent form of drug-resistant temporal lobe epilepsy, often develops after an initial precipitating injury affecting the immature brain. To analyse early processes in epileptogenesis we used the juvenile pilocarpine model to study status epilepticus (SE)-induced changes in expression of key components in the glutamate-glutamine cycle, known to be affected in MTS patients. SE was induced by Li(+) /pilocarpine injection in 21-day-old rats. At 2-19 weeks after SE hippocampal protein expression was analysed by immunohistochemistry and neuron damage by FluoroJade staining. Spontaneous seizures occurred in at least 44% of animals 15-18 weeks after SE. As expected in this model, we did not observe loss of principal hippocampal neurons. Neuron damage was most pronounced in the hilus, where we also detected progressive loss of parvalbumin-positive GABAergic interneurons. Hilar neuron loss (or end-folium sclerosis), a common feature in patients with MTS, was accompanied by a progressively decreased glutamine synthetase (GS)-immunoreactivity from 2 (-15%) to 19 weeks (-33.5%) after SE. Immunoreactivity for excitatory amino-acid transporters, vesicular glutamate transporter 1 and glial fibrillary acidic protein was unaffected. Our data show that SE elicited in 21-day-old rats induces a progressive reduction in hilar GS expression without affecting other key components of the glutamate-glutamine cycle. Reduced expression of glial enzyme GS was first detected 2 weeks after SE, and thus clearly before spontaneous recurrent seizures occurred. These results support the hypothesis that reduced GS expression is an early event in the development of hippocampal sclerosis in MTS patients and emphasize the importance of astrocytes in early epileptogenesis.
Collapse
Affiliation(s)
- W Saskia van der Hel
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The Netherlands; Division of Surgical Specialties, Department of Anatomy, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Thom M, Kensche M, Maynard J, Liu J, Reeves C, Goc J, Marsdon D, Fluegel D, Foong J. Interictal psychosis following temporal lobe surgery: dentate gyrus pathology. Psychol Med 2014; 44:3037-3049. [PMID: 25065503 DOI: 10.1017/s0033291714000452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND De novo interictal psychosis, albeit uncommon, can develop in patients following temporal lobe surgery for epilepsy. Pathological alterations of the dentate gyrus, including cytoarchitectural changes, immaturity and axonal reorganization that occur in epilepsy, may also underpin co-morbid psychiatric disorders. Our aim was to study candidate pathways that may be associated with the development of interictal psychosis post-operatively in patients with hippocampal sclerosis (HS). METHOD A total of 11 patients with HS who developed interictal psychosis (HS-P) post-operatively were compared with a matched surgical HS group without psychosis (HS-NP). Resected tissues were investigated for the extent of granule cell dispersion, mossy fibre sprouting and calbindin expression in the granule cells. We quantified doublecortin, mini-chromosome maintenance protein 2 (MCM2) and reelin-expressing neuronal populations in the dentate gyrus as well as the distribution of cannabinoid type 1 receptor (CBR1). RESULTS The patterns of neuronal loss and gliosis were similar in both groups. HS-P patients demonstrated less mossy fibre sprouting and granule cell dispersion (p < 0.01) and more frequent reduction in calbindin expression in granule cells. There were no group differences in the densities of immature MCM2, doublecortin and reelin-positive cells. CBR1 labelling was significantly lower in Cornu ammonis area CA4 relative to other subfields (p < 0.01); although reduced staining in all hippocampal regions was noted in HS-P compared with HS-NP patients, the differences were not statistically significant. CONCLUSIONS The alterations in dentate gyrus pathology found in HS-P patients could indicate underlying differences in the cellular response to seizures. These mechanisms may predispose to the development of psychosis in epilepsy and warrant further investigation.
Collapse
Affiliation(s)
- M Thom
- Department of Clinical and Experimental Epilepsy,University College London,Institute of Neurology, London,UK
| | - M Kensche
- Department of Clinical and Experimental Epilepsy,University College London,Institute of Neurology, London,UK
| | - J Maynard
- Department of Clinical and Experimental Epilepsy,University College London,Institute of Neurology, London,UK
| | - J Liu
- Department of Clinical and Experimental Epilepsy,University College London,Institute of Neurology, London,UK
| | - C Reeves
- Department of Clinical and Experimental Epilepsy,University College London,Institute of Neurology, London,UK
| | - J Goc
- Department of Clinical and Experimental Epilepsy,University College London,Institute of Neurology, London,UK
| | - D Marsdon
- Division of Neuropathology,National Hospital for Neurology and Neurosurgery,Queen Square, London WC1N 3BG,UK
| | - D Fluegel
- Department of Clinical and Experimental Epilepsy,University College London,Institute of Neurology, London,UK
| | - J Foong
- Department of Clinical and Experimental Epilepsy,University College London,Institute of Neurology, London,UK
| |
Collapse
|
14
|
Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, Bernasconi N, Bien CG, Cendes F, Coras R, Cross JH, Jacques TS, Kahane P, Mathern GW, Miyata H, Moshé SL, Oz B, Özkara Ç, Perucca E, Sisodiya S, Wiebe S, Spreafico R. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 2013; 54:1315-29. [PMID: 23692496 DOI: 10.1111/epi.12220] [Citation(s) in RCA: 685] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2013] [Indexed: 12/23/2022]
Abstract
Hippocampal sclerosis (HS) is the most frequent histopathology encountered in patients with drug-resistant temporal lobe epilepsy (TLE). Over the past decades, various attempts have been made to classify specific patterns of hippocampal neuronal cell loss and correlate subtypes with postsurgical outcome. However, no international consensus about definitions and terminology has been achieved. A task force reviewed previous classification schemes and proposes a system based on semiquantitative hippocampal cell loss patterns that can be applied in any histopathology laboratory. Interobserver and intraobserver agreement studies reached consensus to classify three types in anatomically well-preserved hippocampal specimens: HS International League Against Epilepsy (ILAE) type 1 refers always to severe neuronal cell loss and gliosis predominantly in CA1 and CA4 regions, compared to CA1 predominant neuronal cell loss and gliosis (HS ILAE type 2), or CA4 predominant neuronal cell loss and gliosis (HS ILAE type 3). Surgical hippocampus specimens obtained from patients with TLE may also show normal content of neurons with reactive gliosis only (no-HS). HS ILAE type 1 is more often associated with a history of initial precipitating injuries before age 5 years, with early seizure onset, and favorable postsurgical seizure control. CA1 predominant HS ILAE type 2 and CA4 predominant HS ILAE type 3 have been studied less systematically so far, but some reports point to less favorable outcome, and to differences regarding epilepsy history, including age of seizure onset. The proposed international consensus classification will aid in the characterization of specific clinicopathologic syndromes, and explore variability in imaging and electrophysiology findings, and in postsurgical seizure control.
Collapse
Affiliation(s)
- Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Miyata H, Hori T, Vinters HV. Surgical pathology of epilepsy-associated non-neoplastic cerebral lesions: a brief introduction with special reference to hippocampal sclerosis and focal cortical dysplasia. Neuropathology 2013; 33:442-58. [PMID: 23530853 DOI: 10.1111/neup.12028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 01/30/2013] [Indexed: 01/01/2023]
Abstract
Among epilepsy-associated non-neoplastic lesions, mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) and malformation of cortical development (MCD), including focal cortical dysplasia (FCD), are the two most frequent causes of drug-resistant focal epilepsies, constituting about 50% of all surgical pathology of epilepsy. Several distinct histological patterns have been historically recognized in both HS and FCD, and several studies have tried to perform clinicopathological correlations. However, results have been controversial, particularly in terms of post-surgical seizure outcome. Recently, the International League Against Epilepsy constituted a Task Forces of Neuropathology and FCD within the Commission on Diagnostic Methods, to establish an international consensus of histological classification of HS and FCD, respectively, based on agreement with the recognition of the importance of defining a histopathological classification system that reliably has some clinicopathological correlation. Such consensus classifications are likely to facilitate future clinicopathological studies. Meanwhile, we reviewed the neuropathology of 41 surgical cases of mTLE, and confirmed three type/patterns of HS along with no HS, based on the qualitative evaluation of the distribution and severity of neuronal loss and gliosis within hippocampal formation, that is, HS type 1 (61%) equivalent to "classical" Ammon's horn sclerosis, HS type 2 (2%) representing CA1 sclerosis, HS type 3 (17%) equivalent to end folium sclerosis, and no HS (19%). Furthermore, we performed a neuropathological comparative study on mTLE-HS and dementia-associated HS (d-HS) in the elderly, and confirmed that neuropathological features differ between mTLE-HS and d-HS in the distribution of hippocampal neuronal loss and gliosis, morphology of reactive astrocytes and their protein expression, and presence of concomitant neurodegenerative changes, particularly Alzheimer type and TDP-43 pathologies. These differences may account, at least in part, for the difference in pathogenesis and epileptogenicity of HS in mTLE and senile dementia. However, the etiology and pathogenesis of most epileptogenic lesions are yet to be elucidated.
Collapse
Affiliation(s)
- Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels - Akita, Akita, Japan.
| | | | | |
Collapse
|
16
|
van der Hel WS, van Eijsden P, Bos IWM, de Graaf RA, Behar KL, van Nieuwenhuizen O, de Graan PNE, Braun KPJ. In vivo MRS and histochemistry of status epilepticus-induced hippocampal pathology in a juvenile model of temporal lobe epilepsy. NMR IN BIOMEDICINE 2013; 26:132-140. [PMID: 22806932 DOI: 10.1002/nbm.2828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 06/01/2023]
Abstract
Childhood status epilepticus (SE) initiates an epileptogenic process that leads to spontaneous seizures and hippocampal pathology characterized by neuronal loss, gliosis and an imbalance between excitatory and inhibitory neurotransmission. It remains unclear whether these changes are a cause or consequence of chronic epilepsy. In this study, in vivo MRS was used in a post-SE juvenile rat model of temporal lobe epilepsy (TLE) to establish the temporal evolution of hippocampal injury and neurotransmitter imbalance. SE was induced in P21 rats by injection of lithium and pilocarpine. Four and eight weeks after SE, in vivo (1) H and γ-aminobutyric acid (GABA)-edited MRS of the hippocampus was performed in combination with dedicated ex vivo immunohistochemistry for the interpretation and validation of MRS findings. MRS showed a 12% decrease (p<0.0001) in N-acetylaspartate and a 15% increase (p=0.0226) in choline-containing compound concentrations, indicating neuronal death and gliosis, respectively. These results were confirmed by FluoroJade and vimentin staining. Furthermore, severe and progressive decreases in GABA (-41%, p<0.001) and glutamate (Glu) (-17%, p<0.001) were found. The specific severity of GABAergic cell death was confirmed by parvalbumin immunoreactivity (-68%, p<0.001). Unexpectedly, we found changes in glutamine (Gln), the metabolic precursor of both GABA and Glu. Gln increased at 4 weeks (+36%, p<0.001), but returned to control levels at 8 weeks. This decrease was consistent with the simultaneous decrease in glutamine synthase immunoreactivity (-32%, p=0.037). In vivo MRS showed gliosis and (predominantly GABAergic) neuronal loss. In addition, an increase in Gln was detected, accompanied by a decrease in glutamine synthase immunoreactivity. This may reflect glutamine synthase downregulation in order to normalize Gln levels. These changes occurred before spontaneous recurrent seizures were present but, by creating a pre-epileptic state, may play a role in epileptogenesis. MRS can be applied in a clinical setting and may be used as a noninvasive tool to monitor the development of TLE.
Collapse
Affiliation(s)
- W Saskia van der Hel
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Peixoto-Santos JE, Galvis-Alonso OY, Velasco TR, Kandratavicius L, Assirati JA, Carlotti CG, Scandiuzzi RC, Serafini LN, Leite JP. Increased metallothionein I/II expression in patients with temporal lobe epilepsy. PLoS One 2012; 7:e44709. [PMID: 23028585 PMCID: PMC3445538 DOI: 10.1371/journal.pone.0044709] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 08/07/2012] [Indexed: 12/15/2022] Open
Abstract
In the central nervous system, zinc is released along with glutamate during neurotransmission and, in excess, can promote neuronal death. Experimental studies have shown that metallothioneins I/II (MT-I/II), which chelate free zinc, can affect seizures and reduce neuronal death after status epilepticus. Our aim was to evaluate the expression of MT-I/II in the hippocampus of patients with temporal lobe epilepsy (TLE). Hippocampi from patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) and patients with TLE associated with tumor or dysplasia (TLE-TD) were evaluated for expression of MT-I/II, for the vesicular zinc levels, and for neuronal, astroglial, and microglial populations. Compared to control cases, MTLE group displayed widespread increase in MT-I/II expression, astrogliosis, microgliosis and reduced neuronal population. In TLE-TD, the same changes were observed, except that were mainly confined to fascia dentata. Increased vesicular zinc was observed only in the inner molecular layer of MTLE patients, when compared to control cases. Correlation and linear regression analyses indicated an association between increased MT-I/II and increased astrogliosis in TLE. MT-I/II levels did not correlate with any clinical variables, but MTLE patients with secondary generalized seizures (SGS) had less MT-I/II than MTLE patients without SGS. In conclusion, MT-I/II expression was increased in hippocampi from TLE patients and our data suggest that it is associated with astrogliosis and may be associated with different seizure spread patterns.
Collapse
Affiliation(s)
- José Eduardo Peixoto-Santos
- Department of Neuroscience and Behavior, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto – São Paulo, Brazil
| | - Orfa Yineth Galvis-Alonso
- Department of Molecular Biology, São José do Rio Preto Medical School, São José do Rio Preto – São Paulo, Brazil
| | - Tonicarlo Rodrigues Velasco
- Department of Neuroscience and Behavior, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto – São Paulo, Brazil
| | - Ludmyla Kandratavicius
- Department of Neuroscience and Behavior, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto – São Paulo, Brazil
| | - João Alberto Assirati
- Department of Neurosurgery, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto – São Paulo, Brazil
| | - Carlos Gilberto Carlotti
- Department of Neurosurgery, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto – São Paulo, Brazil
| | - Renata Caldo Scandiuzzi
- Department of Neuroscience and Behavior, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto – São Paulo, Brazil
| | - Luciano Neder Serafini
- Department of Pathology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto – São Paulo, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavior, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto – São Paulo, Brazil
| |
Collapse
|
18
|
Blümcke I, Coras R, Miyata H, Ozkara C. Defining clinico-neuropathological subtypes of mesial temporal lobe epilepsy with hippocampal sclerosis. Brain Pathol 2012; 22:402-11. [PMID: 22497612 DOI: 10.1111/j.1750-3639.2012.00583.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hippocampal sclerosis (HS) is the most frequent cause of drug-resistant focal epilepsies (ie, mesial temporal lobe epilepsy with hippocampal sclerosis; mTLE-HS), and presents a broad spectrum of electroclinical, structural and molecular pathology patterns. Many patients become drug resistant during the course of the disease, and surgical treatment was proven helpful to achieve seizure control. Hence, up to 40% of patients suffer from early or late surgical failures. Different patterns of hippocampal cell loss, involvement of other mesial temporal structures, as well as temporal neocortex including focal cortical dysplasia, may contribute to the extent of the epileptogenic network and will be discussed. An international consensus is mandatory to clarify terminology use and to reliably distinguish mTLE-HS subtypes. High-resolution imaging with confirmed histopathologic diagnosis, as well as advanced neurophysiologic and molecular genetic measures, will be a powerful tool in the future to address these issues and help to predict each patient's probability to control their epilepsy in mTLE-HS conditions.
Collapse
Affiliation(s)
- Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany.
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Ciğdem Ozkara
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey.
| | | |
Collapse
|
20
|
Blümcke I. Neuropathology of focal epilepsies: a critical review. Epilepsy Behav 2009; 15:34-9. [PMID: 19248840 DOI: 10.1016/j.yebeh.2009.02.033] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 01/05/2023]
Abstract
A broad spectrum of structural lesions can be histopathologically identified in surgical brain specimens obtained from patients with focal, therapy-refractory epilepsies. In our experience with 4512 tissue samples collected at the German Neuropathological Reference Center for Epilepsy Surgery, three clinicopathological entities are most common: mesial temporal sclerosis (40%), long-term epilepsy-associated tumors (27%), and malformations of cortical development (13%). Notwithstanding, a systematic histopathological and molecular-genetic analysis is mandatory to unravel the underlying pathogenic mechanism of epilepsy-associated lesions and may contribute to our current understanding of pharmacoresistance and epileptogenesis. However, an interdisciplinary approach is necessary to further explore predictive parameters with respect to postsurgical seizure relief and memory impairment, and also to identify new pharmacological targets.
Collapse
Affiliation(s)
- Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, D-91054 Erlangen, Germany.
| |
Collapse
|
21
|
Arai N, Takahashi T, Komori T, Yagishita A, Shimizu H. Diagnostic surgical neuropathology of intractable epilepsy. Neuropathology 2008; 27:594-600. [PMID: 18021382 DOI: 10.1111/j.1440-1789.2007.00811.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As neurosurgical treatments have been increasingly applied to patients who have intractable epilepsy, much knowledge on pathological changes in surgically removed brain tissues have become clearer in recent years, as well as on the neuroimaging findings which are analyzed with a variety of techniques, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission computed tomography (SPECT) in combination with digital imaging and communication in medicine (DICOM), statistical parametric mapping (SPM), subtraction ictal SPECT coregistered to MRI (SISCOM) and/or PET-guided intraoperative navigation system, as mentioned in detain in another article in this issue by Maehara et al. Representative and relatively common diseases, treated by epilepsy-surgery, are as follows; hippocampal sclerosis, amygdaloid sclerosis, coarse and macroscopic brain malformation (focal cortical dysplasia, hemimegalencephaly, tuberous sclerosis), tumors (dysembryoplastic neuroepithelial tumor, ganglioglioma, etc.), destructive lesions and the others. It is a fact, however, that there remains many problems in the diagnostic criteria or histological grading systems, especially in various cortical dysplasias described above. On the other hand, histologically minor but clinically serious lesions have become to be known through careful observations on surgically removed tissues which showed no neuroradiological findings. A good well-known example is microdysgenesis of the cerebrum which is characterized by the presence of both the white mater ectopic neurons and the vascular meandering abnormalities with glial satellitosis. There must be another important histological phenotypes of microdysgenesis, except the above-mentioned ones, that are not yet established at present. Therefore, it is believed that there remains various problems on the diagnostic neuropathology of epileptic lesions with or without neuroimaging findings in which we have to give answers in a few days to come.
Collapse
Affiliation(s)
- Nobutaka Arai
- Department of Clinical Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
22
|
Scalia J, Lisanby SH, Dwork AJ, Johnson JE, Bernhardt ER, Arango V, McCall WV. Neuropathologic examination after 91 ECT treatments in a 92-year-old woman with late-onset depression. J ECT 2007; 23:96-8. [PMID: 17548979 DOI: 10.1097/yct.0b013e31804bb99d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Whereas pathological seizure states, such as temporal lobe epilepsy, are commonly associated with cell loss and glial scarring in the hippocampus, seizures induced via electroconvulsive therapy (ECT) have not been associated with histological evidence of neuronal damage. We present a case report including the late-life medical history and postmortem histology of an elderly woman with major depression who received 91 sessions of ECT during the last 22 years of her life. Given the large number of ECT sessions, and her advanced age, this case provides a strong test of whether ECT causes detectable evidence of neuronal damage. We examined the gross morphology of the hippocampus, hippocampal cytoarchitecture, and measures of neuropathology. We found no pathological changes that could be attributed to ECT. Only expected, age-related features were present. Corpora amylacea and rare neurofibrillary tangles were evident, but we failed to detect any obvious evidence of cell loss or gliosis. Cognition in this patient was intact as indicated by a perfect score on a Mini-Mental Status Examination administered 6 days before death at the age of 92. This case adds to the considerable evidence for the safety of ECT.
Collapse
Affiliation(s)
- Jason Scalia
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Blümcke I, Pauli E, Clusmann H, Schramm J, Becker A, Elger C, Merschhemke M, Meencke HJ, Lehmann T, von Deimling A, Scheiwe C, Zentner J, Volk B, Romstöck J, Stefan H, Hildebrandt M. A new clinico-pathological classification system for mesial temporal sclerosis. Acta Neuropathol 2007; 113:235-44. [PMID: 17221203 PMCID: PMC1794628 DOI: 10.1007/s00401-006-0187-0] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/14/2006] [Accepted: 12/14/2006] [Indexed: 12/17/2022]
Abstract
We propose a histopathological classification system for hippocampal cell loss in patients suffering from mesial temporal lobe epilepsies (MTLE). One hundred and seventy-eight surgically resected specimens were microscopically examined with respect to neuronal cell loss in hippocampal subfields CA1–CA4 and dentate gyrus. Five distinct patterns were recognized within a consecutive cohort of anatomically well-preserved surgical specimens. The first group comprised hippocampi with neuronal cell densities not significantly different from age matched autopsy controls [no mesial temporal sclerosis (no MTS); n = 34, 19%]. A classical pattern with severe cell loss in CA1 and moderate neuronal loss in all other subfields excluding CA2 was observed in 33 cases (19%), whereas the vast majority of cases showed extensive neuronal cell loss in all hippocampal subfields (n = 94, 53%). Due to considerable similarities of neuronal cell loss patterns and clinical histories, we designated these two groups as MTS type 1a and 1b, respectively. We further distinguished two atypical variants characterized either by severe neuronal loss restricted to sector CA1 (MTS type 2; n = 10, 6%) or to the hilar region (MTS type 3, n = 7, 4%). Correlation with clinical data pointed to an early age of initial precipitating injury (IPI < 3 years) as important predictor of hippocampal pathology, i.e. MTS type 1a and 1b. In MTS type 2, IPIs were documented at a later age (mean 6 years), whereas in MTS type 3 and normal appearing hippocampus (no MTS) the first event appeared beyond the age of 13 and 16 years, respectively. In addition, postsurgical outcome was significantly worse in atypical MTS, especially MTS type 3 with only 28% of patients having seizure relief after 1-year follow-up period, compared to successful seizure control in MTS types 1a and 1b (72 and 73%). Our classification system appears suitable for stratifying the clinically heterogeneous group of MTLE patients also with respect to postsurgical outcome studies.
Collapse
Affiliation(s)
- Ingmar Blümcke
- Department of Neuropathology, Friedrich-Alexander-University Erlangen-Nuremberg, Krankenhausstrasse 8-10, 91054, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Arai N, Takahashi T, Sugie M, Shimizu H. A 30-year-old male treated by neurosurgery against temporal lobe epilepsy. Neuropathology 2005; 25:171-4. [PMID: 15875912 DOI: 10.1111/j.1440-1789.2005.00594.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nobutaka Arai
- Department of Clinical Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan.
| | | | | | | |
Collapse
|
25
|
Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 2004; 73:1-60. [PMID: 15193778 DOI: 10.1016/j.pneurobio.2004.03.009] [Citation(s) in RCA: 613] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 03/24/2004] [Indexed: 01/09/2023]
Abstract
This review focuses on the remodeling of brain circuitry associated with epilepsy, particularly in excitatory glutamate and inhibitory GABA systems, including alterations in synaptic efficacy, growth of new connections, and loss of existing connections. From recent studies on the kindling and status epilepticus models, which have been used most extensively to investigate temporal lobe epilepsy, it is now clear that the brain reorganizes itself in response to excess neural activation, such as seizure activity. The contributing factors to this reorganization include activation of glutamate receptors, second messengers, immediate early genes, transcription factors, neurotrophic factors, axon guidance molecules, protein synthesis, neurogenesis, and synaptogenesis. Some of the resulting changes may, in turn, contribute to the permanent alterations in seizure susceptibility. There is increasing evidence that neurogenesis and synaptogenesis can appear not only in the mossy fiber pathway in the hippocampus but also in other limbic structures. Neuronal loss, induced by prolonged seizure activity, may also contribute to circuit restructuring, particularly in the status epilepticus model. However, it is unlikely that any one structure, plastic system, neurotrophin, or downstream effector pathway is uniquely critical for epileptogenesis. The sensitivity of neural systems to the modulation of inhibition makes a disinhibition hypothesis compelling for both the triggering stage of the epileptic response and the long-term changes that promote the epileptic state. Loss of selective types of interneurons, alteration of GABA receptor configuration, and/or decrease in dendritic inhibition could contribute to the development of spontaneous seizures.
Collapse
Affiliation(s)
- Kiyoshi Morimoto
- Department of Neuropsychiatry, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | | | | |
Collapse
|