1
|
Vafaei N, Mohebbi A, Rezaei Z, Heidari M, Hosseinpour S, Dehnavi AZ, Ghamari A, Salehipour M, Rabbani A, Mahdieh N, Ashrafi MR. TPP1 Variants in Iranian patients: A Novel Pathogenic Homozygous Variant Causing Neuronal Ceroid Lipofuscinosis 2. Mol Syndromol 2024; 15:30-36. [PMID: 38357261 PMCID: PMC10862320 DOI: 10.1159/000534100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction TPP1 variants have been identified as a causative agent of neuronal ceroid lipofuscinosis 2 disease, that ataxia is one of its clinical features. Therefore, here, molecular study of TPP1 variants is presented in an Iranian cohort and a novel pathogenic variant is described. Methods This investigation was conducted as a cross-sectional study in a tertiary referral hospital, Children's Medical Center, Pediatrics Center of Excellence. Clinical presentations and pedigrees were documented. Patients with cerebellar ataxia were enrolled in this study. Next-generation sequencing was applied to confirm the diagnosis. Segregation and bioinformatics analyses were also done for the variants using Sanger sequencing. Results Forty-five patients were included in our study. The mean age of onset was 104 (+55.60) months (minimum = 31 months, maximum = 216 months). The majority of cases (73.3%) were born to consanguineous parents and only 1 patient (2.2%) had an affected sibling. Of the 45 patients, only 1 patient with a novel pathogenic variant (c.1425_1425+1delinsAT, p.A476Cfs*15) in the TPP1 gene was identified. Discussion The main strength of current study is the relatively large sample size. Besides, a novel pathogenic variant could be important toward the diagnosis and management of this condition. With significant advances in various therapies, early diagnosis could improve the treatments using personalized-based medicine.
Collapse
Affiliation(s)
- Nahid Vafaei
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohebbi
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Pediatric Neurology Division, Children’s Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Sareh Hosseinpour
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Azin Ghamari
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Salehipour
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Ali Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Cardiogenetic Research Center, Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Espitia Segura OM, Penagos Vargas NE. In response: Natural history variations for neuronal ceroid lipofuscinosis type 2: In support of newborn screening. Epilepsia 2023; 64:2216-2217. [PMID: 37073885 DOI: 10.1111/epi.17620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023]
Affiliation(s)
| | - Nathalia Elena Penagos Vargas
- Pediatric Neurology Department, Fundación Hospital Pediatrico la Misericordia HOMI, Bogotá, Colombia
- Facultad de medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
3
|
Mukherjee AB, Appu AP, Sadhukhan T, Casey S, Mondal A, Zhang Z, Bagh MB. Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses. Mol Neurodegener 2019; 14:4. [PMID: 30651094 PMCID: PMC6335712 DOI: 10.1186/s13024-018-0300-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/04/2018] [Indexed: 12/04/2022] Open
Abstract
Neuronal Ceroid Lipofuscinoses (NCLs), commonly known as Batten disease, constitute a group of the most prevalent neurodegenerative lysosomal storage disorders (LSDs). Mutations in at least 13 different genes (called CLNs) cause various forms of NCLs. Clinically, the NCLs manifest early impairment of vision, progressive decline in cognitive and motor functions, seizures and a shortened lifespan. At the cellular level, all NCLs show intracellular accumulation of autofluorescent material (called ceroid) and progressive neuron loss. Despite intense studies the normal physiological functions of each of the CLN genes remain poorly understood. Consequently, the development of mechanism-based therapeutic strategies remains challenging. Endolysosomal dysfunction contributes to pathogenesis of virtually all LSDs. Studies within the past decade have drastically changed the notion that the lysosomes are merely the terminal degradative organelles. The emerging new roles of the lysosome include its central role in nutrient-dependent signal transduction regulating metabolism and cellular proliferation or quiescence. In this review, we first provide a brief overview of the endolysosomal and autophagic pathways, lysosomal acidification and endosome-lysosome and autophagosome-lysosome fusions. We emphasize the importance of these processes as their dysregulation leads to pathogenesis of many LSDs including the NCLs. We also describe what is currently known about each of the 13 CLN genes and their products and how understanding the emerging new roles of the lysosome may clarify the underlying pathogenic mechanisms of the NCLs. Finally, we discuss the current and emerging therapeutic strategies for various NCLs.
Collapse
Affiliation(s)
- Anil B. Mukherjee
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Abhilash P. Appu
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Tamal Sadhukhan
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Sydney Casey
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Avisek Mondal
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Zhongjian Zhang
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
- Present address: Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Maria B. Bagh
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| |
Collapse
|
4
|
Dimitrova MB, Atanasova DY, Lazarov NE. Histochemical Demonstration of Tripeptidyl Aminopeptidase I. Methods Mol Biol 2017; 1560:55-68. [PMID: 28155145 DOI: 10.1007/978-1-4939-6788-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Enzyme histochemical methods are valuable for the studies on the enzyme involvement in different pathological processes. Here we describe two protocols for chromogenic and fluorogenic histochemical demonstration of tripeptidyl aminopeptidase I (TPPI), a protease that is crucial for neuronal functions. The procedures are based on newly synthesized substrates for TPPI-glycyl-L-prolyl-L-metionyl-5-chloro-1-anthraquinonylhydrazide (GPM-CAH) and glycyl-L-prolyl-L-metionyl-4-hydrazido-N-hexyl-1,8-naphthalimide (GPM-HHNI). Using such protocols, precise enzyme localization can be obtained in tissue sections of mammalian organs.
Collapse
Affiliation(s)
- Mashenka B Dimitrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Dimitrinka Y Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Nikolai E Lazarov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
- Department of Anatomy and Histology, Medical University of Sofia, 2, Zdrave Street, 1431, Sofia, Bulgaria.
| |
Collapse
|
5
|
Kondo MY, Gouvea IE, Okamoto DN, Santos JAN, Souccar C, Oda K, Juliano L, Juliano MA. Analysis of catalytic properties of tripeptidyl peptidase I (TTP-I), a serine carboxyl lysosomal protease, and its detection in tissue extracts using selective FRET peptide substrate. Peptides 2016; 76:80-6. [PMID: 26775801 DOI: 10.1016/j.peptides.2016.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/01/2016] [Accepted: 01/10/2016] [Indexed: 11/30/2022]
Abstract
Tripeptidyl peptidase I (TPP-I), also named ceroid lipofuscinosis 2 protease (CLN2p), is a serine carboxyl lysosomal protease involved in neurodegenerative diseases, and has both tripeptidyl amino- and endo- peptidase activities under different pH conditions. We developed fluorescence resonance energy transfer (FRET) peptides using tryptophan (W) as the fluorophore to study TPP-I hydrolytic properties based on previous detailed substrate specificity study (Tian Y. et al., J. Biol. Chem. 2006, 281:6559-72). Tripeptidyl amino peptidase activity is enhanced by the presence of amino acids in the prime side and the peptide NH2-RWFFIQ-EDDnp is so far the best substrate described for TPP-I. The hydrolytic parameters of this peptide and its analogues indicated that the S4 subsite of TPP-I is occluded and there is an electrostatic interaction of the positively charged substrate N-terminus amino group and a negative locus in the region of the enzyme active site. KCl activated TPP-I in contrast to the inhibition by Ca(2+) and NaCl. Solvent kinetic isotope effects (SKIEs) show the importance of the free N-terminus amino group of the substrates, whose absence results in a more complex solvent-dependent enzyme: substrate interaction and catalytic process. Like pure TPP-I, rat spleen and kidney homogenates cleaved NH2-RWFFIQ-EDDnp only at F-F bond and is not inhibited by pepstatin, E-64, EDTA or PMSF. The selectivity of NH2-RWFFIQ-EDDnp to TPP-I was also demonstrated by the 400 times higher k(cat)/K(M) compared to generally used substrate, NH2-AAF-MCA and by its resistance to hydrolysis by cathepsin D that is present in high levels in kidneys.
Collapse
Affiliation(s)
- Marcia Y Kondo
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-20 São Paulo, Brazil
| | - Iuri E Gouvea
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-20 São Paulo, Brazil
| | - Débora N Okamoto
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-20 São Paulo, Brazil
| | - Jorge A N Santos
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-20 São Paulo, Brazil
| | - Caden Souccar
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-20 São Paulo, Brazil
| | - Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Luiz Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-20 São Paulo, Brazil
| | - Maria A Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-20 São Paulo, Brazil.
| |
Collapse
|
6
|
Cell biology of the NCL proteins: What they do and don't do. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2242-55. [PMID: 25962910 DOI: 10.1016/j.bbadis.2015.04.027] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 02/06/2023]
Abstract
The fatal, primarily childhood neurodegenerative disorders, neuronal ceroid lipofuscinoses (NCLs), are currently associated with mutations in 13 genes. The protein products of these genes (CLN1 to CLN14) differ in their function and their intracellular localization. NCL-associated proteins have been localized mostly in lysosomes (CLN1, CLN2, CLN3, CLN5, CLN7, CLN10, CLN12 and CLN13) but also in the Endoplasmic Reticulum (CLN6 and CLN8), or in the cytosol associated to vesicular membranes (CLN4 and CLN14). Some of them such as CLN1 (palmitoyl protein thioesterase 1), CLN2 (tripeptidyl-peptidase 1), CLN5, CLN10 (cathepsin D), and CLN13 (cathepsin F), are lysosomal soluble proteins; others like CLN3, CLN7, and CLN12, have been proposed to be lysosomal transmembrane proteins. In this review, we give our views and attempt to summarize the proposed and confirmed functions of each NCL protein and describe and discuss research results published since the last review on NCL proteins. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
|
7
|
Katz ML, Coates JR, Sibigtroth CM, Taylor JD, Carpentier M, Young WM, Wininger FA, Kennedy D, Vuillemenot BR, O'Neill CA. Enzyme replacement therapy attenuates disease progression in a canine model of late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). J Neurosci Res 2014; 92:1591-8. [PMID: 24938720 PMCID: PMC4263309 DOI: 10.1002/jnr.23423] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/07/2014] [Indexed: 01/16/2023]
Abstract
Using a canine model of classical late-infantile neuronal ceroid lipofuscinosis (CLN2 disease), a study was conducted to evaluate the potential pharmacological activity of recombinant human tripeptidyl peptidase-1 (rhTPP1) enzyme replacement therapy administered directly to the cerebrospinal fluid (CSF). CLN2 disease is a hereditary neurodegenerative disorder resulting from mutations in CLN2, which encodes the soluble lysosomal enzyme tripeptidyl peptidase-1 (TPP1). Infants with mutations in both CLN2 alleles develop normally but in the late-infantile/early-childhood period undergo progressive neurological decline accompanied by pronounced brain atrophy. The disorder, a form of Batten disease, is uniformly fatal, with clinical signs starting between 2 and 4 years of age and death usually occurring by the early teenage years. Dachshunds homozygous for a null mutation in the canine ortholog of CLN2 (TPP1) exhibit a similar disorder that progresses to end stage at 10.5–11 months of age. Administration of rhTPP1 via infusion into the CSF every other week, starting at approximately 2.5 months of age, resulted in dose-dependent significant delays in disease progression, as measured by delayed onset of neurologic deficits, improved performance on a cognitive function test, reduced brain atrophy, and increased life span. Based on these findings, a clinical study evaluating the potential therapeutic value of rhTPP1 administration into the CSF of children with CLN2 disease has been initiated.
Collapse
Affiliation(s)
- Martin L Katz
- Mason Eye Institute, University of Missouri School of Medicine, and Department of Bioengineering, University of Missouri, Columbia, Missouri
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sun Y, Almomani R, Breedveld GJ, Santen GWE, Aten E, Lefeber DJ, Hoff JI, Brusse E, Verheijen FW, Verdijk RM, Kriek M, Oostra B, Breuning MH, Losekoot M, den Dunnen JT, van de Warrenburg BP, Maat-Kievit AJA. Autosomal recessive spinocerebellar ataxia 7 (SCAR7) is caused by variants in TPP1, the gene involved in classic late-infantile neuronal ceroid lipofuscinosis 2 disease (CLN2 disease). Hum Mutat 2013; 34:706-13. [PMID: 23418007 DOI: 10.1002/humu.22292] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/31/2013] [Indexed: 01/15/2023]
Abstract
Spinocerebellar ataxias are phenotypically, neuropathologically, and genetically heterogeneous. The locus of autosomal recessive spinocerebellar ataxia type 7 (SCAR7) was previously linked to chromosome band 11p15. We have identified TPP1 as the causative gene for SCAR7 by exome sequencing. A missense and a splice site variant in TPP1, cosegregating with the disease, were found in a previously described SCAR7 family and also in another patient with a SCAR7 phenotype. TPP1, encoding the tripeptidyl-peptidase 1 enzyme, is known as the causative gene for late infantile neuronal ceroid lipofuscinosis disease 2 (CLN2 disease). CLN2 disease is characterized by epilepsy, loss of vision, ataxia, and a rapidly progressive course, leading to early death. SCAR7 patients showed ataxia and low activity of tripeptidyl-peptidase 1, but no ophthalmologic abnormalities or epilepsy. Also, the slowly progressive evolution of the disease until old age and absence of ultra structural curvilinear profiles is different from the known CLN2 phenotypes. Our findings now expand the phenotypes related to TPP1-variants to SCAR7. In spite of the limited sample size and measurements, a putative genotype-phenotype correlation may be drawn: we hypothesize that loss of function variants abolishing TPP1 enzyme activity lead to CLN2 disease, whereas variants that diminish TPP1 enzyme activity lead to SCAR7.
Collapse
Affiliation(s)
- Yu Sun
- Center for Human and Clinical Genetics, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1866-81. [PMID: 23402926 DOI: 10.1016/j.bbadis.2013.01.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14. Although the precise function of most of the NCL proteins remains elusive, comprehensive analyses of model organisms, particularly mouse models, provided new insight into pathogenic mechanisms of NCL diseases and roles of mutant NCL proteins in cellular/subcellular protein and lipid homeostasis, as well as their adaptive/compensatorial regulation at the transcriptional level. This review summarizes the current knowledge on the expression, function and regulation of NCL proteins and their impact on lysosomal integrity. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Developmental study of tripeptidyl peptidase I activity in the mouse central nervous system and peripheral organs. Cell Tissue Res 2011; 346:141-9. [DOI: 10.1007/s00441-011-1252-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/15/2011] [Indexed: 10/15/2022]
|
11
|
Getty AL, Pearce DA. Interactions of the proteins of neuronal ceroid lipofuscinosis: clues to function. Cell Mol Life Sci 2010; 68:453-74. [PMID: 20680390 DOI: 10.1007/s00018-010-0468-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 12/21/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are caused by mutations in eight different genes, are characterized by lysosomal accumulation of autofluorescent storage material, and result in a disease that causes degeneration of the central nervous system (CNS). Although functions are defined for some of the soluble proteins that are defective in NCL (cathepsin D, PPT1, and TPP1), the primary function of the other proteins defective in NCLs (CLN3, CLN5, CLN6, CLN7, and CLN8) remain poorly defined. Understanding the localization and network of interactions for these proteins can offer clues as to the function of the NCL proteins and also the pathways that will be disrupted in their absence. Here, we present a review of the current understanding of the localization, interactions, and function of the proteins associated with NCL.
Collapse
Affiliation(s)
- Amanda L Getty
- Sanford Children's Health Research Center, Sanford Research USD, Sanford School of Medicine of the University of South Dakota, 2301 East 60th Street North, Sioux Falls, SD 57104-0589, USA
| | | |
Collapse
|
12
|
Golabek AA, Dolzhanskaya N, Walus M, Wisniewski KE, Kida E. Prosegment of tripeptidyl peptidase I is a potent, slow-binding inhibitor of its cognate enzyme. J Biol Chem 2008; 283:16497-504. [PMID: 18411270 DOI: 10.1074/jbc.m800458200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tripeptidyl peptidase I (TPP I) is the first mammalian representative of a family of pepstatin-insensitive serine-carboxyl proteases, or sedolisins. The enzyme acts in lysosomes, where it sequentially removes tripeptides from the unmodified N terminus of small, unstructured polypeptides. Naturally occurring mutations in TPP I underlie a neurodegenerative disorder of childhood, classic late infantile neuronal ceroid lipofuscinosis (CLN2). Generation of mature TPP I is associated with removal of a long prosegment of 176 amino acid residues from the zymogen. Here we investigated the inhibitory properties of TPP I prosegment expressed and isolated from Escherichia coli toward its cognate protease. We show that the TPP I prosegment is a potent, slow-binding inhibitor of its parent enzyme, with an overall inhibition constant in the low nanomolar range. We also demonstrate the protective effect of the prosegment on alkaline pH-induced inactivation of the enzyme. Interestingly, the inhibitory properties of TPP I prosegment with the introduced classic late infantile neuronal ceroid lipofuscinosis disease-associated mutation, G77R, significantly differed from those revealed by wild-type prosegment in both the mechanism of interaction and the inhibitory rate. This is the first characterization of the inhibitory action of the sedolisin prosegment.
Collapse
Affiliation(s)
- Adam A Golabek
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA.
| | | | | | | | | |
Collapse
|
13
|
Kyttälä A, Lahtinen U, Braulke T, Hofmann SL. Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1762:920-33. [PMID: 16839750 DOI: 10.1016/j.bbadis.2006.05.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/19/2006] [Accepted: 05/23/2006] [Indexed: 11/28/2022]
Abstract
Neuronal ceroid lipofucinoses (NCLs) are a group of severe neurodegenerative disorders characterized by accumulation of autofluorescent ceroid lipopigment in patients' cells. The different forms of NCL share many similar pathological features but result from mutations in different genes. The genes affected in NCLs encode both soluble and transmembrane proteins and are localized to ER or to the endosomes/lysosomes. Due to selective vulnerability of the central nervous system in the NCL disorders, the corresponding proteins are proposed to have important, tissue specific roles in the brain. The pathological similarities of the different NCLs have led not only to the grouping of these disorders but also to suggestion that the NCL proteins function in the same biological pathway. Despite extensive research, including the development of several model organisms for NCLs and establishment of high-throughput techniques, the precise biological function of many of the NCL proteins has remained elusive. The aim of this review is to summarize the current knowledge of the functions, or proposed functions, of the different NCL proteins.
Collapse
Affiliation(s)
- Aija Kyttälä
- National Public Health Institute, Department of Molecular Medicine, Biomedicum Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
14
|
Abstract
AbstractThe lysosomal lumen contains numerous acidic hydrolases involved in the degradation of carbohydrates, lipids, proteins, and nucleic acids, which are basic cell components that turn over continuously within the cell and/or are ingested from outside of the cell. Deficiency in almost any of these hydrolases causes accumulation of the undigested material in secondary lysosomes, which manifests itself as a form of lysosomal storage disorder (LSD). Mutations in tripeptidyl-peptidase I (TPP I) underlie the classic late-infantile form of neuronal ceroid lipofuscinoses (CLN2), the most common neurodegenerative disorders of childhood. TPP I is an aminopeptidase with minor endopeptidase activity and Ser475 serving as an active-site nucleophile. The enzyme is synthesized as a highly glycosylated precursor transported by mannose-6-phosphate receptors to lysosomes, where it undergoes proteolytic maturation. This review summarizes recent progress in understanding of TPP I biology and molecular pathology of the CLN2 disease process, including distribution of the enzyme, its biosynthesis, glycosylation, transport and activation, as well as catalytic mechanisms and their potential implications for pathogenesis and treatment of the underlying disease. Promising data from gene and stem cell therapy in laboratory animals raise hope that CLN2 will be the first neurodegenerative LSD for which causative treatment will become available for humans.
Collapse
Affiliation(s)
- Adam A Golabek
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | | |
Collapse
|
15
|
Mole SE, Williams RE, Goebel HH. Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics 2005; 6:107-26. [PMID: 15965709 DOI: 10.1007/s10048-005-0218-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 02/03/2005] [Indexed: 12/23/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of severe neurodegenerative diseases with onset usually in childhood and characterised by the intracellular accumulation of autofluorescent storage material. Within the last decade, mutations that cause NCL have been found in six human genes (CLN1, CLN2, CLN3, CLN5, CLN6 and CLN8). Mutations in two additional genes cause disease in animal models that share features with NCL-CTSD in sheep and mice and PPT2 in mice. Approximately 160 NCL disease-causing mutations have now been described (listed and fully cited in the NCL Mutation Database, http://www.ucl.ac.uk/ncl/ ). Most mutations result in a classic morphology and disease phenotype, but some mutations are associated with disease that is of later onset, less severe or protracted in its course, or with atypical morphology. Seven common mutations exist, some having a worldwide distribution and others associated with families originating from specific geographical regions. This review attempts to correlate the gene, disease-causing mutation, morphology and clinical phenotype for each type of NCL.
Collapse
Affiliation(s)
- Sara E Mole
- MRC Laboratory for Molecular Cell Biology and Department of Paediatrics and Child Health, University College London, Gower Street, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
16
|
Golabek AA, Wujek P, Walus M, Bieler S, Soto C, Wisniewski KE, Kida E. Maturation of Human Tripeptidyl-peptidase I in Vitro. J Biol Chem 2004; 279:31058-67. [PMID: 15143070 DOI: 10.1074/jbc.m400700200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tripeptidyl-peptidase I (TPP I, CLN2 protein) is a lysosomal aminopeptidase that cleaves off tripeptides from the free N termini of oligopeptides and also shows minor endopeptidase activity. TPP I is synthesized as a preproenzyme. Its proenzyme autoactivates under acidic conditions in vitro, resulting in a rapid conversion into the mature form. In this study, we examined the process of maturation in vitro of recombinant latent human TPP I purified to homogeneity from secretions of Chinese hamster ovary cells overexpressing TPP I cDNA. Autoprocessing of TPP I proenzyme was carried out at a wide pH range, from approximately 2.0 to 6.0, albeit with different efficiencies depending on the pH and the type of buffer. However, the acquisition of enzymatic activity in the same buffer took place in a narrower pH "window," usually in the range of 3.6-4.2. N-terminal sequencing revealed that mature, inactive enzyme generated during autoactivation at higher pH contained N-terminal extensions (starting at 6 and 14 amino acid residues upstream of the prosegment/mature enzyme junction), which could contribute to the lack of activity of TPP I generated in this manner. Autoprocessing was not associated with any major changes of the secondary structure of the proenzyme, as revealed by CD spectroscopy. Both the activation and proteolytic processing of the recombinant TPP I precursor were primarily concentration-independent. The addition of the mature enzyme did not accelerate the processing of the proenzyme. In addition, the maturation of the proenzyme was not affected by the presence of glycerol. Finally, the proenzyme with the active site mutated (S475L) was not processed in the presence of the wild-type enzyme. All of these findings indicate a primarily intramolecular (unimolecular) mechanism of TPP I activation and autoprocessing and suggest that in vivo mature enzyme does not significantly participate in its own generation from the precursor.
Collapse
Affiliation(s)
- Adam A Golabek
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ezaki J, Kominami E. The intracellular location and function of proteins of neuronal ceroid lipofuscinoses. Brain Pathol 2004; 14:77-85. [PMID: 14997940 PMCID: PMC8095780 DOI: 10.1111/j.1750-3639.2004.tb00501.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neuronal ceroid lipofuscinoses are a group of diseases characterized by accumulation of hydrophobic proteins in lysosomes of neurons and other types of cells. NCLs are caused by at least 8 mutant genes (CLN1-CLN8), though CLN4 and CLN7 have not yet been identified. Except for Cln1p, the protein encoded by CLN1, the defective proteins are associated with lysosomal accumulation of mitochondrial ATP synthase subunit c. Cln1p and Cln2p are soluble lysosomal enzymes, targeted to lysosomes in a mannose 6-phosphate dependent manner. Mutations in the lysosomal protease cathepsin D cause another NCL. Cln3p, Cln5p, Cln6p and Cln8p are thought to be transmembrane proteins. Cln3p and Cln5p are localized in the endosome-lysosomal compartment. Deficiency of endosomal membrane protein CLC-3, a member of the chloride channel family, causes NCL-like phenotype and lysosomal storage of subunit c. Herein, we review the features of NCL and NCL-related proteins and discuss the involvement of the proteins in lysosomal degradation of subunit c.
Collapse
Affiliation(s)
- Junji Ezaki
- Department of Biochemistry, Juntendo University School of Medicine, 2‐1‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8421, Japan
| | - Eiki Kominami
- Department of Biochemistry, Juntendo University School of Medicine, 2‐1‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8421, Japan
| |
Collapse
|
18
|
Abstract
The neuronal ceroid lipofuscinoses (NCL), also known as Batten disease, are a group of inherited severe neurodegenerative disorders primarily affecting children. They are characterised by the accumulation of autofluorescent storage material in many cells. Children suffer from visual failure, seizures, progressive physical and mental decline and premature death, associated with the loss of cortical neurones. Six genes have been identified that cause human NCL (CLN1, CLN2, CLN3, CLN5, CLN6, CLN8), and approximately 150 mutations have been described. The majority of mutations result in a characteristic disease course for each gene. However, mutations associated with later disease onset or a more protracted disease course have also been described. At least seven common mutations exist, either with a world-wide distribution or associated with families from specific countries. All mutations are described in the NCL Mutation Database (http://www.uc.ac.uk/ncl).
Collapse
Affiliation(s)
- Sara E Mole
- Department of Paediatrics and Child Health, Royal Free and University College Medical School, University College, London, United Kingdom.
| |
Collapse
|
19
|
Cooper JD. Progress towards understanding the neurobiology of Batten disease or neuronal ceroid lipofuscinosis. Curr Opin Neurol 2003. [DOI: 10.1097/00019052-200304000-00001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Golabek AA, Kida E, Walus M, Wujek P, Mehta P, Wisniewski KE. Biosynthesis, glycosylation, and enzymatic processing in vivo of human tripeptidyl-peptidase I. J Biol Chem 2003; 278:7135-45. [PMID: 12488460 DOI: 10.1074/jbc.m211872200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human tripeptidyl-peptidase I (TPP I, CLN2 protein) is a lysosomal serine protease that removes tripeptides from the free N termini of small polypeptides and also shows a minor endoprotease activity. Due to various naturally occurring mutations, an inherited deficiency of TPP I activity causes a fatal lysosomal storage disorder, classic late infantile neuronal ceroid lipofuscinosis (CLN2). In the present study, we analyzed biosynthesis, glycosylation, transport, and proteolytic processing of this enzyme in stably transfected Chinese hamster ovary cells as well as maturation of the endocytosed proenzyme in CLN2 lymphoblasts, fibroblasts, and N2a cells. Human TPP I was initially identified as a single precursor polypeptide of approximately 68 kDa, which, within a few hours, was converted to the mature enzyme of approximately 48 kDa. Compounds affecting the pH of intracellular acidic compartments, those interfering with the intracellular vesicular transport as well as inhibition of the fusion between late endosomes and lysosomes by temperature block or 3-methyladenine, hampered the conversion of TPP I proenzyme into the mature form, suggesting that this process takes place in lysosomal compartments. Digestion of immunoprecipitated TPP I proenzyme with both N-glycosidase F and endoglycosidase H as well as treatment of the cells with tunicamycin reduced the molecular mass of TPP I proenzyme by approximately 10 kDa, which indicates that all five potential N-glycosylation sites in TPP I are utilized. Mature TPP I was found to be partially resistant to endo H treatment; thus, some of its N-linked oligosaccharides are of the complex/hybrid type. Analysis of the effect of various classes of protease inhibitors and mutation of the active site Ser(475) on human TPP I maturation in cultured cells demonstrated that although TPP I zymogen is capable of autoactivation in vitro, a serine protease that is sensitive to AEBSF participates in processing of the proenzyme to the mature, active form in vivo.
Collapse
Affiliation(s)
- Adam A Golabek
- New York State Institute for Basic Research in Developmental Disabilities, Department of Developmental Neurobiology, Staten Island, New York 10314, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Bernardini F, Warburton MJ. Lysosomal degradation of cholecystokinin-(29-33)-amide in mouse brain is dependent on tripeptidyl peptidase-I: implications for the degradation and storage of peptides in classical late-infantile neuronal ceroid lipofuscinosis. Biochem J 2002; 366:521-9. [PMID: 12038963 PMCID: PMC1222804 DOI: 10.1042/bj20020467] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Revised: 05/13/2002] [Accepted: 05/31/2002] [Indexed: 11/17/2022]
Abstract
Tripeptidyl peptidase-I (TPP-I) is a lysosomal exopeptidase which removes tripeptides from the N-terminus of small peptides. Mutations in the TPP-I gene result in a lethal neurodegenerative disease, classical late-infantile neuronal ceroid lipofuscinosis (CLN2). This disease is characterized by the accumulation of proteinaceous and autofluorescent material within the lysosomes of neurons, which undergo massive cell death during the course of the disease. The absence of TPP-I may result in the lysosomal accumulation of small peptides and proteins, which eventually compromises lysosomal functions critical to the survival of neurons. To investigate the metabolism of small peptides, we have studied the degradation of cholecystokinin-(29-33)-amide (GWMDF-NH2; cholecystokinin C-terminal pentapeptide) by lysosomal fractions isolated from mouse brain and several other tissues. GWMDF-NH2 is cleaved at only one peptide bond by brain lysosomes, to produce GWM and DF-NH2. Inhibitor studies demonstrate that this reaction is catalysed by TPP-I. In contrast, lysosomal fractions from other mouse tissues additionally cleave a second peptide bond to produce GW and MDF-NH2. Inhibitor studies indicate that this reaction is catalysed by dipeptidyl peptidase-I (DPP-I; cathepsin C). Inhibitors of TPP-I are sufficient to completely block the degradation of GWMDF-NH2 by brain, but inhibitors of both TPP-I and DPP-I are required to completely inhibit the degradation of GWMDF-NH2 by other mouse tissues. Enzyme assays confirm the low activity of DPP-I in brain. An unrelated neuropeptide, neuromedin B, is degraded by a pathway that is partially dependent on TPP-I. These results indicate that TPP-I is required for the partial or complete digestion of certain neuropeptides by brain lysosomes. In the absence of TPP-I, neuropeptides or their degradation products will accumulate in brain lysosomes and may contribute to the pathogenesis of CLN2. Other tissues are spared because they express another peptidase, DPP-I, which has extensive activity on peptides and can compensate for the loss of TPP-I.
Collapse
Affiliation(s)
- Francesca Bernardini
- Department of Cellular Pathology, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | | |
Collapse
|
22
|
Koike M, Shibata M, Ohsawa Y, Kametaka S, Waguri S, Kominami E, Uchiyama Y. The expression of tripeptidyl peptidase I in various tissues of rats and mice. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2002; 65:219-32. [PMID: 12389661 DOI: 10.1679/aohc.65.219] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To understand the precise distribution of tripeptidyl peptidase I (TPP-I), a defect of which has been shown to induce late infantile neuronal ceroid lipofuscinosis, various tissues from rats and mice were analyzed using biochemical and immunohistochemical techniques. Western blot analyses showed that a protein band immunoreactive to anti-TPP-I appeared in tissue extracts of both animals at a molecular weight of approximately 47 kD. Protein levels of TPP-I differed among tissues; they were high in the rat brain, liver, stomach, kidney, thyroid and adrenal glands and in the mouse brain, stomach, kidney, and testis. The proteolytic activity of TPP-I was detectable; it differed in the tissues examined and did not always reflect the expression levels of the protein in the tissues. In particular, the TPP-I activity was low in the brains of both animals and high in the rat testis, although its protein levels were high in the former tissue and low in the latter. Double immunostaining showed the immunoreactivity for TPP-I to be well localized in granular structures of epithelial cells in renal tubules and the cerebral choroid plexus, both of which were also stained with lamp2, a lysosomal membrane protein marker, indicating that TPP-I is a lysosomal enzyme. The immunoreactivity was intense in F4/80-immunopositive macrophages/microglial cells located in various tissues including the thymus, spleen, liver, alimentary tract, and central nervous system. Although the immunoreactivity differed depending on the tissues and even within the same tissues between the species, it was detected in all tissues examined, especially in nerve cells, some types of endocrine cells, and oxyntic cells such as gastric parietal cells and bone osteoclasts. However, the immunoreactivity was faint and week in rat thyroid gland, although its protein level was high in the tissue. These lines of evidence suggest that TPP-I, a lysosomal serine proteinase, is widely distributed in rat and mouse tissues, although its expression levels vary among them.
Collapse
Affiliation(s)
- Masato Koike
- Department of Anatomy, Fukushima Medical University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|