1
|
Fazil MHUT, Chirumamilla CS, Perez-Novo C, Wong BHS, Kumar S, Sze SK, Vanden Berghe W, Verma NK. The steroidal lactone withaferin A impedes T-cell motility by inhibiting the kinase ZAP70 and subsequent kinome signaling. J Biol Chem 2021; 297:101377. [PMID: 34742736 PMCID: PMC8637146 DOI: 10.1016/j.jbc.2021.101377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
The steroidal lactone withaferin A (WFA) is a dietary phytochemical, derived from Withania somnifera. It exhibits a wide range of biological properties, including immunomodulatory, anti-inflammatory, antistress, and anticancer activities. Here we investigated the effect of WFA on T-cell motility, which is crucial for adaptive immune responses as well as autoimmune reactions. We found that WFA dose-dependently (within the concentration range of 0.3–1.25 μM) inhibited the ability of human T-cells to migrate via cross-linking of the lymphocyte function-associated antigen-1 (LFA-1) integrin with its ligand, intercellular adhesion molecule 1 (ICAM-1). Coimmunoprecipitation of WFA interacting proteins and subsequent tandem mass spectrometry identified a WFA-interactome consisting of 273 proteins in motile T-cells. In particular, our data revealed significant enrichment of the zeta-chain-associated protein kinase 70 (ZAP70) and cytoskeletal actin protein interaction networks upon stimulation. Phospho-peptide mapping and kinome analysis substantiated kinase signaling downstream of ZAP70 as a key WFA target, which was further confirmed by bait-pulldown and Western immunoblotting assays. The WFA-ZAP70 interaction was disrupted by a disulfide reducing agent dithiothreitol, suggesting an involvement of cysteine covalent binding interface. In silico docking predicted WFA binding to ZAP70 at cystine 560 and 564 residues. These findings provide a mechanistic insight whereby WFA binds to and inhibits the ZAP70 kinase and impedes T-cell motility. We therefore conclude that WFA may be exploited to pharmacologically control host immune responses and potentially prevent autoimmune-mediated pathologies.
Collapse
Affiliation(s)
| | - Chandra Sekhar Chirumamilla
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Claudina Perez-Novo
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Brandon Han Siang Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore; NTU Institute for Health Technologies (HealthTech NTU), Interdisciplinary Graduate Programme, Nanyang Technological University Singapore, Singapore
| | - Sunil Kumar
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau, Uttar Pradesh, India
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium.
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore.
| |
Collapse
|
2
|
Steven A, Friedrich M, Jank P, Heimer N, Budczies J, Denkert C, Seliger B. What turns CREB on? And off? And why does it matter? Cell Mol Life Sci 2020; 77:4049-4067. [PMID: 32347317 PMCID: PMC7532970 DOI: 10.1007/s00018-020-03525-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Altered expression and function of the transcription factor cyclic AMP response-binding protein (CREB) has been identified to play an important role in cancer and is associated with the overall survival and therapy response of tumor patients. This review focuses on the expression and activation of CREB under physiologic conditions and in tumors of distinct origin as well as the underlying mechanisms of CREB regulation by diverse stimuli and inhibitors. In addition, the clinical relevance of CREB is summarized, including its use as a prognostic and/or predictive marker as well as a therapeutic target.
Collapse
Affiliation(s)
- André Steven
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Friedrich
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Paul Jank
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Nadine Heimer
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Jan Budczies
- Institute of Pathology, University Clinic Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
| |
Collapse
|
3
|
Terazawa S, Nakano M, Yamamoto A, Imokawa G. Mycosporine-like amino acids stimulate hyaluronan secretion by up-regulating hyaluronan synthase 2 via activation of the p38/MSK1/CREB/c-Fos/AP-1 axis. J Biol Chem 2020; 295:7274-7288. [PMID: 32284328 PMCID: PMC7247295 DOI: 10.1074/jbc.ra119.011139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/01/2020] [Indexed: 01/06/2023] Open
Abstract
Hyaluronan (HA) is an extracellular matrix glycosaminoglycan that critically supports the physicochemical and mechanical properties of the skin. Here, we demonstrate that mycosporine-like amino acids (MAAs), which typically function as UV-absorbing compounds, can stimulate HA secretion from normal human fibroblasts. MAA-stimulated HA secretion was associated with significantly increased and decreased levels of mRNAs encoding HA synthase 2 (HAS2) and the HA-binding protein involved in HA depolymerization (designated HYBID), respectively. Using immunoblotting, we found that MAAs at 10 and at 25 μg/ml stimulate the phosphorylation of the mitogen-activated protein kinase (MAPK) p38, extracellular signal-regulated kinase (ERK)/c-Jun, and mitogen- and stress-activated protein kinase 1 (MSK1) (at Thr-581, Ser-360, and Ser-376, respectively) and activation of cAMP-responsive element-binding protein (CREB) and activating transcription factor 2 (ATF2), but not phosphorylation of JUN N-terminal kinase (JNK) or NF-κB (at Ser-276 or Ser-536, respectively), and increased c-Fos protein levels. Moreover, a p38-specific inhibitor, but not inhibitors of MAPK/ERK kinase (MEK), JNK, or NF-κB, significantly abrogated the increased expression of HAS2 mRNA, accompanied by significantly decreased MAA-stimulated HA secretion. These results suggested that the p38-MSK1-CREB-c-Fos-transcription factor AP-1 (AP-1) or the p38-ATF2 signaling cascade is responsible for the MAA-induced stimulation of HAS2 gene expression. Of note, siRNA-mediated ATF2 silencing failed to abrogate MAA-stimulated HAS2 expression, and c-Fos silencing abolished the increased expression of HAS2 mRNA. Our findings suggest that MAAs stimulate HA secretion by up-regulating HAS2 mRNA levels through activation of an intracellular signaling cascade consisting of p38, MSK1, CREB, c-Fos, and AP-1.
Collapse
Affiliation(s)
- Shuko Terazawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Masahiko Nakano
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan; Cosmetic Research Center, Doctor's Choice Co., Ltd., Tokyo 102-0071, Japan
| | - Akio Yamamoto
- Cosmetic Research Center, Doctor's Choice Co., Ltd., Tokyo 102-0071, Japan
| | - Genji Imokawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan; Research Institute for Biological Functions, Chubu University of Technology, Aichi 487-8501, Japan.
| |
Collapse
|
4
|
Liu R, Niu T, Cheng Y, Zhou D, Zhang C, Qu J, Sun L, Guo G, Gao R, Zhao G, Wang J. Effect of serum from healthy individuals on the growth of melanocytes in vitro following moxibustion at the "Jiudianfeng" point. J Int Med Res 2020; 48:300060520910667. [PMID: 32228312 PMCID: PMC7132557 DOI: 10.1177/0300060520910667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/20/2020] [Indexed: 12/01/2022] Open
Abstract
Objective To investigate the effects of serum from healthy individuals obtained following moxibustion at the “Jiudianfeng” point on melanocytes in vitro . Methods Ten healthy adults (five male and five female) were treated by moxibustion at the “Jiudianfeng” point for 30 minutes once daily for 3 months. The effects of treatment with serum obtained following moxibustion on melanocyte proliferation, melanin content, tyrosinase activity, cell cycle progression, and c-kit mRNA and protein expression were assessed in vitro before and after moxibustion for 1, 2, and 3 months. Results Exposure to sera from healthy adults following moxibustion therapy promoted melanocyte proliferation, melanin synthesis, tyrosinase activity, and c-kit mRNA and protein expression in vitro . Melanin synthesis and tyrosinase activity increased in the first 2 months following moxibustion and a synchronous decline was observed during the third month. Serum also promoted melanocyte entry into the G1 phase of the cell cycle. Conclusions Serum treatment following moxibustion at the “Jiudianfeng” point promoted melanocyte proliferation and melanin synthesis. Further exploration of this intriguing phenomenon is essential.
Collapse
Affiliation(s)
- Rupeng Liu
- Department of Dermatology, Beijing Hospital of Traditional
Chinese Medicine, Capital Medical University, Beijing, China
| | - Tianhui Niu
- Health Sciences Research Center, Air Force Medical Center, PLA,
Beijing, China
| | - Yu Cheng
- Department of Dermatology, Beijing Hospital of Traditional
Chinese Medicine, Capital Medical University, Beijing, China
| | - Dongmei Zhou
- Department of Dermatology, Beijing Hospital of Traditional
Chinese Medicine, Capital Medical University, Beijing, China
| | - Cang Zhang
- Department of Dermatology, Beijing Hospital of Traditional
Chinese Medicine, Capital Medical University, Beijing, China
| | - Jianhua Qu
- Department of Dermatology, Beijing Hospital of Traditional
Chinese Medicine, Capital Medical University, Beijing, China
| | - Liyun Sun
- Department of Dermatology, Beijing Hospital of Traditional
Chinese Medicine, Capital Medical University, Beijing, China
| | - Guangjin Guo
- Health Sciences Research Center, Air Force Medical Center, PLA,
Beijing, China
| | - Ran Gao
- Department of Dermatology, Beijing Hospital of Integrated
Traditional Chinese and Western Medicine, Beijing, China
| | - Guang Zhao
- Department of Dermatology, Air Force Medical Center, PLA,
Beijing, China
| | - Jusheng Wang
- Department of Dermatology, Beijing Hospital of Traditional
Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Imokawa G. Intracellular Signaling Mechanisms Involved in the Biological Effects of the Xanthophyll Carotenoid Astaxanthin to Prevent the Photo-aging of the Skin in a Reactive Oxygen Species Depletion-independent Manner: The Key Role of Mitogen and Stress-activated Protein Kinase 1. Photochem Photobiol 2018; 95:480-489. [PMID: 30317634 DOI: 10.1111/php.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
In the first review, we summarized the biological effects of the xanthophyll carotenoid astaxanthin (AX) to prevent UV-induced cutaneous inflammation, abnormal keratinization, pigmentation, and wrinkling in a manner independent of the depletion of reactive oxygen species. In this manuscript, we review what is known about the intracellular signaling mechanisms that are involved in those effects in keratinocytes and in melanocytes. Our research has characterized the intracellular stress signaling mechanism(s) that are involved in the up-regulated expression of genes encoding cyclooxygenase (COX2), interleukin (IL)-8, granulocyte macrophage colony stimulatory factor (GM-CSF), and transglutaminase (TGase)1 in UVB-exposed keratinocytes as well as in the stimulated transcription and/or translation of melanogenic factors, including microphthalmia-associated transcription factor (MITF), in stem cell factor (SCF)-treated melanocytes. The results reveal that while the expression of COX2, IL-8, GM-CSF, and TGase1 stimulated by UVB is due to effects primarily via the NFκB pathway, that stimulation can be abrogated by specifically interrupting the p38/MSK1/NFκBp65Ser276 axis. Further, the stimulation of melanogenesis by SCF can be inhibited by disrupting the phosphorylation of MSK1 via the p38, MSK1, CREB, and MITF axis. The sum of these findings provides new evidence for the interruption of ROS depletion independent-signaling by antioxidants.
Collapse
Affiliation(s)
- Genji Imokawa
- Center for Bioscience Research & Education, Utsunomiya University, Tochigi, Japan.,Research Institute for Biological Functions, Chubu University, Aichi, Japan
| |
Collapse
|
6
|
Niwano T, Terazawa S, Nakajima H, Imokawa G. The stem cell factor-stimulated melanogenesis in human melanocytes can be abrogated by interrupting the phosphorylation of MSK1: evidence for involvement of the p38/MSK1/CREB/MITF axis. Arch Dermatol Res 2018; 310:187-196. [DOI: 10.1007/s00403-018-1816-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 01/23/2023]
|
7
|
Downregulation of melanogenesis: drug discovery and therapeutic options. Drug Discov Today 2016; 22:282-298. [PMID: 27693716 DOI: 10.1016/j.drudis.2016.09.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/11/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023]
Abstract
Melanin, primarily responsible in humans for hair, eye and skin pigmentation, is produced by melanocytes through a process called melanogenesis. However, the abnormal accumulation of melanin causes dermatological problems such as café-au-lait macules ephelides (freckles), solar lentigo (age spots) and melasma, as well as cancer and vitiligo. Hence the regulation of melanogenesis is very important for treating hyperpigmentary disorders. Numerous antimelanogenic agents that target tyrosinase activity and/or stability, melanosome maturation, transfer and trafficking, or melanogenesis-related signaling pathways have been developed. This article reviews recent advances in research and development of human tyrosinase and melanogenesis-related signaling pathway inhibitors. Attempts have been made to provide a complete description of the mechanism of action of inhibitors on various melanogenesis signaling pathways.
Collapse
|
8
|
Lotti T, Hercogova J, Fabrizi G. Advances in the treatment options for vitiligo: activated low-dose cytokines-based therapy. Expert Opin Pharmacother 2015; 16:2485-96. [DOI: 10.1517/14656566.2015.1087508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Niwano T, Terazawa S, Nakajima H, Wakabayashi Y, Imokawa G. Astaxanthin and withaferin A block paracrine cytokine interactions between UVB-exposed human keratinocytes and human melanocytes via the attenuation of endothelin-1 secretion and its downstream intracellular signaling. Cytokine 2015; 73:184-97. [PMID: 25777483 DOI: 10.1016/j.cyto.2015.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Paracrine interactions between keratinocytes and melanocytes via cytokines play an essential role in regulating pigmentation in epidermal hyperpigmentary disorders. There is an urgent need for a human epidermal model in which melanogenic paracrine interactions between UVB-exposed keratinocytes and melanocytes can be precisely evaluated because human epidermal equivalents consisting of multilayered keratinocytes and melanocytes have significant limitations in this respect. OBJECTIVE To resolve this challenge, we established a co-culture system with cell inserts using human keratinocytes and human melanocytes that serves as an appropriate new model for UVB-induced hyperpigmentation. Using that new model, we examined the blocking effects of two natural chemicals, astaxanthin and withaferin A, on paracrine cytokine interactions between UVB-exposed keratinocytes and melanocytes and characterized their mechanisms of action. METHODS AND RESULTS RT-PCR analysis showed that co-culture of human keratinocytes that had been exposed to UVB significantly stimulated human melanocytes to increase their expression of genes encoding microphthalmia-associated transcription factor, tyrosinase and tyrosinase-related protein 1. The catalytic activity of tyrosinase was also increased. ELISA assays revealed that UVB significantly increased the secretion of interleukin-1α, interleukin-6/8, granulocyte macrophage stimulatory factor and endothelin-1 but not α-melanocyte stimulating hormone. The addition of an endothelin-1 neutralizing antibody significantly abrogated the increase of tyrosinase activity. Post-irradiation treatment with astaxanthin or withaferin A significantly abolished the up-regulation of tyrosinase activity induced by UVB. Treatment with astaxanthin or withaferin A significantly reduced the increased levels of interleukin-1α, interleukin-6/8, granulocyte macrophage stimulatory factor and endothelin-1. Withaferin A but not astaxanthin also significantly abrogated the endothelin-1-stimulated activity of tyrosinase in melanocytes. Western blot analysis of intracellular signaling factors revealed that withaferin A but not astaxanthin significantly abolished the endothelin-1-stimulated phosphorylation of Raf-1, MEK, ERK, MITF and CREB in human melanocytes. CONCLUSIONS These results demonstrate that this co-culture system is an appropriate model to characterize melanogenic paracrine interactions and that astaxanthin and withaferin A serve as potent inhibitors of those interactions. Their effects are caused not only by down-regulating the increased secretion of an intrinsic melanogenic cytokine, endothelin-1, by UVB-exposed human keratinocytes, but also by interrupting the endothelin-1-triggered downstream intracellular signaling between protein kinase C and Raf-1 in human melanocytes (only for withaferin A).
Collapse
Affiliation(s)
- Takao Niwano
- Tsuno Rice Fine Chemicals, Co., Ltd., Japan; School of Bioscience and Biotechnology, Tokyo University of Technology, Japan
| | - Shuko Terazawa
- Research Institute for Biological Functions, Chubu University, Japan
| | - Hiroaki Nakajima
- School of Bioscience and Biotechnology, Tokyo University of Technology, Japan
| | - Yuki Wakabayashi
- School of Bioscience and Biotechnology, Tokyo University of Technology, Japan
| | - Genji Imokawa
- School of Bioscience and Biotechnology, Tokyo University of Technology, Japan; Research Institute for Biological Functions, Chubu University, Japan.
| |
Collapse
|