1
|
Jouyban K, Mohammad Jafari R, Charkhpour M, Rezaei H, Seyfinejad B, Manavi MA, Tavangar SM, Dehpour AR. Spermidine Exerts Protective Effects in Random-Pattern Skin Flap Survival in Rats: Possible Involvement of Inflammatory Cytokines, Nitric Oxide, and VEGF. Aesthetic Plast Surg 2024; 48:3500-3509. [PMID: 38755497 DOI: 10.1007/s00266-024-04119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Distal necrosis and inflammation are two of the most common health consequences of random-pattern skin flaps survival (SFS). Anti-inflammatory effects of spermidine have been identified in various studies. On the other hand, considering the involvement of the nitric oxide molecule in the spermidine mode of action and also its role in skin tissue function, we analyzed the possible effects of spermidine on the SFS and also, potential involvement of nitrergic pathway and inflammatory cytokine in these phenomena. METHODS Each rat was pretreated with either a vehicle (control) or various doses of spermidine (0.5, 1, 3, 5, 10 and 30 mg/kg) and then was executed a random-pattern skin flap paradigm. Also, spermidine at the dose of 5 mg/kg was selected and one group rats received spermidine 20 min prior to surgery and one additional dose 1 day after operation. Then, 7 days after operations, interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon-gamma (IFN-γ), and nitrite levels were inquired in the tissue samples by ELIZA kit. Vascular endothelial growth factor expression was assessed by DAPI staining and fluorescent microscopes. The concentrations of three polyamines, including spermidine, spermine, and cadaverine, were analyzed using HPLC. RESULTS Pretreatment with spermidine 5 mg/kg improved SFS considerably in microscopic skin H&E staining analysis and decreased the percentage of necrotic area. Moreover, spermidine exerted promising anti-inflammatory effects via the modulation of nitric oxide and reducing inflammatory cytokines. CONCLUSIONS Spermidine could improve skin flaps survival, probably through the nitrergic system and inflammation pathways. This preclinical study provides level III evidence for the potential therapeutic effects of spermidine on SFS in rats, based on the analysis of animal models. Further studies are needed to confirm these findings in clinical settings. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Kimiya Jouyban
- Student Research Committee, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 131145-784, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 131145-784, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Charkhpour
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadis Rezaei
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 131145-784, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Intensive Care, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 131145-784, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Hu XM, Li ZX, Zhang DY, Yang YC, Fu SA, Zhang ZQ, Yang RH, Xiong K. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther 2021; 12:453. [PMID: 34380571 PMCID: PMC8359037 DOI: 10.1186/s13287-021-02527-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hair follicle stem cells (HFSCs) are among the most widely available resources and most frequently approved model systems used for studying adult stem cells. HFSCs are particularly useful because of their self-renewal and differentiation properties. Additionally, the cyclic growth of hair follicles is driven by HFSCs. There are high expectations for the use of HFSCs as favourable systems for studying the molecular mechanisms that contribute to HFSC identification and can be applied to hair loss therapy, such as the activation or regeneration of hair follicles, and to the generation of hair using a tissue-engineering strategy. A variety of molecules are involved in the networks that critically regulate the fate of HFSCs, such as factors in hair follicle growth and development (in the Wnt pathway, Sonic hedgehog pathway, Notch pathway, and BMP pathway), and that suppress apoptotic cues (the apoptosis pathway). Here, we review the life cycle, biomarkers and functions of HFSCs, concluding with a summary of the signalling pathways involved in HFSC fate for promoting better understanding of the pathophysiological changes in the HFSC niche. Importantly, we highlight the potential mechanisms underlying the therapeutic targets involved in pathways associated with the treatment of hair loss and other disorders of skin and hair, including alopecia, skin cancer, skin inflammation, and skin wound healing.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Dan-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Yi-Chao Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Shen-Ao Fu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Zai-Qiu Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Rong-Hua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, #81, Lingnan North Road, Foshan, 528000, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China.
| |
Collapse
|
3
|
Tiede S, Hundt JE, Paus R. UDP-GlcNAc-1-Phosphotransferase Is a Clinically Important Regulator of Human and Mouse Hair Pigmentation. J Invest Dermatol 2021; 141:2957-2965.e5. [PMID: 34116066 DOI: 10.1016/j.jid.2021.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/27/2022]
Abstract
UDP-GlcNAc-1-phosphotransferase, a product of two separate genes (GNPTAB, GNPTG), is essential for the sorting and transportation of lysosomal enzymes to lysosomes. GNPTAB gene defects cause extracellular missorting of lysosomal enzymes resulting in lysosomal storage diseases, namely mucolipidosis type II and mucolipidosis type III alpha/beta, which is associated with hair discoloration. Yet, the physiological functions of GNPTAB in the control of hair follicle (HF) pigmentation remain unknown. To elucidate these, we have silenced GNPTAB in organ-cultured human HFs as a human ex vivo model for mucolipidosis type II. GNPTAB silencing profoundly inhibited intrafollicular melanin production, the correct sorting of melanosomes, tyrosinase activity, and HMB45 expression in the HF pigmentary unit and altered HF melanocyte morphology in situ. In isolated primary human HF melanocytes, GNPTAB knockdown significantly reduced melanogenesis, tyrosinase activity, and correct tyrosinase protein sorting as well as POMC expression and caused the expected lysosomal enzyme missorting in vitro. Moreover, transgenic mice overexpressing an inserted missense mutation corresponding to that seen in human mucolipidosis type II and mucolipidosis type III alpha/beta showed significantly reduced HF pigmentation, thus corroborating the in vivo relevance of our ex vivo and in vitro findings in the human system. This identifies GNPTAB as a clinically important enzymatic control of human HF pigmentation, likely by directly controlling tyrosinase sorting and POMC transcription in HF melanocytes.
Collapse
Affiliation(s)
- Stephan Tiede
- International Center for Lysosomal Disorders, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; University Children's Research at Kinder-UKE, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom; The NIHR Biomedical Research Centre, Manchester, United Kingdom; Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA; Monasterium Laboratory, Münster, Germany.
| |
Collapse
|
4
|
Rahim AB, Lim HK, Tan CYR, Jia L, Leo VI, Uemura T, Hardman-Smart J, Common JEA, Lim TC, Bellanger S, Paus R, Igarashi K, Yang H, Vardy LA. The Polyamine Regulator AMD1 Upregulates Spermine Levels to Drive Epidermal Differentiation. J Invest Dermatol 2021; 141:2178-2188.e6. [PMID: 33984347 DOI: 10.1016/j.jid.2021.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 12/29/2022]
Abstract
Maintaining tissue homeostasis depends on a balance between cell proliferation, differentiation, and apoptosis. Within the epidermis, the levels of the polyamines putrescine, spermidine, and spermine are altered in many different skin conditions, yet their role in epidermal tissue homeostasis is poorly understood. We identify the polyamine regulator, Adenosylmethionine decarboxylase 1 (AMD1), as a crucial regulator of keratinocyte (KC) differentiation. AMD1 protein is upregulated on differentiation and is highly expressed in the suprabasal layers of the human epidermis. During KC differentiation, elevated AMD1 promotes decreased putrescine and increased spermine levels. Knockdown or inhibition of AMD1 results in reduced spermine levels and inhibition of KC differentiation. Supplementing AMD1-knockdown KCs with exogenous spermidine or spermine rescued aberrant differentiation. We show that the polyamine shift is critical for the regulation of key transcription factors and signaling proteins that drive KC differentiation, including KLF4 and ZNF750. These findings show that human KCs use controlled changes in polyamine levels to modulate gene expression to drive cellular behavior changes. Modulation of polyamine levels during epidermal differentiation could impact skin barrier formation or can be used in the treatment of hyperproliferative skin disorders.
Collapse
Affiliation(s)
- Anisa B Rahim
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Hui Kheng Lim
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Christina Yan Ru Tan
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Li Jia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vonny Ivon Leo
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Takeshi Uemura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Jonathan Hardman-Smart
- Centre for Dermatology Research, School of Biology, University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - John E A Common
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Thiam Chye Lim
- Division of Plastic, Reconstructive & Aesthetic Surgery, Department of Surgery, National University Hospital, National University of Singapore, Singapore, Singapore
| | - Sophie Bellanger
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Ralf Paus
- Centre for Dermatology Research, School of Biology, University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Leah A Vardy
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.
| |
Collapse
|
5
|
Haslam IS, Paus R. The Hair Follicle as an Interdisciplinary Model for Biomedical Research: An Eclectic Literature Synthesis. Bioessays 2020; 42:e2000053. [DOI: 10.1002/bies.202000053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/20/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Iain S. Haslam
- Department of Biological Sciences, School of Applied Sciences University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Centre for Dermatology Research, School of Biological Sciences University of Manchester and NIHR Biomedical Research Centre Manchester M13 9PT UK
- Monasterium Laboratory Mendelstraße 17 Muenster Germany
| |
Collapse
|
6
|
Madeo F, Hofer SJ, Pendl T, Bauer MA, Eisenberg T, Carmona-Gutierrez D, Kroemer G. Nutritional Aspects of Spermidine. Annu Rev Nutr 2020; 40:135-159. [DOI: 10.1146/annurev-nutr-120419-015419] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural polyamines (spermidine and spermine) are small, positively charged molecules that are ubiquitously found within organisms and cells. They exert numerous (intra)cellular functions and have been implicated to protect against several age-related diseases. Although polyamine levels decline in a complex age-dependent, tissue-, and cell type–specific manner, they are maintained in healthy nonagenarians and centenarians. Increased polyamine levels, including through enhanced dietary intake, have been consistently linked to improved health and reduced overall mortality. In preclinical models, dietary supplementation with spermidine prolongs life span and health span. In this review, we highlight salient aspects of nutritional polyamine intake and summarize the current knowledge of organismal and cellular uptake and distribution of dietary (and gastrointestinal) polyamines and their impact on human health. We further summarize clinical and epidemiological studies of dietary polyamines.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Maria A. Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- Central Lab Graz Cell Informatics and Analyses (GRACIA), NAWI Graz, University of Graz, 8010 Graz, Austria
| | | | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, F-94805 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Jiangsu 215163, Suzhou, China
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University, S-17177 Solna, Sweden
| |
Collapse
|
7
|
Does dysfunctional autophagy contribute to immune privilege collapse and alopecia areata pathogenesis? J Dermatol Sci 2020; 100:75-78. [PMID: 32900572 DOI: 10.1016/j.jdermsci.2020.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/17/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
|
8
|
Bertolini M, Ramot Y, Gherardini J, Heinen G, Chéret J, Welss T, Giesen M, Funk W, Paus R. Theophylline exerts complex anti-ageing and anti-cytotoxicity effects in human skin ex vivo. Int J Cosmet Sci 2019; 42:79-88. [PMID: 31633195 DOI: 10.1111/ics.12589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Theophylline is a phosphodiesterase inhibitor that is being used clinically for asthma therapy. In addition, it is recognized as a cosmetic agent with possible anti-ageing and anti-oxidative properties. Nevertheless, how it affects human skin is still poorly examined. METHODS Theophylline (10 or 100 µM) was administered to the culture medium of full-thickness human skin ex vivo for 24 or 72 h. RESULTS Theophylline stimulated protein expression of the anti-oxidant metallothionein-1 and mRNA levels of collagen I and III. Assessment of fibrillin-1 immunohistology revealed enhanced structural stability of dermal microfibrils. Theophylline also exerted extracellular matrix-protective effects by decreasing MMP-2 and MMP-9 mRNA levels, partially antagonizing the effects of menadione, the potent, toxic ROS donor. In addition, it decreased menadione-stimulated epidermal keratinocytes apoptosis. Interestingly, theophylline also increased the level of intracutaneously produced melatonin, that is the most potent ROS-protective and DNA damage repair neuromediator, and tendentially increased protein expression of MT1, the melatonin receptor. Theophylline also increased the expression of keratin 15, the stem cell marker, in the epidermal basal layer but did not change mitochondrial activity or epidermal pigmentation. CONCLUSION This ex vivo pilot study in human skin shows that theophylline possesses several interesting complex skin-protective properties. It encourages further examination of theophylline as a topical candidate for anti-ageing treatment.
Collapse
Affiliation(s)
- M Bertolini
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany
| | - Y Ramot
- Department of Dermatology, The Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, 9112001 , Jerusalem, Israel
| | - J Gherardini
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany
| | - G Heinen
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - J Chéret
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 33136 , Miami, FL, USA
| | - T Welss
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - M Giesen
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - W Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Dr. Dr. med. Funk, 81739, Munich, Germany
| | - R Paus
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 33136 , Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, M13 9PL, Manchester, UK
| |
Collapse
|
9
|
Lee YR, Lew BL, Sim WY, Lee J, Hong J, Chung BC. Altered polyamine profiling in the hair of patients with androgenic alopecia and alopecia areata. J Dermatol 2019; 46:985-992. [PMID: 31464015 DOI: 10.1111/1346-8138.15063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022]
Abstract
Hair follicles are among the most highly proliferative tissues. Polyamines are associated with proliferation, and several polyamines including spermidine and spermine play anti-inflammatory roles. Androgenic alopecia results from increased dihydrotestosterone metabolism, and alopecia areata is an autoimmune disease. This study aimed to investigate differences in polyamine profiles in hair samples between patients with androgenic alopecia and alopecia areata. Polyamine concentrations were determined through high-performance liquid chromatography-mass spectrometry. Hair samples were derivatized with isobutyl chloroformate. Differences in polyamine levels were observed between androgenic alopecia and alopecia areata compared with normal controls. In particular, polyamine levels were higher in alopecia areata patients than in normal controls. Certain polyamines displayed different concentrations between the androgenic alopecia and alopecia areata groups, suggesting that some polyamines, particularly N-acetyl putrescine (P = 0.007) and N-acetyl cadaverine (P = 0.0021), are significantly different in androgenic alopecia. Furthermore, spermidine (P = 0.021) was significantly different in alopecia areata. Our findings suggest that non-invasive quantification of hair polyamines may help distinguish between androgenic alopecia and alopecia areata. Our study provides novel insights into physiological alterations in patients with androgenic alopecia and those with alopecia areata and reveals some differences in polyamine levels in hair loss diseases with two different modes of action.
Collapse
Affiliation(s)
- Yu Ra Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea
| | - Bark Lynn Lew
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Korea
| | - Woo Young Sim
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Korea
| | - Jeongae Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Jongki Hong
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea.,College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Bong Chul Chung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
10
|
Lee YR, Lee J, Lew BL, Sim WY, Hong J, Chung BC. Distribution of polyamines may be altered in different scalp regions of patients with hair loss. Exp Dermatol 2019; 28:1083-1086. [PMID: 31260133 DOI: 10.1111/exd.13998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 11/28/2022]
Abstract
Hair loss, from the vertex or front of the head, generally occurs due to increased androgenic steroid levels. Androgenic steroids, particularly testosterone and dihydrotestosterone, are distributed differently across the vertex and occipital regions and are involved in inducing ornithine decarboxylase expression. Therefore, we hypothesized that the distribution of polyamines may be altered in different scalp regions. For the overall metabolic profiling of polyamines in patients with hair loss, a liquid chromatography-mass spectrometry was used. We investigated the differential polyamine levels in different regions of the hair of patients with male pattern baldness and those with female pattern hair loss. The levels of most polyamines were higher in the vertex region than in the occipital region, and N-acetyl polyamine levels differed significantly. We proposed to test our hypothesis by profiling polyamines in human hair fibre to evaluate the distribution of metabolites in various regions of the scalp.
Collapse
Affiliation(s)
- Yu Ra Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea
| | - Jeongae Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Bark Lynn Lew
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Korea
| | - Woo Young Sim
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Korea
| | - Jongki Hong
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea.,College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Bong Chul Chung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
11
|
Rinaldi F, Marzani B, Pinto D, Ramot Y. A spermidine-based nutritional supplement prolongs the anagen phase of hair follicles in humans: a randomized, placebo-controlled, double-blind study. Dermatol Pract Concept 2017; 7:17-21. [PMID: 29214104 PMCID: PMC5718121 DOI: 10.5826/dpc.0704a05] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/04/2017] [Indexed: 01/06/2023] Open
Abstract
Background Spermidine has been shown both in vitro and in mice models to have an anagen-prolonging effect on hair follicles (HFs). Objectives To evaluate the effects of a spermidine-based nutritional supplement on the anagen phase of HFs in healthy human subjects in a randomized, double-blind, placebo-controlled trial. Methods One hundred healthy males and females were randomized to receive a tablet containing a spermidine-based nutritional supplement or a placebo once daily for 90 days. At the beginning and the end of the treatment period, 100 HFs were plucked and subjected to microscopic evaluation to determine the number of anagen V–VI HFs, and immunohistochemical examination was performed to quantify the Ki-67 and c-Kit levels in the hair bulbs. Pull test was performed after three and six months. Results The spermidine-based nutritional supplement increased the number of anagen V–VI HFs after three months of treatment, accompanied by increased Ki-67, a marker for cellular proliferation, and decreased c-Kit, a marker for apoptosis, levels. All results were also significantly better when compared to the placebo group. The pull test remained negative after six months in all patients receiving the spermidine supplement, while 68% of the subjects in the placebo group had a positive pull test. Conclusions This preliminary study shows that a spermidine-based nutritional supplement can prolong the anagen phase in humans, and therefore might be beneficial for hair loss conditions. Further studies are needed to evaluate its effects in specific different clinical settings.
Collapse
Affiliation(s)
- Fabio Rinaldi
- International Hair Research Foundation, Milan, Italy
| | | | | | - Yuval Ramot
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
12
|
Ramot Y. Quantitative image analysis for hereditary hair disorders. Br J Dermatol 2017; 176:10-11. [DOI: 10.1111/bjd.15103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Ramot
- Department of Dermatology Hadassah – Hebrew University Medical Center P.O. Box 12000 Jerusalem 9112001 Israel
| |
Collapse
|
13
|
Paus R. Exploring the “brain-skin connection”: Leads and lessons from the hair follicle. Curr Res Transl Med 2016; 64:207-214. [DOI: 10.1016/j.retram.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022]
|
14
|
Abstract
In this short review, I introduce an integrated vision of human hair follicle behavior and describe opposing influences that control hair follicle homeostasis, from morphogenesis to hair cycling. The interdependence and complementary roles of these influences allow us to propose that the hair follicle is a true paradigm of a "Yin Yang" type, that is a cold/slow-hot/fast duality. Moreover, a new promising field is emerging, suggesting that glycans are key elements of hair follicle growth control.
Collapse
|