1
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024; 102:1425-1450. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
2
|
Kshetrimayum V, Chanu KD, Biona T, Kar A, Haldar PK, Mukherjee PK, Sharma N. Paris polyphylla Sm. characterized extract infused ointment accelerates diabetic wound healing in In-vivo model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118296. [PMID: 38710458 DOI: 10.1016/j.jep.2024.118296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried rhizome of Paris polyphylla Sm. is extensively used by traditional healers in India, China, and Vietnam to treat skin inflammation, cut wounds, uterine and traumatic bleeding, and cancer. AIM OF THE STUDY The traditional use of P. polyphylla rhizomes for treating wounds and bleeding has been reported previously. However, the potential of P. polyphylla in the treatment of diabetic wounds has not yet been explored. Our present study focused on the investigation of the wound-healing activity of P. polyphylla infused ointment in streptozotocin (STZ)-induced diabetic rats to validate the traditional claim. MATERIALS AND METHODS Hydroalcoholic extract of the dried rhizomes of P. polyphylla were quantified by validated and optimized HPTLC (High-performance thin layer chromatography) method for Paris saponin VII, Dioscin and Polyphyllin V. The extract was used to prepare P. polyphylla ointments (5 and 10%). P. polyphylla ointment was subjected to physiochemical analysis and skin irritation test. Thirty STZ-induced diabetic adult male Wistar albino rats were divided into five groups (n = 6) and a circular excision wound was created. P. polyphylla ointment, ointment base (OB), and standard (STD) (Povidone Iodine 10%) were administered topically. The wound area of all groups were recorded every six days and compared with that of control. The epithelization period of each group was recorded. On day 18, the histopathological study of skin tissues of all groups was performed using hematoxylin and eosin (H&E) and Mallory's trichrome (MT). RESULTS Marker analysis and quantification of phytomolecules in hydroalcoholic extract ofP. Polyphylla were found to be of paris saponin VII (3.28 ± 0.08% w/w), dioscin (1.94 ± 0.12% w/w), and polyphyllin V (1.87 ± 0.84% w/w). A physiochemical study of P. polyphylla ointment showed that the prepared ointment was within an acceptable range and was not irritable to the skin. Daily topical administration of 10% P. polyphylla ointment (PP10) for 18 days completely healed the STZ-induced diabetic wounds. On day 18, the 5% P. polyphylla ointment (PP5) showed 99.1 ± 2.9% wound closure, while that of the standard and control was 78.4 ± 7.3% and 18.5 ± 5.9%, respectively. The epithelialization period of PP10 was 18 days, whereas that of the control was 28 days. Histopathological analysis of the progression of PP10 and PP5 wounds showed a decrease in inflammatory cells, regenerated epithelial layer, keratosis layer, hair follicles, fibroblasts, and collagen. Upon collagen intensity quantification of MT stained sections, an increase in collagen density of PP10 and PP5 treated groups was observed, showing accelerated wound healing potential of P. polyphylla extract in diabetic wounds compared to the standard ointment. CONCLUSION This study suggested the potential of P. polyphylla rhizomes derived formulation to treat diabetic wounds, although the plant is traditionally used to treat normal wounds. The results indicate the validation of traditional claim, which has been explored commercially in industrial aspect.
Collapse
Affiliation(s)
- Vimi Kshetrimayum
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, 795001, Manipur, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| | - Khaidem Devika Chanu
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, 795001, Manipur, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| | - Thokchom Biona
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, 795001, Manipur, India.
| | - Amit Kar
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, 795001, Manipur, India.
| | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University (JU), Kolkata, 700032, West Bengal, India.
| | - Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, 795001, Manipur, India.
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, 795001, Manipur, India.
| |
Collapse
|
3
|
Patel AA, Mohamed AH, Rizaev J, Mallick AK, Qasim MT, Abdulmonem WA, Jamal A, Hattiwale HM, Kamal MA, Ahmad F. Application of mesenchymal stem cells derived from the umbilical cord or Wharton's jelly and their extracellular vesicles in the treatment of various diseases. Tissue Cell 2024; 89:102415. [PMID: 38851032 DOI: 10.1016/j.tice.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024]
Abstract
Mesenchymal stem cells (MSCs) originating from the umbilical cord (UC) or Wharton's jelly (WJ) have attracted substantial interest due to their potential to augment therapeutic approaches for a wide range of disorders. These cells demonstrate a wide range of capabilities in the process of differentiating into a multitude of cell types. Additionally, they possess a significant capacity for proliferation and are conveniently accessible. Furthermore, they possess a status of being immune-privileged, exhibit minimal tumorigenic characteristics, and raise minimal ethical concerns. Consequently, they are well-suited candidates for tissue regeneration and the treatment of diseases. Additionally, UC-derived MSCs offer a substantial yield compared to other sources. The therapeutic effects of these MSCs are closely associated with the release of nanosized extracellular vesicles (EVs), including exosomes and microvesicles (MVs), containing lipids, microRNAs, and proteins that facilitate intercellular communication. Due to their reduced tumorigenic and immunogenic characteristics, in addition to their convenient manipulability, EVs have arisen as a viable alternative for the management of disorders. The favorable characteristics of UC-MSCs or WJ-MSCs and their EVs have generated significant attention in clinical investigations encompassing diverse pathologies. Therefore, we present a review encompassing current preclinical and clinical investigations, examining the implications of UC-MSCs in diverse diseases, including those affecting bone, cartilage, skin, liver, kidney, neural, lung, cardiovascular, muscle, and retinal tissues, as well as conditions like cancer, diabetes, sepsis, and others.
Collapse
Affiliation(s)
- Ayyub Ali Patel
- Clinical Biochemistry Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hilla, Babil 51001, Iraq.
| | - Jasur Rizaev
- Department of Public Health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Ayaz Khurram Mallick
- Clinical Biochemistry Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Haroonrashid M Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| |
Collapse
|
4
|
Sharma P, Maurya DK. Wharton's jelly mesenchymal stem cells: Future regenerative medicine for clinical applications in mitigation of radiation injury. World J Stem Cells 2024; 16:742-759. [PMID: 39086560 PMCID: PMC11287430 DOI: 10.4252/wjsc.v16.i7.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Wharton's jelly mesenchymal stem cells (WJ-MSCs) are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries. WJ-MSCs are more naïve and have a better safety profile, making them suitable for both autologous and allogeneic transplantations. This review highlights the regenerative potential of WJ-MSCs and their clinical applications in mitigating various types of radiation injuries. In this review, we will also describe why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine along with a balanced view on their strengths and weaknesses. Finally, the most updated literature related to both preclinical and clinical usage of WJ-MSCs for their potential application in the regeneration of tissues and organs will also be compiled.
Collapse
Affiliation(s)
- Prashasti Sharma
- Life Sciences, Homi Bhabha National Institute, Mumbai 400094, Maharashtra, India
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Dharmendra Kumar Maurya
- Life Sciences, Homi Bhabha National Institute, Mumbai 400094, Maharashtra, India
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| |
Collapse
|
5
|
Fan X, Zhang Y, Liu W, Shao M, Gong Y, Wang T, Xue S, Nian R. A comprehensive review of engineered exosomes from the preparation strategy to therapeutic applications. Biomater Sci 2024; 12:3500-3521. [PMID: 38828621 DOI: 10.1039/d4bm00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Exosomes exhibit high bioavailability, biological stability, targeted specificity, low toxicity, and low immunogenicity in shuttling various bioactive molecules such as proteins, lipids, RNA, and DNA. Natural exosomes, however, have limited production, targeting abilities, and therapeutic efficacy in clinical trials. On the other hand, engineered exosomes have demonstrated long-term circulation, high stability, targeted delivery, and efficient intracellular drug release, garnering significant attention. The engineered exosomes bring new insights into developing next-generation drug delivery systems and show enormous potential in therapeutic applications, such as tumor therapies, diabetes management, cardiovascular disease, and tissue regeneration and repair. In this review, we provide an overview of recent advancements associated with engineered exosomes by focusing on the state-of-the-art strategies for cell engineering and exosome engineering. Exosome isolation methods, including traditional and emerging approaches, are systematically compared along with advancements in characterization methods. Current challenges and future opportunities are further discussed in terms of the preparation and application of engineered exosomes.
Collapse
Affiliation(s)
- Xiying Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Yiwen Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Mingzheng Shao
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Yibo Gong
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Tingya Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Song Xue
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| |
Collapse
|
6
|
Behrangi E, Feizollahi M, Zare S, Goodarzi A, Ghasemi MR, Sadeghzadeh-Bazargan A, Dehghani A, Nouri M, Zeinali R, Roohaninasab M, Nilforoushzadeh MA. Evaluation of the efficacy of mesenchymal stem cells derived conditioned medium in the treatment of striae distensae: a double blind randomized clinical trial. Stem Cell Res Ther 2024; 15:62. [PMID: 38439103 PMCID: PMC10913631 DOI: 10.1186/s13287-024-03675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Striae distensae is a disfiguring atrophic skin condition that impairs the body's aesthetic image. Despite the variety of conducted studies, there is controversy regarding the best modalities. Human mesenchymal stem cells are considered a rich source for scar treatment. Skin needling is among the most efficient and safe aesthetic and therapeutic devices. This study aimed to evaluate the efficacy of the combination of needling and intradermal injection of mesenchymal stem cells compared to skin needling alone for treating striae distensae. METHOD This study was a randomized, double-blind clinical trial involving 10 women aged 18-60. Each striae lesion was divided into two parts, with one side receiving needling and intradermal injection of conditioned medium, while the other side received needling and intradermal injection of normal saline. This treatment was administered in three sessions with three-week intervals. Patients were evaluated before the first intervention and three months after the final session. Three months after the completion of the intervention, patients' lesions were evaluated using biometric criteria, physician evaluation, and patient self-assessment. RESULTS The results demonstrated a significant improvement in dermal and complete thickness and skin density in patients treated with microneedling. All skin ultrasound parameters improved significantly in patients receiving the combination of needling and conditioned medium. When comparing the two groups, significantly higher physician and patient satisfaction was observed in the combination group. However, the comparison of biometric indices improvement wasn't significant between these groups. CONCLUSION The combination of human mesenchymal stem cells with microneedling could be considered a novel effective option for stretch marks.
Collapse
Affiliation(s)
- Elham Behrangi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Feizollahi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ghasemi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Sadeghzadeh-Bazargan
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Dehghani
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Nouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Zeinali
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Roohaninasab
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Skin Repair Research Center, Jordan Dermatology and Hair Transplantation Center, Tehran, Iran.
| |
Collapse
|
7
|
Zhang H, Gu Y, Zhang K, Tu Y, Ouyang C. Roles and mechanisms of umbilical cord mesenchymal stem cells in the treatment of diabetic foot: A review of preclinical and clinical studies. J Diabetes Complications 2024; 38:108671. [PMID: 38154217 DOI: 10.1016/j.jdiacomp.2023.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
AIMS Growing preclinical and clinical evidence has suggested the potential method of umbilical cord mesenchymal stem cell (UCMSC) therapy for diabetic foot. Thus, the authors provided an outline of the application of UCMSCs in the treatment of diabetic foot and further summarized the roles and mechanisms of this therapy. DATA SYNTHESIS With no time limitations, the authors searched the Web of Science, Cochrane Central Register of Controlled Trials, and PubMed (MEDLINE) databases. 14 studies were included, including 9 preclinical experiments and 5 clinical trials (3 RCTs and 2 single-arm trials). CONCLUSIONS The UCMSCs are of great efficacy and safety, and function mainly by reducing inflammation, regulating immunity, promoting growth factors, and enhancing the functions of vascular endothelial cells, fibroblasts, and keratinocytes. As a result, ulcer healing-related biological processes ensue, which finally lead to diabetic foot ulcer healing and clinical symptom improvement. UCMSC treatment enhances diabetic foot ulcer healing and has a safety profile. They function mainly by modulating immunity, promoting growth factor secretion, and enhancing cellular functions. More well-designed preclinical and clinical studies are needed to provide the most optimal protocol, the comprehensive molecular mechanisms, as well as to further evaluate the efficiency and safety profile of UCMSC treatment in diabetic foot patients.
Collapse
Affiliation(s)
- Haorui Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Yuanrui Gu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Ke Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Yanxia Tu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing 100037, China.
| |
Collapse
|
8
|
Jafari A, Khalatbary AR, Taghiloo S, Mirzaie MS, Nazar E, Poorhassan M, Akbari E, Asadzadeh M, Raoofi A, Nasiry D. Exosomes derived from human placental mesenchymal stem cells in combination with hyperbaric oxygen synergically alleviates spinal cord ischemia-reperfusion injury. Regen Ther 2023; 24:407-416. [PMID: 37727798 PMCID: PMC10506088 DOI: 10.1016/j.reth.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Spinal cord ischemia-reperfusion injury (IR) is a terrible non-traumatic injury that occurs after abdominal aortic occlusion and causes serious damage to neurological function. Several treatment strategies have been suggested for IR, but they were not unable to effectively improve these conditions. Herein we investigated whether exosomes derived from human placental mesenchymal stem cells (hpMSCs-Exos) in combination with hyperbaric oxygen (HBO) could alleviate injury and promote recovery in IR rats. Eighty male Sprague-Dawley rats were randomly allocated into five equal groups. In addition to the control group that only underwent laparotomy, IR animals were planned into four groups as follows: IR group; IR-Exos group; IR-HBO group; and IR-Exos + HBO group. Neurological function evaluated before, 6 h, 12 h, 24 h, and 48 h after injury. After the last neurological evaluation, tissue samples were obtained for stereological, biochemical, and molecular assessments. Our results indicated that the neurological function scores (MDI), the numerical density of neurons, the levels of antioxidative factors (GSH, SOD, and CAT), and anti-inflammatory cytokine (IL-10) were considerably greater in treatment groups than in the IR group, and these changes were more obvious in the IR-Exos + HBO ones. This is while the numerical density of glial cells, the levels of an oxidative factor (MDA) and inflammatory cytokines (IL-1β, TNF-α, and IL-18), as well as the expression of an apoptotic protein (caspase-3) were meaningfully decreased in treatment groups, especially IR-Exos + HBO group, compared to the IR group. Generally, it was found that co-administration of hpMSCs-Exos and HBO has synergistic neuroprotective effects in the rats undergoing IR.
Collapse
Affiliation(s)
- Aref Jafari
- Department of Pharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Cellular and Molecular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohamad Sedigh Mirzaie
- Department of Physiotherapy, Faculty of Rehabilitation Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Eisa Nazar
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahnaz Poorhassan
- Department of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | - Esmaeil Akbari
- Department of Physiology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdiyeh Asadzadeh
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Nasiry
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Fan W, Zhou M, Zheng S, Liu Y, Pan S, Guo P, Xu M, Hu C, Ding A, Wang Z, Yin S, Zuo K, Xie X. Human umbilical cord mesenchymal stem cell-derived exosomes promote microcirculation in aged diabetic mice by TGF-β1 signaling pathway. Diabetol Metab Syndr 2023; 15:234. [PMID: 37968711 PMCID: PMC10652470 DOI: 10.1186/s13098-023-01191-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Microvascular dysfunction is one of the most common pathological characteristics in Type 2 diabetes. Human mesenchymal stem cell-derived exosomes (hUCMSCs-Exo) have diverse functions in improving microcirculation; however, the molecular mechanism of hUCMSCs-Exo in regulating burn-induced inflammation is not well understood. METHODS hUCMSCs-Exo were extracted by hypervelocity centrifugation method, and exosome morphology was observed by transmission electron microscopy, exosome diameter distribution was detected by particle size analysis, and exosome specific proteins were identified by Western blot.2. DB/DB mice were randomly divided into exosomes group and PBS group. Exosomes and PBS were injected into the tail vein, respectively, and the calf muscle tissue was taken 28 days later. 0.5% Evans blue fluorescence assessment microvascular permeability. The expression of CD31 was detected by immunofluorescence.The morphology and function of microvessels in muscle tissue of lower limbs was evaluated by transmission electron microscopy.3. TMT proteomics was used to detect the changes of differential protein expression in lower limb muscle tissues of the PBS group and the exosome group, and data analysis was performed to screen key signal molecules and their involved biological pathways. Key signal molecules CD105 were verified by Western blot. The expression of TGF-β1 in exosomes were evaluated by Western blot. RESULTS Electron microscopy showed that hUCMSCs-Exo presented a uniform vesicle structure, and NTA showed that its diameter was about 160 nm. Western blot showed positive expression of specific proteins CD9, CD81 and TSG101 on exosomes.2. There is no significant change in blood glucose and body weight before and after the exosome treatment. The exosome group can significantly reduce the exudation of Evans blue. Compared with the PBS group. Meanwhile, CD31 immunofluorescence showed that the red fluorescence of exosome treatment was significantly increased, which was higher than that of PBS group. Transmission electron microscopy showed smooth capillary lumen and smooth and complete surface of endothelial cells in the exosome group, while narrow capillary lumen and fingerlike protrusion of endothelial cells in the PBS group.3.Quantitative analysis of TMT proteomics showed that there were 82 differential proteins, including 49 down-regulated proteins and 33 up-regulated proteins. Go enrichment analysis showed that the differential proteins were involved in molecular function, biological process, cell components,among which CD105 was one of the up-regulated proteins. Through literature search, CD105 was found to be related to endothelial cell proliferation. Therefore, this study verified the changes of CD105 in the exosome group, and it was used as the mechanism study of this study. 4. Western blot analysis showed that the expression of CD105 protein in lower limb muscle tissue of exosome group was significantly increased compared with that of PBS group. Based on the fact that CD105 is a component of the TGF-β1 receptor complex and exosomes are rich in growth factors and cytokines, this study further examined the expression of TGF-β1 in exosomes, and the results showed that exosomes had high expression of TGF-β1. CONCLUSION By improving the integrity of microvascular endothelial cells, hUCMSCs-Exo can improve the permeability of microvessels in diabetic lower muscle tissue, further promote the proliferation of lower limb muscle cells and inhibit the apoptosis of tissue cells. The mechanism may be associated with exosomes rich in TGF-β1, which is likely to promote endothelial cell proliferation and improve permeability through binding to the endothelial CD105/TβR-II receptor complex, while promoting angiogenesis and protecting skeletal muscle cells from apoptosis.
Collapse
Affiliation(s)
- Weijian Fan
- Department of Interventional & Vascular Surgery, Hefei Second People's Hospital, Hefei Hospital Affiliated to Anhui Medical University, Anhui, 230011, China
| | - Mengdie Zhou
- Geriatric department, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 201600, China
| | - Shaoqiu Zheng
- Department of Urinary Surgery Shanghai Pudong New District Zhoupu Hospital, Shanghai, 200100, China
| | - Yang Liu
- Department of Geriatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Songsong Pan
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Peng Guo
- Department of Vascular Surgery, The Fifth Affiliated Hospital of ZhengZhou University, ZhengZhou, 450052, China
| | - Minjie Xu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chao Hu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Anle Ding
- AnHui University of Science and Technology, Huainan, 232001, China
| | - Zan Wang
- AnHui University of Science and Technology, Huainan, 232001, China
| | - Shiwu Yin
- Department of Interventional & Vascular Surgery, Hefei Second People's Hospital, Hefei Hospital Affiliated to Anhui Medical University, Anhui, 230011, China
| | - Keqiang Zuo
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Xiaoyun Xie
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
10
|
Andalib E, Kashfi M, Mahmoudvand G, Rezaei E, Mahjoor M, Torki A, Afkhami H. Application of hypoxia-mesenchymal stem cells in treatment of anaerobic bacterial wound infection: wound healing and infection recovery. Front Microbiol 2023; 14:1251956. [PMID: 37869672 PMCID: PMC10586055 DOI: 10.3389/fmicb.2023.1251956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Mesenchymal stromal cells, commonly referred to as MSCs, are a type of multipotent stem cells that are typically extracted from adipose tissue and bone marrow. In the field of tissue engineering and regenerative medicine, MSCs and their exosomes have emerged as revolutionary tools. Researchers are now devoting greater attention to MSCs because of their ability to generate skin cells like fibroblasts and keratinocytes, as well as their distinctive potential to decrease inflammation and emit pro-angiogenic molecules at the site of wounds. More recent investigations revealed that MSCs can exert numerous direct and indirect antimicrobial effects that are immunologically mediated. Collectively, these antimicrobial properties can remove bacterial infections when the MSCs are delivered in a therapeutic setting. Regardless of the positive therapeutic potential of MSCs for a multitude of conditions, transplanted MSC cell retention continues to be a major challenge. Since MSCs are typically administered into naturally hypoxic tissues, understanding the impact of hypoxia on the functioning of MSCs is crucial. Hypoxia has been postulated to be among the factors determining the differentiation of MSCs, resulting in the production of inflammatory cytokines throughout the process of tissue regeneration and wound repair. This has opened new horizons in developing MSC-based systems as a potent therapeutic tool in oxygen-deprived regions, including anaerobic wound infection sites. This review sheds light on the role of hypoxia-MSCs in the treatment of anaerobic bacterial wound infection in terms of both their regenerative and antimicrobial activities.
Collapse
Affiliation(s)
- Elahe Andalib
- Department of Microbiology, School of Basic Sciences, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Elaheh Rezaei
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Torki
- Department of Medical Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Medical Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
11
|
Cheshmi H, Mohammadi H, Akbari M, Nasiry D, Rezapour-Nasrabad R, Bagheri M, Abouhamzeh B, Poorhassan M, Mirhoseini M, Mokhtari H, Akbari E, Raoofi A. Human Placental Mesenchymal Stem Cell-derived Exosomes in Combination with Hyperbaric Oxygen Synergistically Promote Recovery after Spinal Cord Injury in Rats. Neurotox Res 2023; 41:431-445. [PMID: 37155125 DOI: 10.1007/s12640-023-00649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Spinal cord injury (SCI) is a critical medical condition during which sensorimotor function is lost. Current treatments are still unable to effectively improve these conditions, so it is important to pay attention to other effective approaches. Currently, we investigated the combined effects of human placenta mesenchymal stem cells (hPMSCs)-derived exosomes along with hyperbaric oxygen (HBO) in the recovery of SCI in rats. Ninety male mature Sprague-Dawley (SD) rats were allocated into five equal groups, including; sham group, SCI group, Exo group (underwent SCI and received hPMSCs-derived exosomes), HBO group (underwent SCI and received HBO), and Exo+HBO group (underwent SCI and received hPMSCs-derived exosomes plus HBO). Tissue samples at the lesion site were obtained for the evaluation of stereological, immunohistochemical, biochemical, molecular, and behavioral characteristics. Findings showed a significant increase in stereological parameters, biochemical factors (GSH, SOD, and CAT), IL-10 gene expression and behavioral functions (BBB and EMG Latency) in treatment groups, especially Exo+HBO group, compared to SCI group. In addition, MDA levels, the density of apoptotic cells and gliosis, as well as expression of inflammatory genes (TNF-α and IL-1β) were considerably reduced in treatment groups, especially Exo+HBO group, compared to SCI group. We conclude that co-administration of hPMSCs-derived exosomes and HBO has synergistic neuroprotective effects in animals undergoing SCI.
Collapse
Affiliation(s)
- Hosna Cheshmi
- Department of Treatment, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mitra Akbari
- Department of Eye, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Davood Nasiry
- Department of Paramedicine, Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, 4615861468, Iran.
| | - Rafat Rezapour-Nasrabad
- Department of Psychiatric Nursing and Management, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, 5865272565, Iran.
| | - Mahdi Bagheri
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran
| | | | - Mahnaz Poorhassan
- Department of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | - Mehri Mirhoseini
- Department of Paramedicine, Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, 4615861468, Iran
| | - Hossein Mokhtari
- Department of Paramedicine, Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, 4615861468, Iran
| | - Esmaeil Akbari
- School of Medicine, Department of Physiology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Raoofi
- Cellular and Molecular research center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
12
|
Raoofi A, Omraninava M, Javan R, Maghsodi D, Rustamzadeh A, Nasiry D, Ghaemi A. Protective effects of epigallocatechin gallate in the mice induced by chronic scrotal hyperthermia. Tissue Cell 2023; 84:102165. [PMID: 37480630 DOI: 10.1016/j.tice.2023.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
One of the most common complications of chronic scrotal hyperthermia (SHT) is a serious disorder in the male reproductive system. The most important factor in the occurrence of these disorders is oxidative stress. Currently, we investigated the effects of epigallocatechin gallate (EGCG), as a highly potent antioxidant, against cells and tissue disorders in mice affected by chronic SHT. Fifty-six male adult NMRI mice were allocated into seven equal groups. Except the non-treated (Control) group, six other groups were exposed to heat stress. Two treated groups including Preventive and Curative received oral administration of EGCG (50 mg/kg/day) starting immediately before heat exposure and fifteen consecutive days after the end of the heat exposure, respectively. For each treated group, two subgroups including positive control (Pre/Cur + PC groups) and vehicle (Pre/Cur + vehicle groups) were considered. At the end of the study, sperm characteristics, testosterone levels, stereological parameters, apoptosis, oxidant state, and molecular assessments were performed. We found that the sperm parameters, testosterone levels, the numerical density of spermatogonia, primary spermatocytes, spermatids, sertoli, leydig cells, and seminiferous tubules, biochemical factors (except MDA), and expression of c-kit gene were significantly higher in the Preventive and Curative groups, especially in Preventive ones, compared to other groups (P < 0.05). This is while expression of HSP72 and NF-κβ genes, MDA levels, as well as density of apoptotic cells considerably decreased in both EGCG-treated groups compared to other groups and it was more pronounced in Preventive ones (P < 0.05). Generally, EGCG attenuated cellular and molecular disorders induced by heat stress in the testis and it was more pronounced in Preventive status.
Collapse
Affiliation(s)
- Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Melody Omraninava
- Health Reproductive Research Center, Islamic Azad University, Sari, Iran
| | - Roghayeh Javan
- Traditional and Complementary Medicine Research Center, Sabzevar University of Medical Science, Sabzevar, Iran
| | - Davood Maghsodi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Auob Rustamzadeh
- Department of Anatomical sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Nasiry
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Ghaemi
- Department of Basic Sciences and Nutrition, Health Sciences Research Center, Faculty of Public Health, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
13
|
Alshahrani SH, Almajidi YQ, Hasan EK, Musad Saleh EA, Alsaab HO, Pant R, Hassan ZF, Al-Hasnawi SS, Romero-Parra RM, Mustafa YF. Hyperbaric Oxygen in Combination with Epigallocatechin-3-Gallate Synergistically Enhance Recovery from Spinal Cord Injury in Rats. Neuroscience 2023; 527:52-63. [PMID: 37499782 DOI: 10.1016/j.neuroscience.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Spinal cord injury (SCI) following trauma is a devastating neurological event that can lead to loss of sensory and motor functions. However, the most effective measures to prevent the spread of damage are treatment measures in the early stages. Currently, we investigated the combined effects of hyperbaric oxygen (HBO) along with epigallocatechin-3-gallate (EGCG) in the recovery of SCI in rats. Ninety male mature Sprague-Dawley rats were randomly planned into five equal groups (n = 18). In addition to sham group that only underwent laminectomy, SCI rats were allocated into 4 groups as follows: control group; HBO group; EGCG group; and HBO + EGCG group. Tissue samples at the lesion site were obtained for stereological, immunohistochemical, biochemical, and molecular evaluation. In addition, behavioral tests were performed to assess of neurological functions. The finding indicated that the stereological parameters, antioxidant factors (CAT, GSH, and SOD), IL-10 gene expression levels and neurological functions were considerably increased in the treatment groups in comparison with control group, and these changes were more obvious in the HBO + EGCG group (P < 0.05). On the other hand, we observed that the density of apoptotic cells and gliosis, the biochemical levels of MDA and the expression levels of inflammatory genes (TNF-α and IL-1β) in the treatment groups, especially the HBO + EGCG group, were considerably reduced in comparison with control group (P < 0.05). We conclude that co-administration of HBO and EGCG has a synergistic neuroprotective effects in animals undergoing SCI.
Collapse
Affiliation(s)
| | - Yasir Qasim Almajidi
- Baghdad College of Medical Sciences-department of Pharmacy (Pharmaceutics), Baghdad, Iraq.
| | | | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Ruby Pant
- Mechanical in Department, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
14
|
Cheng WY, Yang MY, Yeh CA, Yang YC, Chang KB, Chen KY, Liu SY, Tang CL, Shen CC, Hung HS. Therapeutic Applications of Mesenchymal Stem Cell Loaded with Gold Nanoparticles for Regenerative Medicine. Pharmaceutics 2023; 15:1385. [PMID: 37242627 PMCID: PMC10222259 DOI: 10.3390/pharmaceutics15051385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In the present study, the various concentrations of AuNP (1.25, 2.5, 5, 10 ppm) were prepared to investigate the biocompatibility, biological performances and cell uptake efficiency via Wharton's jelly mesenchymal stem cells and rat model. The pure AuNP, AuNP combined with Col (AuNP-Col) and FITC conjugated AuNP-Col (AuNP-Col-FITC) were characterized by Ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and Dynamic Light Scattering (DLS) assays. For in vitro examinations, we explored whether the Wharton's jelly MSCs had better viability, higher CXCR4 expression, greater migration distance and lower apoptotic-related proteins expression with AuNP 1.25 and 2.5 ppm treatments. Furthermore, we considered whether the treatments of 1.25 and 2.5 ppm AuNP could induce the CXCR4 knocked down Wharton's jelly MSCs to express CXCR4 and reduce the expression level of apoptotic proteins. We also treated the Wharton's jelly MSCs with AuNP-Col to investigate the intracellular uptake mechanisms. The evidence demonstrated the cells uptake AuNP-Col through clathrin-mediated endocytosis and the vacuolar-type H+-ATPase pathway with good stability inside the cells to avoid lysosomal degradation as well as better uptake efficiency. Additionally, the results from in vivo examinations elucidated the 2.5 ppm of AuNP attenuated foreign body responses and had better retention efficacy with tissue integrity in animal model. In conclusion, the evidence demonstrates that AuNP shows promise as a biosafe nanodrug delivery system for development of regenerative medicine coupled with Wharton's jelly MSCs.
Collapse
Affiliation(s)
- Wen-Yu Cheng
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
- Department of Physical Therapy, Hung Kuang University, Taichung 433304, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Meng-Yin Yang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (C.-A.Y.); (K.-B.C.)
| | - Yi-Chin Yang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (C.-A.Y.); (K.-B.C.)
| | - Kai-Yuan Chen
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Szu-Yuan Liu
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Chien-Lun Tang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Chiung-Chyi Shen
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (C.-A.Y.); (K.-B.C.)
- Translational Medicine Research, China Medical University Hospital, Taichung 404327, Taiwan
| |
Collapse
|
15
|
Topical administration of Juglans regia L. leaf extract accelerates diabetic wound healing. BMC Complement Med Ther 2022; 22:255. [PMID: 36192711 PMCID: PMC9528103 DOI: 10.1186/s12906-022-03735-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
Background Diabetic wounds are one of the most important issues in diabetic patients. It seems that Juglans regia L. leaf with antioxidant and anti-inflammatory potentials can be profitable for healing of diabetic wounds. The aim of present study was to investigate the topical administration of Juglans regia L. leaf extract in diabetic wound healing. Methods Seventy-five diabetic male rats were randomly divided into 5 groups (n = 15), including: untreated (Control) group, Eucerin group, 2% Juglans regia L. ointment (JRL 2%) group, 5% Juglans regia L. ointment (JRL 5%) group, and Phenytoin group as a reference drug. Sampling was performed at days 7, 14, and 21 after surgery. Evaluation tests included stereology, immunohistochemistry, molecular, and biomechanical. Results Our results showed that the wound closure rate, volumes of newly formed of epidermis and dermis, density of fibroblasts and blood vessels, collagen deposition, density of proliferation cells, expression levels of TGF-β and VEGF genes, and biomechanical characteristics were significantly higher in extract groups compared to control and eucerin groups, however, these changes were considerable in the JRL 5% group (P < 0.05). This is while that the density of neutrophils and expression levels of TNF-α and IL-1β genes in the extract groups, especially in the JRL 5% group, were significantly reduced compared to control and eucerin groups (P < 0.05). Conclusion Topical administration of Juglans regia L. leaf extract, especially in 5% concentration, considerably accelerates diabetic wound healing. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03735-6.
Collapse
|
16
|
Jiao Y, Chen X, Nong B, Luo M, Niu Y, Huang S, Zhang J, Wei A, Huang J. Transplantation of Wharton's jelly mesenchymal stem cells encapsulated with Hydroactive® Gel promotes diabetic wound antifibrotic healing in type 2 diabetic rats. J Mater Chem B 2022; 10:8330-8346. [PMID: 36168995 DOI: 10.1039/d2tb01649d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetic cutaneous ulcers (DCU) are a complication for diabetes patients, mostly occurring in the foot and causing non-healing diabetic foot ulcers. Mesenchymal stem cell (MSC)-based therapy is currently being investigated as a therapeutic avenue for chronic diabetic ulcers. However, poor engraftment, short retention, and low survival still limit the treatment effectiveness. Hydroactive® Gel is a sterile transparent gel made of natural hydrocolloid, which has been widely used for wound management. Whether transplantation of Wharton's jelly mesenchymal stem cells (WJMSCs) encapsulated with Hydroactive® Gel is helpful to diabetic ulcers wound healing remains to be explored. The biocompatibility experiments showed that WJMSCs embedded in Hydroactive® Gel did not influence the cell viability, survival, proliferation, and apoptosis of WJMSCs in vitro. RNA-seq results also implied that Hydroactive® Gel + WJMSCs transplantation activated the "cytokine-cytokine receptor interaction", "mononuclear cell differentiation", "regulation of cell-cell adhesion", and "chemokine receptor activity" to accelerate the inflammatory reaction and epidermis regeneration in diabetic wounds. Histological analysis results demonstrated that Hydroactive® Gel encapsulated WJMSCs transplantation promoted diabetic wound healing and regeneration, indicating improved dermis regeneration, sebaceous gland formation, and type III collagen fiber deposition. Besides, immunohistochemical analysis results showed that Hydroactive® Gel + WJMSCs transplantation also facilitated the transformation of pro-inflammatory M1 macrophages to anti-inflammatory M2 macrophages, cell proliferation, and neovascularization at the wound site. Hydroactive® Gel encapsulation further prolonged the retention time of WJMSCs at the diabetic wound site. Above all, Hydroactive® Gel accelerates WJMSCs-mediated diabetic wound healing by promoting macrophage transformation, facilitating cell proliferation and angiogenesis, and prolonging cell retention time. Our findings may potentially provide a useful therapeutic strategy based on the combination of WJMSCs and biomedical materials for patients with diabetic cutaneous ulcers.
Collapse
Affiliation(s)
- Yiren Jiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Xiaolin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Baoting Nong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Mingxun Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yongxia Niu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Sunxing Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jue Zhang
- Department of Endocrinology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China.
| | - Aisheng Wei
- Department of Endocrinology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China.
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
17
|
Mastrogiacomo M, Nardini M, Collina MC, Di Campli C, Filaci G, Cancedda R, Odorisio T. Innovative Cell and Platelet Rich Plasma Therapies for Diabetic Foot Ulcer Treatment: The Allogeneic Approach. Front Bioeng Biotechnol 2022; 10:869408. [PMID: 35586557 PMCID: PMC9108368 DOI: 10.3389/fbioe.2022.869408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Cutaneous chronic wounds are a major global health burden in continuous growth, because of population aging and the higher incidence of chronic diseases, such as diabetes. Different treatments have been proposed: biological, surgical, and physical. However, most of these treatments are palliative and none of them can be considered fully satisfactory. During a spontaneous wound healing, endogenous regeneration mechanisms and resident cell activity are triggered by the released platelet content. Activated stem and progenitor cells are key factors for ulcer healing, and they can be either recruited to the wound site from the tissue itself (resident cells) or from elsewhere. Transplant of skin substitutes, and of stem cells derived from tissues such as bone marrow or adipose tissue, together with platelet-rich plasma (PRP) treatments have been proposed as therapeutic options, and they represent the today most promising tools to promote ulcer healing in diabetes. Although stem cells can directly participate to skin repair, they primarily contribute to the tissue remodeling by releasing biomolecules and microvesicles able to stimulate the endogenous regeneration mechanisms. Stem cells and PRP can be obtained from patients as autologous preparations. However, in the diabetic condition, poor cell number, reduced cell activity or impaired PRP efficacy may limit their use. Administration of allogeneic preparations from healthy and/or younger donors is regarded with increasing interest to overcome such limitation. This review summarizes the results obtained when these innovative treatments were adopted in preclinical animal models of diabetes and in diabetic patients, with a focus on allogeneic preparations.
Collapse
Affiliation(s)
- Maddalena Mastrogiacomo
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università degli Studi di Genova, Genova, Italy
- *Correspondence: Maddalena Mastrogiacomo,
| | - Marta Nardini
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università degli Studi di Genova, Genova, Italy
| | - Maria Chiara Collina
- Unità Operativa Semplice Piede Diabetico e Ulcere Cutanee, IDI-IRCCS, Roma, Italy
| | - Cristiana Di Campli
- Unità Operativa Semplice Piede Diabetico e Ulcere Cutanee, IDI-IRCCS, Roma, Italy
| | - Gilberto Filaci
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università degli Studi di Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Ranieri Cancedda
- Emeritus Professor, Università degli Studi di Genova, Genova, Italy
| | - Teresa Odorisio
- Laboratorio di Biologia Molecolare e Cellulare, IDI-IRCCS, Roma, Italy
| |
Collapse
|
18
|
Nilforoushzadeh MA, Afzali H, Raoofi A, Nouri M, Naser R, Gholami O, Nasiry D, Mohammadnia A, Razzaghi Z, Alimohammadi A, Naraghi ZS, Peyrovan A, Jahangiri F, Khodaverdi Darian E, Rustamzadeh A, Zare S. Topical spray of Wharton's jelly mesenchymal stem cells derived from umbilical cord accelerates diabetic wound healing. J Cosmet Dermatol 2022; 21:5156-5167. [PMID: 35478316 DOI: 10.1111/jocd.15022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND & AIM Cell-based therapy utilizing mesenchymal stem cells (MSCs) is currently being investigated as a therapeutic agent for chronic wounds. There is no evidence regarding effectiveness of the spray and local transfer of this cellular product in diabetic wound healing. Accordingly, the present study, using clinical, pathological and biometric parameters, investigated the effectiveness of the spray of these cells in the healing of diabetic wounds in rats. METHODS Three days after the induction of diabetes (50 mg/kg single dose of streptozotocin) a circular excision was created on the back of rats. Diabetic rats were divided into two groups (n=21): Control and WJ-MSCs group. Sampling of the studied groups was performed on days 7, 14 and 21 after wounding. Histological, ultrasound imaging of dermis and epidermis in the wound area for thickness and density measurement and skin elasticity were evaluated. RESULTS Our results on days 7, 14, and 21 after wounding showed that the wound closure, thickness and density of new epidermis and dermis, as well as skin elasticity in healed wound were significantly higher in WJ-MSCs group compared to the Control group. CONCLUSION Application of WJ-MSCs suspension spray on the wound area can accelerate healing in diabetic wounds. Our findings may potentially provide a helpful therapeutic strategy for patients with a diabetic wound.
Collapse
Affiliation(s)
- Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Jordan Dermatology and Hair Transplantation Center, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Maryam Nouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Naser
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Gholami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Nasiry
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolreza Mohammadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alimohammad Alimohammadi
- Forensic medicine specialist, Research center of legal medicine organization of Iran, Tehran, Iran
| | - Zahra Safaie Naraghi
- Department of Pathology, Razi Skin Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aisan Peyrovan
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faeze Jahangiri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Khodaverdi Darian
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|