1
|
Marei WFA, Mohey-Elsaeed O, Pintelon I, Leroy JLMR. Risks of using mitoquinone during in vitro maturation and its potential protective effects against lipotoxicity-induced oocyte mitochondrial stress. J Assist Reprod Genet 2024; 41:371-383. [PMID: 38146030 PMCID: PMC10894804 DOI: 10.1007/s10815-023-02994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/17/2023] [Indexed: 12/27/2023] Open
Abstract
PURPOSE Oxidative stress and mitochondrial dysfunction play central roles in reduced oocyte quality and infertility in obese patients. Mitochondria-targeted treatments containing co-enzyme Q10 such as mitoquinone (MitoQ) can increase mitochondrial antioxidative capacity; however, their safety and efficiency when supplemented to oocytes under lipotoxic conditions have not been described. METHODS We tested the effect of different concentrations of MitoQ or its cationic carrier (TPP) (0, 0.1, 0.5, 1.0 μM each) during bovine oocyte IVM. Then, we tested the protective capacity of MitoQ (0.1 μM) against palmitic acid (PA)-induced lipotoxicity and mitochondrial dysfunction in oocytes. RESULTS Exposure to MitoQ, or TPP only, at 1 μM significantly (P<0.05) reduced oocyte mitochondrial inner membrane potential (JC-1 staining) and resulted in reduced cleavage and blastocyst rates compared with solvent control. Lower concentrations of MitoQ or TPP had no effects on embryo development under control (PA-free) conditions. As expected, PA increased the levels of MMP and ROS in oocytes (CellROX staining) and reduced cleavage and blastocyst rates compared with the controls (P<0.05). These negative effects were ameliorated by 0.1 μM MitoQ. In contrast, 0.1 μM TPP alone had no protective effects. MitoQ also normalized the expression of HSP10 and TFAM, and partially normalized HSP60 in the produced blastocysts, indicating at least a partial alleviation of PA-induced mitochondrial stress. CONCLUSION Oocyte exposure to MitoQ may disturb mitochondrial bioenergetic functions and developmental capacity due to a TPP-induced cationic overload. A fine-tuned concentration of MitoQ can protect against lipotoxicity-induced mitochondrial stress during IVM and restore developmental competence and embryo quality.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Omnia Mohey-Elsaeed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Lin PH, Su WP, Li CJ, Lin LT, Sheu JJC, Wen ZH, Cheng JT, Tsui KH. Investigating the Role of Ferroptosis-Related Genes in Ovarian Aging and the Potential for Nutritional Intervention. Nutrients 2023; 15:2461. [PMID: 37299424 PMCID: PMC10255416 DOI: 10.3390/nu15112461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
With advancing age, women experience irreversible deterioration in the quality of their oocytes, resulting in reduced fertility. To gain a deeper understanding of the influence of ferroptosis-related genes on ovarian aging, we employed a comprehensive approach encompassing spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsy. This investigation revealed the intricate interactions between ferroptosis and cellular energy metabolism in aging germ cells, shedding light on the underlying mechanisms. Our study involved 75 patients with ovarian senescence insufficiency, and we utilized multi-histological predictions of ferroptosis-related genes. Following a two-month supplementation period with DHEA, Ubiquinol CoQ10, and Cleo-20 T3, we examined the changes in hub genes. Our results showed that TFRC, NCOA4, and SLC3A2 were significantly reduced and GPX4 was increased in the supplement group, confirming our prediction based on multi-omic analysis. Our hypothesis is that supplementation would enhance the mitochondrial tricarboxylic acid cycle (TCA) or electron transport chain (ETC), resulting in increased levels of the antioxidant enzyme GPX4, reduced lipid peroxide accumulation, and reduced ferroptosis. Overall, our results suggest that supplementation interventions have a notable positive impact on in vitro fertilization (IVF) outcomes in aging cells by improving metal ion and energy metabolism, thereby enhancing oocyte quality in older women.
Collapse
Affiliation(s)
- Pei-Hsuan Lin
- Institute of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Wan-Ping Su
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jiin-Tsuey Cheng
- Institute of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Kuan-Hao Tsui
- Institute of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei 112, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
3
|
Qi S, Liang Q, Yang L, Zhou X, Chen K, Wen J. Effect of Coenzyme Q10 and transcutaneous electrical acupoint stimulation in assisted reproductive technology: a retrospective controlled study. Reprod Biol Endocrinol 2022; 20:167. [PMID: 36476305 PMCID: PMC9730642 DOI: 10.1186/s12958-022-01043-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To investigate the effects of coenzyme Q10 (CoQ10) and transcutaneous electrical acupoint stimulation (TEAS) pretreatment on pregnancy in patients with poor ovarian response (POR). METHODS A total of 330 POR patients who were pretreated with CoQ10 or CoQ10 combined with TEAS before their in vitro fertilization/intracytoplasmic sperm injection and embryo transfer (IVF/ICSI-ET) cycles and who were not pretreated were selected and divided into CoQ10 group (group A, n = 110), CoQ10 + TEAS group (group B, n = 110) and control group (group C, n = 110). For patients with 2 or more transfer cycles, only the information of the first cycle was included. Ovarian function, response to gonadotropin (Gn) stimulation, and pregnancy outcomes of the three groups were compared in the IVF/ICSI-ET cycles. RESULTS After pretreatment, basal FSH, total Gn dosage and duration were comparable among the three groups (all p-value > 0.05), basal E2 in group B decreased significantly compared with the control group (p = 0.022). Endometrial thickness on the human chorionic gonadotropin (hCG) day, antral follicle counts (AFC), the numbers of oocytes, metaphase II (MII) eggs and excellent embryos in the two pretreatment groups were significantly increased compared with group C (all p-value < 0.001), but the rates of MII oocytes, fertilization and excellent embryos had no apparent change. The endometrial thickness on the day of hCG, the numbers of MII eggs and excellent embryos in group B were higher than those in group A (p < 0.001; p = 0.020; p = 0.027; respectively). The embryo implantation rate (IR), clinical pregnancy rate (CPR) and live birth rate (LBR) in group B were significantly higher than those in group C (p = 0.022; p = 0.010; p = 0.019; respectively), but not significantly different from group A. CONCLUSION CoQ10 alone or in combination with TEAS are effective methods for IVF/ICSI-ET adjuvant therapy, which can significantly improve ovarian reactivity, increase the numbers of retrieved eggs and superior embryos, and improve endometrial receptivity. Adjuvant TEAS on the basis of CoQ10 can significantly enhance pregnancy rates, but CoQ10 alone failed to present such an obvious effect.
Collapse
Affiliation(s)
- Shanqin Qi
- Shandong University of Traditional Chinese Medicine, Jingshi Road, Jinan, 250355, People's Republic of China
| | - Qi Liang
- Reproductive Medical Center, the Second Hospital affiliated to Shandong University of Traditional Chinese Medicine, Jingba Road, Jinan, 250001, People's Republic of China
| | - Lixia Yang
- Reproductive Medical Center, the Second Hospital affiliated to Shandong University of Traditional Chinese Medicine, Jingba Road, Jinan, 250001, People's Republic of China
| | - Xueyuan Zhou
- Reproductive Medical Center, the Second Hospital affiliated to Shandong University of Traditional Chinese Medicine, Jingba Road, Jinan, 250001, People's Republic of China
| | - Kun Chen
- Reproductive Medical Center, the Second Hospital affiliated to Shandong University of Traditional Chinese Medicine, Jingba Road, Jinan, 250001, People's Republic of China
| | - Ji Wen
- Reproductive Medical Center, the Second Hospital affiliated to Shandong University of Traditional Chinese Medicine, Jingba Road, Jinan, 250001, People's Republic of China.
| |
Collapse
|
4
|
Ma L, Li X, Li C, Chen P, Lan Y, Huang Y, Xu W, Zhou J. Association of Coenzyme Q10 with Premature Ovarian Insufficiency. Reprod Sci 2022; 30:1548-1554. [PMID: 36471220 PMCID: PMC10159948 DOI: 10.1007/s43032-022-01136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
AbstractThe aim of the study was to analyze the relationship between levels of coenzyme Q10 (CoQ10) and the risk of premature ovarian insufficiency (POI). In this cross-sectional case–control study, 32 women with POI and 58 women with normal menstrual cycles were recruited. The serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Müllerian hormone (AMH), CoQ10 and total cholesterol were measured. The association of CoQ10 with POI was assessed using binary logistic regression analysis. The CoQ10/total cholesterol ratio was significantly lower in the women with POI than in the women with normal menstrual cycles (120.94 ± 25.35 nmol/mmol vs 138.97 ± 39.19 nmol/mmol, P = 0.021). The serum CoQ10/total cholesterol ratio was inversely associated with POI (the unadjusted odds ratio (OR) = 0.984, 95% CI: 0.970–0.998, P = 0.027). The same trend was found after adjusting for confounding factors (such as age, body mass index, annual household income and education) (OR = 0.976, 95% CI: 0.956–0.996, P = 0.020). The serum CoQ10/total cholesterol ratio was inversely associated with POI, indicating that antioxidant deficiency may be a risk associated with the development of POI. CoQ10 may be a protective factor for ovarian tissue.
Collapse
Affiliation(s)
- Linjuan Ma
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiaojun Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Lishui Central Hospital, Lishui, 323000, China
| | - Chunming Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Peiqiong Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yibing Lan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Wenxian Xu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
5
|
Esencan E, Beroukhim G, Seifer DB. Age-related changes in Folliculogenesis and potential modifiers to improve fertility outcomes - A narrative review. Reprod Biol Endocrinol 2022; 20:156. [PMID: 36397149 PMCID: PMC9670479 DOI: 10.1186/s12958-022-01033-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Reproductive aging is characterized by a decline in oocyte quantity and quality, which is directly associated with a decline in reproductive potential, as well as poorer reproductive success and obstetrical outcomes. As women delay childbearing, understanding the mechanisms of ovarian aging and follicular depletion have become increasingly more relevant. Age-related meiotic errors in oocytes are well established. In addition, it is also important to understand how intraovarian regulators change with aging and how certain treatments can mitigate the impact of aging. Individual studies have demonstrated that reproductive pathways involving antimullerian hormone (AMH), vascular endothelial growth factor (VEGF), neurotropins, insulin-like growth factor 1 (IGF1), and mitochondrial function are pivotal for healthy oocyte and cumulus cell development and are altered with increasing age. We provide a comprehensive review of these individual studies and explain how these factors change in oocytes, cumulus cells, and follicular fluid. We also summarize how modifiers of folliculogenesis, such as vitamin D, coenzyme Q, and dehydroepiandrosterone (DHEA) may be used to potentially overcome age-related changes and enhance fertility outcomes of aged follicles, as evidenced by human and rodent studies.
Collapse
Affiliation(s)
- Ecem Esencan
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA.
| | - Gabriela Beroukhim
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - David B Seifer
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| |
Collapse
|
6
|
Yang L, Wang H, Song S, Xu H, Chen Y, Tian S, Zhang Y, Zhang Q. Systematic Understanding of Anti-Aging Effect of Coenzyme Q10 on Oocyte Through a Network Pharmacology Approach. Front Endocrinol (Lausanne) 2022; 13:813772. [PMID: 35222272 PMCID: PMC8874996 DOI: 10.3389/fendo.2022.813772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Maternal oocyte aging is strongly contributing to age-related decline in female fertility. Coenzyme Q10 (CoQ10) exerts positive effects in improving aging-related deterioration of oocyte quality, but the exact mechanism is unclear. OBJECTIVE To reveal the system-level mechanism of CoQ10's anti-aging effect on oocytes based on network pharmacology. METHODS This study adopted a systems network pharmacology approach, including target identification, data integration, network and module construction, bioinformatics analysis, molecular docking, and molecular dynamics simulation. RESULT A total of 27 potential therapeutic targets were screened out. Seven hub targets (PPARA, CAT, MAPK14, SQSTM1, HMOX1, GRB2, and GSR) were identified. Functional and pathway enrichment analysis indicated that these 27 putative targets exerted therapeutic effects on oocyte aging by regulating signaling pathways (e.g., PPAR, TNF, apoptosis, necroptosisn, prolactin, and MAPK signaling pathway), and are involved oxidation-reduction process, mitochondrion, enzyme binding, reactive oxygen species metabolic process, ATP binding, among others. In addition, five densely linked functional modules revealed the potential mechanisms of CoQ10 in improving aging-related deterioration of oocyte quality are closely related to antioxidant, mitochondrial function enhancement, autophagy, anti-apoptosis, and immune and endocrine system regulation. The molecular docking study reveals that seven hub targets have a good binding affinity towards CoQ10, and molecular dynamics simulation confirms the stability of the interaction between the hub targets and the CoQ10 ligand. CONCLUSION This network pharmacology study revealed the multiple mechanisms involved in the anti-aging effect of CoQ10 on oocytes. The molecular docking and molecular dynamics simulation provide evidence that CoQ10 may act on these hub targets to fight against oocytes aging.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Heng Wang
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - SuJie Song
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongbin Xu
- Second Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yun Chen
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Saisai Tian
- Department of Phytochemistry, School of Pharmacy, The Second Military Medical University, Shanghai, China
| | - Yiqun Zhang
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Qin Zhang, ; Yiqun Zhang,
| | - Qin Zhang
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Qin Zhang, ; Yiqun Zhang,
| |
Collapse
|
7
|
Dietary Supplements for Female Infertility: A Critical Review of Their Composition. Nutrients 2021; 13:nu13103552. [PMID: 34684554 PMCID: PMC8541636 DOI: 10.3390/nu13103552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022] Open
Abstract
Infertility is the condition of about 15% of couples that cannot get a conception after one year of unprotected sexual intercourse. In females, the reduced reproductive capacity underlies the most varied causes. Dietary supplements (DS) might be used to improve the pregnancy rate and a wide range of DS are proposed today to support female fertility. Although many authors demonstrated the positive effect of some of these products, the real efficacy of this approach is still debated. In order to evaluate the potential efficacy of DS for female infertility, we analysed the products marketed in Italy, using an original approach. A review of literature was performed to evaluate the effect of nutraceuticals on various female reproductive outcomes and to detect the minimal effective daily dose (mED) able to improve at least one of these. Thereafter, we conceived a formula to classify the expected efficacy of each DS. Each DS was scored and included into three classes of expected efficacy: higher, lower, and none. Ten out of 24 supplements (41.7%) resulted in the higher and 8 (34.3%) in the lower efficacy group, the remaining 6 DS (25.0%) were expected to have no efficacy. DS marketed in Italy are usually blends of many substances that are frequently employed at a negligible dose or without any evidence of efficacy. These findings raise serious doubt about the potential effectiveness of most commercial DS for female infertility.
Collapse
|
8
|
Rodríguez-Varela C, Labarta E. Does Coenzyme Q10 Supplementation Improve Human Oocyte Quality? Int J Mol Sci 2021; 22:ijms22179541. [PMID: 34502447 PMCID: PMC8431086 DOI: 10.3390/ijms22179541] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Acquiring oocyte competence requires optimal mitochondrial function and adequate ATP levels. In this context, CoQ10 supplementation may improve human oocyte quality and subsequent reproductive performance given its role in ATP synthesis and mitochondrial protection from ROS oxidative damage. In infertility treatments, CoQ10 therapy can be orally supplied to promote a more favorable environment for oocyte development in vivo or by its addition to culture media in an attempt to improve its quality in vitro. Human clinical studies evaluating the impact of CoQ10 on reproductive performance are summarized in this review, although the available data do not clearly prove its ability to improve human oocyte quality. The main objective is to provide readers with a complete overview of this topic's current status as well as the keys for potential future research lines that may help to take this therapy to clinical practice. Indeed, further clinical trials are needed to confirm these results along with molecular studies to evaluate the impact of CoQ10 supplementation on oxidative stress status and mitochondrial function in human gametes.
Collapse
Affiliation(s)
| | - Elena Labarta
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain;
- IVIRMA Valencia, 46015 Valencia, Spain
| |
Collapse
|
9
|
CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress. Theriogenology 2020; 159:77-86. [PMID: 33113448 DOI: 10.1016/j.theriogenology.2020.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Coenzyme Q10 (CoQ10) is essential to many fundamental biological processes. However, the effect of CoQ10 on meiotic maturation of pig oocytes still remains elusive. In the present study we aimed to understand the effects of CoQ10 on porcine oocyte maturation, by supplementing different concentrations of CoQ10 (25, 50 and 100 μM) into the maturation medium. We showed that CoQ10 at 50 μM had better capacity to promote the nuclear maturation of pig oocytes derived from both small and large antral follicles. Though the cleavage and blastocyst rates of parthenotes stayed stable, 50 μM CoQ10 treatment could accelerate the development of parthenotes to blastocyst stage, and increase the average cell number of blastocyst. For cumulus-oocyte complexes from large antral follicles categorized by the brilliant cresyl blue (BCB) test, 50 μM CoQ10 treatment could specifically promote the nuclear maturation of poor-quality oocytes in the BCB-negative group. Mitochondrial function of oocytes treated by 50 μM CoQ10 could be boosted, through increasing the levels of mitochondrial membrane potential, ATP production and CoQ6, and changing the pattern of mitochondrial distribution as well. Moreover, 50 μM CoQ10 treatment suppressed the level of reactive oxygen species and reduced the percentage of oocytes with early apoptosis signal. Taken together, CoQ10 could improve the meiotic maturation of pig oocytes, especially for poor-quality oocytes, mainly through enhancing mitochondrial function and suppressing oxidative stress to reduce apoptosis.
Collapse
|
10
|
Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Res Vet Sci 2020; 132:342-350. [PMID: 32738731 DOI: 10.1016/j.rvsc.2020.07.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
Producing high-competent oocytes during the in vitro maturation (IVM) is considered a key step for the success of the in vitro production (IVP) of embryos. One of the known disruptors of oocyte developmental competence on IVP is oxidative stress (OS), which appears due to the imbalance between the production and neutralization of reactive oxygen species (ROS). The in vitro conditions induce supraphysiological ROS levels due to the exposure to an oxidative environment and the isolation of the oocyte from the follicle protective antioxidant milieu. In juvenile in vitro embryo transfer (JIVET), which aims to produce embryos from prepubertal females, the oocytes are more sensitive to OS as they have inherent lower quality. Therefore, the IVM strategies that aim to prevent OS have great interest for both IVP and JIVET programs. The focus of this review is on the effects of ROS on oocyte IVM and the main antioxidants that have been tested for protecting the oocyte from OS. Considering the importance that OS has on oocyte competence, it is crucial to create standardized antioxidant IVM systems for improving the overall IVP success.
Collapse
|
11
|
Delkhosh A, Delashoub M, Tehrani AA, Bahrami AM, Niazi V, Shoorei H, Banimohammad M, Kalarestaghi H, Shokoohi M, Agabalazadeh A, Mohaqiq M. Upregulation of FSHR and PCNA by administration of coenzyme Q10 on cyclophosphamide-induced premature ovarian failure in a mouse model. J Biochem Mol Toxicol 2019; 33:e22398. [PMID: 31557371 DOI: 10.1002/jbt.22398] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/30/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
Abstract
Cyclophosphamide (CTX) has been broadly used in the clinic for the treatment of autoimmune disorders and ovarian cancer. The process of chemotherapy has significant toxicity in the reproductive system as it has detrimental effects on folliculogenesis, which leads to an irreversible premature ovarian failure (POF). Coenzyme Q10 (CoQ10) has positive impacts on the reproductive system due to its antioxidant properties, protecting the cells from free-radical oxidative damage and apoptosis. However, little is known about the possible synergistic effect of CTX and CoQ10 on the expression of genes involved in folliculogenesis, such as proliferation cell nuclear antigen (PCNA) and follicle-stimulating hormone receptor (FSHR). A total of 32 NMRI mice were applied and divided into four groups, including healthy control, CTX, CTX + CoQ10, and CoQ10 groups. The effects of CoQ10 on CTX-induced ovarian injury and folliculogenesis were examined by histopathological and real-time quantitative reverse transcription-polymerase chain reaction analyses. The rates of fertilization (in vitro fertilization), embryo development, as well as the level of reactive oxygen species (ROS) in metaphase II (MII) mouse oocytes after PMSG/HCC treatment were also assessed. Results showed that the treatment with CTX decreased the mRNA expression of PCNA and FSHR, IVF rate, and embryo development whereas the application of CoQ10 successfully reversed those factors. CoQ10 administration significantly enhanced histological morphology and decreased ROS levels and the number of atretic follicles in the ovary of CTX-treated mice. In conclusion, it seems that the protective effect of CoQ10 is exerted via the antioxidant and proliferative properties of this substance on CTX-induced ovarian damage.
Collapse
Affiliation(s)
- Aref Delkhosh
- Graduate of Veterinary Medicine, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Masoud Delashoub
- Department of Basic Sciences, Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Asghar Tehrani
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Banimohammad
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Kalarestaghi
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Shokoohi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Agabalazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mohaqiq
- Anatomy Department, Medicine Faculty, Kateb University, Kabul, Afghanistan
| |
Collapse
|
12
|
Zhang M, ShiYang X, Zhang Y, Miao Y, Chen Y, Cui Z, Xiong B. Coenzyme Q10 ameliorates the quality of postovulatory aged oocytes by suppressing DNA damage and apoptosis. Free Radic Biol Med 2019; 143:84-94. [PMID: 31398498 DOI: 10.1016/j.freeradbiomed.2019.08.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/22/2019] [Accepted: 08/05/2019] [Indexed: 01/06/2023]
Abstract
Postovulatory aging is known to compromise the oocyte quality as well as subsequent embryo development in many different animal models, and becomes one of the most intractable issues that limit the outcome of human assisted reproductive technology (ART). However, the strategies to prevent the deterioration of aged oocytes and relevant mechanisms are still underexplored. Here, we find that supplementation of CoQ10, a natural antioxidant present in human follicular fluids, is able to restore the postovulatory aging-induced fragmentation of oocytes and decline of fertilization. Importantly, we show that CoQ10 supplementation recovers postovulatory aging-caused meiotic defects such as disruption of spindle assembly, misalignment of chromosome, disappearance of actin cap, and abnormal distribution patterns of mitochondria and cortical granules. In addition, CoQ10 protects aged oocytes from premature exocytosis of ovastacin, cleavage of sperm binding site ZP2, and loss of localization of Juno, to maintain the fertilization potential. Notably, CoQ10 suppresses the aging-induced oxidative stress by reducing the levels of superoxide and DNA damage, ultimately inhibiting the apoptosis. Taken together, our findings demonstrate that CoQ10 supplementation is a feasible and effective way to prevent postovulatory aging and preserve the oocyte quality, potentially contributing to improve the successful rate of IVF (in vitro fertilization) and ICSI (intracytoplasmic sperm injection) during human ART.
Collapse
Affiliation(s)
- Mianqun Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiayan ShiYang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuwei Zhang
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Ishii N, Homma T, Lee J, Mitsuhashi H, Yamada KI, Kimura N, Yamamoto Y, Fujii AJ. Ascorbic acid and CoQ10 ameliorate the reproductive ability of superoxide dismutase 1-deficient female mice†. Biol Reprod 2019; 102:102-115. [DOI: 10.1093/biolre/ioz149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/07/2019] [Accepted: 07/30/2019] [Indexed: 01/01/2023] Open
Abstract
Abstract
Superoxide dismutase 1 suppresses oxidative stress within cells by decreasing the levels of superoxide anions. A dysfunction of the ovary and/or an aberrant production of sex hormones are suspected causes for infertility in superoxide dismutase 1-knockout mice. We report on attempts to rescue the infertility in female knockout mice by providing two antioxidants, ascorbic acid and/or coenzyme Q10, as supplements in the drinking water of the knockout mice after weaning and on an investigation of their reproductive ability. On the first parturition, 80% of the untreated knockout mice produced smaller litter sizes compared with wild-type mice (average 2.8 vs 7.3 pups/mouse), and supplementing with these antioxidants failed to improve these litter sizes. However, in the second parturition of the knockout mice, the parturition rate was increased from 18% to 44–75% as the result of the administration of antioxidants. While plasma levels of progesterone at 7.5 days of pregnancy were essentially the same between the wild-type and knockout mice and were not changed by the supplementation of these antioxidants, sizes of corpus luteum cells, which were smaller in the knockout mouse ovaries after the first parturition, were significantly ameliorated in the knockout mouse with the administration of the antioxidants. Moreover, the impaired vasculogenesis in uterus/placenta was also improved by ascorbic acid supplementation. We thus conclude that ascorbic acid and/or coenzyme Q10 are involved in maintaining ovarian and uterus/placenta homeostasis against insults that are augmented during pregnancy and that their use might have positive effects in terms of improving female fertility.
Collapse
Affiliation(s)
- Naoki Ishii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Jaeyong Lee
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | | | - Ken-ichi Yamada
- Department of Bio-functional Science, Faculty of Pharmacological Science, Kyushu University, Fukuoka, Japan
- JST, PRESTO, Kawaguchi, Japan
| | - Naoko Kimura
- Laboratory of Animal Reproduction, Faculty of Agricultural Sciences, Yamagata University, Tsuruoka, Japan
| | | | - and Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
14
|
Bacchetti T, Morresi C, Vignini A, Tiano L, Orlando P, Montik N, Ciavattini A, Ferretti G. HDL functionality in follicular fluid in normal-weight and obese women undergoing assisted reproductive treatment. J Assist Reprod Genet 2019; 36:1657-1664. [PMID: 31338723 PMCID: PMC6708027 DOI: 10.1007/s10815-019-01523-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE High-density lipoproteins (HDL) exert pleiotropic roles in follicular fluid (FF). Previous studies have reported a relationship between obesity, infertility, and systemic oxidative stress. The aim of our study was to investigate for the first time the HDL functional properties in FF in obesity. METHODS In this observational study, overweight/obese (n = 20) and normal-weight women (n = 38) undergoing assisted reproductive technology were included. Compositional properties and biochemical marker of functionality (HDL oxidation rate), HDL-associated antioxidants (paraoxonase-1 activities and CoQ10 content), and lipid hydroperoxide levels were evaluated in FF from normal-weight and overweight/obese women. Correlations between biochemical parameters and indices for oocyte and embryo quality were studied. RESULTS FF-HDL obtained from overweight/obese women are characterized by high intrinsic ability to be oxidized compared with FF-HDL from normal-weight women. These alterations are associated with lower activities of paraoxonase-1 (PON1), higher levels of lipid peroxidation, and a lower total antioxidant capacity in FF. Moreover, an association between PON1 activity and FF-HDL oxidation and clinical parameter of oocyte quality was observed. CONCLUSION Our data suggest that the quality of FF-HDL is important determinant for oocyte quality. Therefore, targeting FF-HDL functionality, in addition to FF-HDL-C levels, may represent a promising and interesting biomarker for reproductive outcomes.
Collapse
Affiliation(s)
- Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nina Montik
- Woman's Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Ciavattini
- Woman's Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Ancona, Italy
| | - Gianna Ferretti
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
15
|
Co-Enzyme Q10 Supplementation Rescues Cumulus Cells Dysfunction in a Maternal Aging Model. Antioxidants (Basel) 2019; 8:antiox8030058. [PMID: 30857157 PMCID: PMC6466589 DOI: 10.3390/antiox8030058] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 12/23/2022] Open
Abstract
Over the past four decades, due to cultural and social changes, women in the developed world have significantly delayed childbirth. This trend is even worse for patients who attend infertility clinics. It is well-known that live birth rates in women older than 35 are significantly lower than in those younger, both naturally and with assisted reproduction. Fertility decline is, in part, due to an increase in oocyte aneuploidy that leads to a reduced embryo quality, as well as an increased incidence of miscarriages and birth defects. Here we show that aging-associated malfunction is not restricted to the oocyte, as cumulus granulosa cells also display a series of defects linked to mitochondrial activity. In, both, human and mouse model, a decline in cumulus cell function due to increased maternal age is accompanied by a decreased expression of enzymes responsible for Coenzyme Q (CoQ) production, particularly Pdss2 and CoQ6. In an aged mouse model supplementation with Coenzyme Q10—a potent stimulator of mitochondrial function—restored cumulus cell number, stimulated glucose uptake, and increased progesterone production. CoQ10 supplementation might, thus, improve oocyte and cumulus cells quantity and quality, by improving the mitochondrial metabolism in females of advanced maternal age.
Collapse
|
16
|
CoQ10 Supplementation in Patients Undergoing IVF-ET: The Relationship with Follicular Fluid Content and Oocyte Maturity. Antioxidants (Basel) 2018; 7:antiox7100141. [PMID: 30322142 PMCID: PMC6210096 DOI: 10.3390/antiox7100141] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/18/2018] [Accepted: 10/08/2018] [Indexed: 01/04/2023] Open
Abstract
Background: The target of the reduced fecundity with aging is the oocyte. The follicular fluid and its components are strongly linked with the environment of the maturing oocyte. The aim of the present study was to evaluate CoQ10 bioavailability in follicular fluids after oral supplementation and its possible implication in oocyte maturation. Methods: Fifteen female partners of infertile couples, aged 31–46, undergoing IVF-ET and taking 200 mg/day oral CoQ10 were compared to unsupplemented patients. CoQ10 content, its oxidative status and total antioxidant capacity were evaluated also in relation to oocyte maturation indexes. Results: CoQ10 supplementation produced a significant increase in follicular content and a significant improvement of its oxidative status. Follicular fluid total antioxidant capacity highlighted a significant decrease in patients supplemented with CoQ10, specially in women >35 years. CoQ10 supplementation was associated with a significant decrease in total antioxidant capacity of fluid from follicles containing mature oocyte, moreover CoQ10 oxidative status was also significantly reduced but in follicles containing immature oocyte. Conclusions: Our observation leads to the hypothesis that the oral supplementation of CoQ10 may improve follicular fluid oxidative metabolism and oocyte quality, specially in over 35-year-old women.
Collapse
|
17
|
Xu Y, Nisenblat V, Lu C, Li R, Qiao J, Zhen X, Wang S. Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial. Reprod Biol Endocrinol 2018; 16:29. [PMID: 29587861 PMCID: PMC5870379 DOI: 10.1186/s12958-018-0343-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Management of women with reduced ovarian reserve or poor ovarian response (POR) to stimulation is one of the major challenges in reproductive medicine. The primary causes of POR remain elusive and oxidative stress was proposed as one of the important contributors. It has been suggested that focus on the specific subpopulations within heterogeneous group of poor responders could assist in evaluating optimal management strategies for these patients. This study investigated the effect of anti-oxidant treatment with coenzyme Q10 (CoQ10) on ovarian response and embryo quality in young low-prognosis patients with POR. METHODS This prospective, randomized controlled study included 186 consecutive patients with POR stratified according to the POSEIDON classification group 3 (age < 35, poor ovarian reserve parameters). The participants were randomized to the CoQ10 pre-treatment for 60 days preceding IVF-ICSI cycle or no pre-treatment. The number of high quality embryos was a primary outcome measure. RESULTS A total of 169 participants were evaluated (76 treated with CoQ10 and 93 controls); 17 women were excluded due to low compliance with CoQ10 administration. The baseline demographic and clinical characteristics were comparable between the groups. CoQ10 pretreatment resulted in significantly lower gonadotrophin requirements and higher peak E2 levels. Women in CoQ10 group had increased number of retrieved oocytes (4, IQR 2-5), higher fertilization rate (67.49%) and more high-quality embryos (1, IQR 0-2); p < 0.05. Significantly less women treated with CoQ10 had cancelled embryo transfer because of poor embryo development than controls (8.33% vs. 22.89%, p = 0.04) and more women from treatment group had available cryopreserved embryos (18.42% vs. 4.3%, p = 0.012). The clinical pregnancy and live birth rates per embryo transfer and per one complete stimulation cycle tended to be higher in CoQ10 group but did not achieve statistical significance. CONCLUSION Pretreatment with CoQ10 improves ovarian response to stimulation and embryological parameters in young women with poor ovarian reserve in IVF-ICSI cycles. Further work is required to determine whether there is an effect on clinical treatment endpoints.
Collapse
Affiliation(s)
- Yangying Xu
- Department of Reproduction, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100123, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Victoria Nisenblat
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100123, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Cuiling Lu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100123, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Rong Li
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100123, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Jie Qiao
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100123, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Xiumei Zhen
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100123, China.
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.
| | - Shuyu Wang
- Department of Reproduction, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
18
|
Liang S, Niu YJ, Shin KT, Cui XS. Protective Effects of Coenzyme Q10 on Developmental Competence of Porcine Early Embryos. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:849-858. [PMID: 28587702 DOI: 10.1017/s1431927617000617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Coenzyme Q10 (Q10) plays an important role in the cellular antioxidant system by protecting the cells from free-radical oxidative damage and apoptosis. In the present study, we have investigated the effect of Q10 on the preimplantation development of porcine parthenogenetic embryos, as well as the underlying mechanism. The results showed that 100 μM was the optimal concentration of Q10, which resulted in significantly increased cleavage and blastocyst formation rates and improvement of blastocyst quality. Q10 improved the blastocyst hatching rate and cellular proliferation rate in hatching blastocysts and increased the expression of hatching-related genes. Furthermore, Q10 not only decreased reactive oxygen species production, DNA damage levels, and apoptosis in the blastocysts from H2O2-induced oxidative injury, but also maintained mitochondrial function. Taken together, these results indicate that Q10 has beneficial effects on the development of porcine parthenogenetic embryos by preventing oxidative damage and apoptosis.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Animal Science,Chungbuk National University,Cheongju,Chungbuk,361-763,Republic of Korea
| | - Ying Jie Niu
- Department of Animal Science,Chungbuk National University,Cheongju,Chungbuk,361-763,Republic of Korea
| | - Kyung-Tae Shin
- Department of Animal Science,Chungbuk National University,Cheongju,Chungbuk,361-763,Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science,Chungbuk National University,Cheongju,Chungbuk,361-763,Republic of Korea
| |
Collapse
|
19
|
The association between coenzyme Q10 concentrations in follicular fluid with embryo morphokinetics and pregnancy rate in assisted reproductive techniques. J Assist Reprod Genet 2017; 34:599-605. [PMID: 28185121 DOI: 10.1007/s10815-017-0882-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/24/2017] [Indexed: 10/20/2022] Open
Abstract
PURPOSE This study seeks to evaluate the association between follicular fluid (FF) coenzyme Q10 (CoQ10) levels, embryo morphokinetics, and pregnancy rate. METHODS Sixty infertile patients who underwent intracytoplasmic sperm injection (ICSI) cycles were included in the study. For each patient, CoQ10 level of the follicular fluid was measured by high-performance liquid chromatography system. After the ICSI of each oocyte, the relationship between the level of CoQ10 content of each follicular fluid, the subsequent embryo quality, and embryo morphokinetics was investigated. The relationship between the level of CoQ10 content of each follicle and optimal time-lapse parameters for the embryos of these follicles including t5, s2, and cc2 was also analyzed. The embryos were further classified into four categories, namely, grades A, B, C, and D, according to morphokinetic parameters using t5-t2 and t5-t3 (cc3). Each follicular fluid analysis was performed for a single oocyte of a single embryo which was transferred to the patients. Additionally, follicular fluid CoQ10 levels and pregnancy rates were evaluated. RESULTS Follicular fluid CoQ10 levels were significantly higher in grades A and B than grades C and D embryos (p < 0.05). The concentration of CoQ10 levels was significantly higher in the pregnant group (p < 0.05). There was no significant correlation between optimal t5 and s2 morphokinetic parameters and CoQ10 levels. However, CoQ10 levels were significantly higher in follicular fluid of embryos which had optimal cc2 (p < 0.05). CONCLUSION High follicular fluid CoQ10 level is associated with optimal embryo morphokinetic parameters and higher pregnancy rates.
Collapse
|
20
|
|
21
|
Hosseinzadeh E, Zavareh S, Lashkarbolouki T. Antioxidant properties of coenzyme Q10-pretreated mouse pre-antral follicles derived from vitrified ovaries. J Obstet Gynaecol Res 2016; 43:140-148. [PMID: 27935208 DOI: 10.1111/jog.13173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/21/2016] [Indexed: 11/28/2022]
Abstract
AIM This study evaluated the antioxidant status of pre-antral follicles derived from vitrified ovaries pretreated with coenzyme Q10 (CoQ10). METHODS Mouse pre-antral follicles derived from fresh and vitrified warmed ovarian tissue were cultured with or without CoQ10 (50 μmol/L). Follicular growth, total antioxidant capacity (TAC), malondialdehyde (MDA) level, and superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activity during cultivation were assessed. RESULTS The growth rate of the fresh pre-antral follicles was higher compared with the vitrified groups, especially in the CoQ10-treated than non-treated groups. MDA increased while TAC decreased at 96 h of the cultivation period. TAC was higher while MDA was lower in the fresh pre-antral follicles than in the vitrified groups. These rates were higher in the CoQ10-treated than non-treated groups. The vitrified and fresh CoQ10-pretreated groups had significantly higher SOD, GPX, and CAT activity compared with the CoQ10 non-treated groups. CONCLUSION CoQ10-supplemented maturation medium can increase antioxidant enzyme activity and decrease lipid peroxidation in cultured pre-antral follicles derived from fresh and vitrified mouse ovaries.
Collapse
Affiliation(s)
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Taghi Lashkarbolouki
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| |
Collapse
|
22
|
Kashka RH, Zavareh S, Lashkarbolouki T. Augmenting effect of vitrification on lipid peroxidation in mouse preantral follicle during cultivation: Modulation by coenzyme Q10. Syst Biol Reprod Med 2016; 62:404-414. [DOI: 10.1080/19396368.2016.1235236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran
- Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Taghi Lashkarbolouki
- School of Biology, Damghan University, Damghan, Iran
- Institute of Biological Sciences, Damghan University, Damghan, Iran
| |
Collapse
|
23
|
Gat I, Blanco Mejia S, Balakier H, Librach CL, Claessens A, Ryan EAJ. The use of coenzyme Q10 and DHEA during IUI and IVF cycles in patients with decreased ovarian reserve. Gynecol Endocrinol 2016; 32:534-7. [PMID: 26829445 DOI: 10.3109/09513590.2015.1137095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The objective of this study is to compare the combination of dehydroepiandrosterone (DHEA) and coenzyme Q10 (CoQ10) (D + C) with DHEA alone (D) in intrauterine insemination (IUI) and in vitro fertilization (IVF) cycles among patients with decreased ovarian reserve. METHODS We retrospectively extracted data from patients charts treated by DHEA with/without CoQ10 during IUI or IVF between February 2006 and June 2014. Prestimulation parameters included age, BMI, day 3 FSH and antral follicular count (AFC). Ovarian response parameters included total gonadotropins dosage, peak serum estradiol, number of follicles > 16 mm and fertilization rate. Clinical outcomes included clinical and ongoing pregnancy rates. RESULTS Three hundred and thirty IUI cycles involved D + C compared with 467 cycles of D; 78 IVF cycles involved D + C and 175 D. In both IUI and IVF, AFC was higher with D + C compared with D (7.4 ± 5.7 versus 5.9 ± 4.7, 8.2 ± 6.3 versus 5.2 ± 5, respectively, p < 0.05). D + C resulted in a more follicles > 16 mm during IUI cycles (3.3 ± 2.3 versus 2.9 ± 2.2, respectively, p = 0.01), while lower mean total gonadotropin dosage was administered after D + C supplementation compared with D (3414 ± 1141 IUs versus 3877 ± 1143 IUs respectively, p = 0.032) in IVF cycles. Pregnancy and delivery rates were similar for both IUI and IVF. CONCLUSION D + C significantly increases AFC and improves ovarian responsiveness during IUI and IVF without a difference in clinical outcome.
Collapse
Affiliation(s)
- Itai Gat
- a CReATe Fertility Centre , Toronto , Canada
- b Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center , Tel HaShomer , Ramat Gan , Israel
| | - Sonia Blanco Mejia
- c Toronto West Fertility Center , Etobicoke , Canada
- d Risk Factor Modification Center, St. Michael's Hospital , Toronto , Canada
| | | | - Clifford L Librach
- a CReATe Fertility Centre , Toronto , Canada
- e Department of Obstetrics & Gynecology , University of Toronto , Canada
- f Department of Physiology , University of Toronto , Canada , and
- g Department of Gynecology , Women's College Hospital , Toronto , Canada
| | - Anne Claessens
- c Toronto West Fertility Center , Etobicoke , Canada
- e Department of Obstetrics & Gynecology , University of Toronto , Canada
| | - Edward A J Ryan
- c Toronto West Fertility Center , Etobicoke , Canada
- e Department of Obstetrics & Gynecology , University of Toronto , Canada
| |
Collapse
|
24
|
Ben‐Meir A, Burstein E, Borrego‐Alvarez A, Chong J, Wong E, Yavorska T, Naranian T, Chi M, Wang Y, Bentov Y, Alexis J, Meriano J, Sung H, Gasser DL, Moley KH, Hekimi S, Casper RF, Jurisicova A. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 2015; 14:887-95. [PMID: 26111777 PMCID: PMC4568976 DOI: 10.1111/acel.12368] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2015] [Indexed: 12/21/2022] Open
Abstract
Female reproductive capacity declines dramatically in the fourth decade of life as a result of an age-related decrease in oocyte quality and quantity. The primary causes of reproductive aging and the molecular factors responsible for decreased oocyte quality remain elusive. Here, we show that aging of the female germ line is accompanied by mitochondrial dysfunction associated with decreased oxidative phosphorylation and reduced Adenosine tri-phosphate (ATP) level. Diminished expression of the enzymes responsible for CoQ production, Pdss2 and Coq6, was observed in oocytes of older females in both mouse and human. The age-related decline in oocyte quality and quantity could be reversed by the administration of CoQ10. Oocyte-specific disruption of Pdss2 recapitulated many of the mitochondrial and reproductive phenotypes observed in the old females including reduced ATP production and increased meiotic spindle abnormalities, resulting in infertility. Ovarian reserve in the oocyte-specific Pdss2-deficient animals was diminished, leading to premature ovarian failure which could be prevented by maternal dietary administration of CoQ10. We conclude that impaired mitochondrial performance created by suboptimal CoQ10 availability can drive age-associated oocyte deficits causing infertility.
Collapse
Affiliation(s)
- Assaf Ben‐Meir
- Lunenfeld‐Tanenbaum Research Institute Mount Sinai Hospital 25 Orde Street Toronto ON M5T 3H7Canada
- TCART Fertility Partners 150 Bloor W Toronto ON M5S 2X9Canada
| | - Eliezer Burstein
- Lunenfeld‐Tanenbaum Research Institute Mount Sinai Hospital 25 Orde Street Toronto ON M5T 3H7Canada
- TCART Fertility Partners 150 Bloor W Toronto ON M5S 2X9Canada
| | - Aluet Borrego‐Alvarez
- Lunenfeld‐Tanenbaum Research Institute Mount Sinai Hospital 25 Orde Street Toronto ON M5T 3H7Canada
| | - Jasmine Chong
- Lunenfeld‐Tanenbaum Research Institute Mount Sinai Hospital 25 Orde Street Toronto ON M5T 3H7Canada
| | - Ellen Wong
- Lunenfeld‐Tanenbaum Research Institute Mount Sinai Hospital 25 Orde Street Toronto ON M5T 3H7Canada
- Department of Physiology University of Toronto 1 King's College Circle Toronto ON M5S 1A8Canada
| | - Tetyana Yavorska
- Lunenfeld‐Tanenbaum Research Institute Mount Sinai Hospital 25 Orde Street Toronto ON M5T 3H7Canada
- Department of Physiology University of Toronto 1 King's College Circle Toronto ON M5S 1A8Canada
| | - Taline Naranian
- Lunenfeld‐Tanenbaum Research Institute Mount Sinai Hospital 25 Orde Street Toronto ON M5T 3H7Canada
- Department of Physiology University of Toronto 1 King's College Circle Toronto ON M5S 1A8Canada
| | - Maggie Chi
- Department of Obstetrics and Gynecology Washington University in St. Louis 660 S. Euclid Avenue St. Louis MO 63110USA
| | - Ying Wang
- Department of Biology McGill University 3649 Promenade Sir William Osler Montreal QC H3G 0B1Canada
| | - Yaakov Bentov
- TCART Fertility Partners 150 Bloor W Toronto ON M5S 2X9Canada
- Department of Obstetrics and Gynecology University of Toronto 92 College Street Toronto ON M5G 1L4Canada
| | - Jennifer Alexis
- LifeQuest Centre for Reproductive Medicine 655 Bay St Toronto ON M5G 2K4Canada
| | - James Meriano
- LifeQuest Centre for Reproductive Medicine 655 Bay St Toronto ON M5G 2K4Canada
| | - Hoon‐Ki Sung
- Lunenfeld‐Tanenbaum Research Institute Mount Sinai Hospital 25 Orde Street Toronto ON M5T 3H7Canada
| | - David L. Gasser
- Department of Genetics University of Pennsylvania 575 Clinical Research Building 415 Curie Boulevard Philadelphia PA 19104‐6145 USA
| | - Kelle H. Moley
- Department of Obstetrics and Gynecology Washington University in St. Louis 660 S. Euclid Avenue St. Louis MO 63110USA
| | - Siegfried Hekimi
- Department of Biology McGill University 3649 Promenade Sir William Osler Montreal QC H3G 0B1Canada
| | - Robert F. Casper
- Lunenfeld‐Tanenbaum Research Institute Mount Sinai Hospital 25 Orde Street Toronto ON M5T 3H7Canada
- TCART Fertility Partners 150 Bloor W Toronto ON M5S 2X9Canada
- Department of Physiology University of Toronto 1 King's College Circle Toronto ON M5S 1A8Canada
- Department of Obstetrics and Gynecology University of Toronto 92 College Street Toronto ON M5G 1L4Canada
| | - Andrea Jurisicova
- Lunenfeld‐Tanenbaum Research Institute Mount Sinai Hospital 25 Orde Street Toronto ON M5T 3H7Canada
- Department of Physiology University of Toronto 1 King's College Circle Toronto ON M5S 1A8Canada
- Department of Obstetrics and Gynecology University of Toronto 92 College Street Toronto ON M5G 1L4Canada
| |
Collapse
|
25
|
Ben-Meir A, Yahalomi S, Moshe B, Shufaro Y, Reubinoff B, Saada A. Coenzyme Q-dependent mitochondrial respiratory chain activity in granulosa cells is reduced with aging. Fertil Steril 2015; 104:724-7. [PMID: 26049051 DOI: 10.1016/j.fertnstert.2015.05.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine coenzyme Q10 (CoQ10)-dependent mitochondrial respiratory chain (MRC) activity in granulosa cells (GC) with aging and examine the effect of in vitro CoQ supplementation. DESIGN Experimental study. SETTING Hospital laboratory. PATIENT(S) Ten younger (<32 years) and 10 older (>39 years) patients undergoing in vitro fertilization (IVF) treatment. INTERVENTION(S) Measurement of succinate-cytochrome c reductase (MRC complex II + III) activity in the presence and absence of CoQ1 (a soluble CoQ analog). MAIN OUTCOME MEASURE(S) MRC enzymatic activity in human GC via complex II + III measured in GC homogenate by spectrophotometry and compared with CoQ in dependent MRC complex II and citrate synthase (CS). RESULT(S) Complex II + III activity was 1.9 times higher in young patients compared with older patients (18.3 ± 5.8 and 9.6 ± 3 nmol/min/mg, respectively) whereas II and CS were not statistically significantly different. Increased II + III activity in the presence CoQ1 was observed in both groups but was statistically significantly higher in the older patients, reaching similar levels. Compared with baseline (II + III + Q/II + III), the increase was 2.47 times higher in older patients compared with young patients (6.5 ± 2.0 and 2.62 ± 0.83, respectively). CONCLUSION(S) Coenzyme Q10-dependent MRC activity in GC reduces with aging. This reduction is diminished upon in vitro CoQ1 supplementation, indicating that CoQ10 deficit is the underlying cause for the mitochondrial dysfunction. The results show that functional CoQ10 status can be assessed by measuring complex II + III activity in GC and might provide a useful monitoring tool for future clinical studies of oral CoQ10 supplementation to older patients undergoing IVF treatment.
Collapse
Affiliation(s)
- Assaf Ben-Meir
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Shlomi Yahalomi
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Brit Moshe
- Monique and Jacques Roboh Department of Genetic Research and Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yoel Shufaro
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Benjamin Reubinoff
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research and Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
26
|
Why we may abandon basal follicle-stimulating hormone testing: a sea change in determining ovarian reserve using antimüllerian hormone. Fertil Steril 2013; 99:1825-30. [PMID: 23548941 DOI: 10.1016/j.fertnstert.2013.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 11/23/2022]
Abstract
Antimüllerian hormone is the most informative serum marker of ovarian reserve currently available and should be considered an important part of any contemporary reproductive medicine practice. It is both more convenient and informative than basal FSH and can be assessed at any point in the cycle. It is the most useful serum method of determining ovarian reserve, which guides pretreatment counseling, choice of infertility treatment, and avoidance of ovarian hyperstimulation. The future role of basal FSH testing is in doubt.
Collapse
|