1
|
Zhang G, Mao Y, Zhang Y, Huang H, Pan J. Assisted reproductive technology and imprinting errors: analyzing underlying mechanisms from epigenetic regulation. HUM FERTIL 2023; 26:864-878. [PMID: 37929309 DOI: 10.1080/14647273.2023.2261628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/11/2023] [Indexed: 11/07/2023]
Abstract
With the increasing maturity and widespread application of assisted reproductive technology (ART), more attention has been paid to the health outcomes of offspring following ART. It is well established that children born from ART treatment are at an increased risk of imprinting errors and imprinting disorders. The disturbances of genetic imprinting are attributed to the overlap of ART procedures and important epigenetic reprogramming events during the development of gametes and early embryos, but the detailed mechanisms are hitherto obscure. In this review, we summarized the DNA methylation-dependent and independent mechanisms that control the dynamic epigenetic regulation of imprinted genes throughout the life cycle of a mammal, including erasure, establishment, and maintenance. In addition, we systematically described the dysregulation of imprinted genes in embryos conceived through ART and discussed the corresponding underlying mechanisms according to findings in animal models. This work is conducive to evaluating and improving the safety of ART.
Collapse
Affiliation(s)
- Gaochen Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Ahmadi H, Aghebati-Maleki L, Rashidiani S, Csabai T, Nnaemeka OB, Szekeres-Bartho J. Long-Term Effects of ART on the Health of the Offspring. Int J Mol Sci 2023; 24:13564. [PMID: 37686370 PMCID: PMC10487905 DOI: 10.3390/ijms241713564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Assisted reproductive technologies (ART) significantly increase the chance of successful pregnancy and live birth in infertile couples. The different procedures for ART, including in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), intrauterine insemination (IUI), and gamete intrafallopian tube transfer (GIFT), are widely used to overcome infertility-related problems. In spite of its inarguable usefulness, concerns about the health consequences of ART-conceived babies have been raised. There are reports about the association of ART with birth defects and health complications, e.g., malignancies, high blood pressure, generalized vascular functional disorders, asthma and metabolic disorders in later life. It has been suggested that hormonal treatment of the mother, and the artificial environment during the manipulation of gametes and embryos may cause genomic and epigenetic alterations and subsequent complications in the health status of ART-conceived babies. In the current study, we aimed to review the possible long-term consequences of different ART procedures on the subsequent health status of ART-conceived offspring, considering the confounding factors that might account for/contribute to the long-term consequences.
Collapse
Affiliation(s)
- Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
| | - Leili Aghebati-Maleki
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Shima Rashidiani
- Department of Medical Biochemistry, Medical School, Pécs University, 7624 Pécs, Hungary;
| | - Timea Csabai
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
- János Szentágothai Research Centre, Pécs University, 7624 Pécs, Hungary
- Endocrine Studies, Centre of Excellence, Pécs University, 7624 Pécs, Hungary
- National Laboratory of Human Reproduction, 7624 Pécs, Hungary
| | - Obodo Basil Nnaemeka
- Department of Laboratory Diagnostics, Faculty of Health Sciences, Pécs University, 7621 Pécs, Hungary;
| | - Julia Szekeres-Bartho
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, 7624 Pécs, Hungary; (H.A.); (T.C.)
- János Szentágothai Research Centre, Pécs University, 7624 Pécs, Hungary
- Endocrine Studies, Centre of Excellence, Pécs University, 7624 Pécs, Hungary
- National Laboratory of Human Reproduction, 7624 Pécs, Hungary
- MTA—PTE Human Reproduction Research Group, 7624 Pecs, Hungary
| |
Collapse
|
3
|
Vrooman LA, Rhon-Calderon EA, Suri KV, Dahiya AK, Lan Y, Schultz RM, Bartolomei MS. Placental Abnormalities are Associated With Specific Windows of Embryo Culture in a Mouse Model. Front Cell Dev Biol 2022; 10:884088. [PMID: 35547813 PMCID: PMC9081528 DOI: 10.3389/fcell.2022.884088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Assisted Reproductive Technologies (ART) employ gamete/embryo handling and culture in vitro to produce offspring. ART pregnancies have an increased risk of low birth weight, abnormal placentation, pregnancy complications, and imprinting disorders. Embryo culture induces low birth weight, abnormal placental morphology, and lower levels of DNA methylation in placentas in a mouse model of ART. Whether preimplantation embryos at specific stages of development are more susceptible to these perturbations remains unresolved. Accordingly, we performed embryo culture for several discrete periods of preimplantation development and following embryo transfer, assessed fetal and placental outcomes at term. We observed a reduction in fetal:placental ratio associated with two distinct windows of preimplantation embryo development, one prior to the morula stage and the other from the morula to blastocyst stage, whereas placental morphological abnormalities and reduced imprinting control region methylation were only associated with culture prior to the morula stage. Extended culture to the blastocyst stage also induces additional placental DNA methylation changes compared to embryos transferred at the morula stage, and female concepti exhibited a higher loss of DNA methylation than males. By identifying specific developmental windows of susceptibility, this study provides a framework to optimize further culture conditions to minimize risks associated with ART pregnancies.
Collapse
Affiliation(s)
- Lisa A. Vrooman
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Eric A. Rhon-Calderon
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Kashviya V. Suri
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Asha K. Dahiya
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Yemin Lan
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Richard M. Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Sciorio R, El Hajj N. Epigenetic Risks of Medically Assisted Reproduction. J Clin Med 2022; 11:jcm11082151. [PMID: 35456243 PMCID: PMC9027760 DOI: 10.3390/jcm11082151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Since the birth of Louise Joy Brown, the first baby conceived via in vitro fertilization, more than 9 million children have been born worldwide using assisted reproductive technologies (ART). In vivo fertilization takes place in the maternal oviduct, where the unique physiological conditions guarantee the healthy development of the embryo. During early embryogenesis, a major wave of epigenetic reprogramming takes place that is crucial for the correct development of the embryo. Epigenetic reprogramming is susceptible to environmental changes and non-physiological conditions such as those applied during in vitro culture, including shift in pH and temperature, oxygen tension, controlled ovarian stimulation, intracytoplasmic sperm injection, as well as preimplantation embryo manipulations for genetic testing. In the last decade, concerns were raised of a possible link between ART and increased incidence of imprinting disorders, as well as epigenetic alterations in the germ cells of infertile parents that are transmitted to the offspring following ART. The aim of this review was to present evidence from the literature regarding epigenetic errors linked to assisted reproduction treatments and their consequences on the conceived children. Furthermore, we provide an overview of disease risk associated with epigenetic or imprinting alterations in children born via ART.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Correspondence:
| | - Nady El Hajj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| |
Collapse
|
5
|
Peral-Sanchez I, Hojeij B, Ojeda DA, Steegers-Theunissen RPM, Willaime-Morawek S. Epigenetics in the Uterine Environment: How Maternal Diet and ART May Influence the Epigenome in the Offspring with Long-Term Health Consequences. Genes (Basel) 2021; 13:31. [PMID: 35052371 PMCID: PMC8774448 DOI: 10.3390/genes13010031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The societal burden of non-communicable disease is closely linked with environmental exposures and lifestyle behaviours, including the adherence to a poor maternal diet from the earliest preimplantation period of the life course onwards. Epigenetic variations caused by a compromised maternal nutritional status can affect embryonic development. This review summarises the main epigenetic modifications in mammals, especially DNA methylation, histone modifications, and ncRNA. These epigenetic changes can compromise the health of the offspring later in life. We discuss different types of nutritional stressors in human and animal models, such as maternal undernutrition, seasonal diets, low-protein diet, high-fat diet, and synthetic folic acid supplement use, and how these nutritional exposures epigenetically affect target genes and their outcomes. In addition, we review the concept of thrifty genes during the preimplantation period, and some examples that relate to epigenetic change and diet. Finally, we discuss different examples of maternal diets, their effect on outcomes, and their relationship with assisted reproductive technology (ART), including their implications on epigenetic modifications.
Collapse
Affiliation(s)
- Irene Peral-Sanchez
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.A.O.); (S.W.-M.)
| | - Batoul Hojeij
- Department Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands; (B.H.); (R.P.M.S.-T.)
| | - Diego A. Ojeda
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.A.O.); (S.W.-M.)
| | - Régine P. M. Steegers-Theunissen
- Department Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands; (B.H.); (R.P.M.S.-T.)
| | | |
Collapse
|
6
|
Zhao X, Huang JX, Zhang H, Gong X, Dong J, Ren HL, Liu Z. A comparison study of superovulation strategies for C57BL/6J and B6D2F1 mice in CRISPR-Cas9 mediated genome editing. Reprod Fertil Dev 2021; 33:772-781. [PMID: 34748725 DOI: 10.1071/rd21199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
Reproductive techniques such as superovulation and in vitro fertilisation (IVF) have been widely used in generating genetically modified animals. The current gold standard for superovulation in mice is using coherent treatments of equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG). An alternative method using inhibin antiserum (IAS) instead of eCG has been recently reported. Here, we evaluate different superovulation strategies in C57BL/6J and B6D2F1 mice. Firstly, we found that using 5-week-old C57BL/6J and 4-week-old B6D2F1 donors could achieve better superovulation outcomes. Then, we compared eCG-hCG, IAS-hCG and eCG-IAS-hCG with different dosages in both mouse strains. Significantly increased numbers of oocytes were obtained by using IAS-hCG and eCG-IAS-hCG methods. However, low fertilisation rates (36.3-38.8%) were observed when natural mating was applied. We then confirmed that IVF could dramatically ameliorate the fertilisation rates up to 89.1%. Finally, we performed CRISPR-Cas9 mediated genome editing targeting Scn11a and Kcnh1 loci, and successfully obtained mutant pups using eCG-hCG and IAS-hCG induced zygotes, which were fertilised by either natural mating or IVF. Our results showed that IAS is a promising superovulation reagent, and the efficiency of genome editing is unlikely to be affected by using IAS-induced zygotes.
Collapse
Affiliation(s)
- Xue Zhao
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, China
| | - Johnny X Huang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, China; and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Hailong Zhang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, China
| | - Xueyang Gong
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, China
| | - Jinhua Dong
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, China
| | - Hong-Lin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| | - Zengshan Liu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, China; and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China
| |
Collapse
|
7
|
Horánszky A, Becker JL, Zana M, Ferguson-Smith AC, Dinnyés A. Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models. Genes (Basel) 2021; 12:genes12111704. [PMID: 34828310 PMCID: PMC8620286 DOI: 10.3390/genes12111704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
The rising frequency of ART-conceived births is accompanied by the need for an improved understanding of the implications of ART on gametes and embryos. Increasing evidence from mouse models and human epidemiological data suggests that ART procedures may play a role in the pathophysiology of certain imprinting disorders (IDs), including Beckwith-Wiedemann syndrome, Silver-Russell syndrome, Prader-Willi syndrome, and Angelman syndrome. The underlying molecular basis of this association, however, requires further elucidation. In this review, we discuss the epigenetic and imprinting alterations of in vivo mouse models and human iPSC models of ART. Mouse models have demonstrated aberrant regulation of imprinted genes involved with ART-related IDs. In the past decade, iPSC technology has provided a platform for patient-specific cellular models of culture-associated perturbed imprinting. However, despite ongoing efforts, a deeper understanding of the susceptibility of iPSCs to epigenetic perturbation is required if they are to be reliably used for modelling ART-associated IDs. Comparing the patterns of susceptibility of imprinted genes in mouse models and IPSCs in culture improves the current understanding of the underlying mechanisms of ART-linked IDs with implications for our understanding of the influence of environmental factors such as culture and hormone treatments on epigenetically important regions of the genome such as imprints.
Collapse
Affiliation(s)
- Alex Horánszky
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Jessica L. Becker
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; (J.L.B.); (A.C.F.-S.)
| | - Melinda Zana
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
| | - Anne C. Ferguson-Smith
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; (J.L.B.); (A.C.F.-S.)
| | - András Dinnyés
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
- HCEMM-USZ Stem Cell Research Group, Hungarian Centre of Excellence for Molecular Medicine, H-6723 Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-20-510-9632; Fax: +36-28-526-151
| |
Collapse
|
8
|
Zhao YH, Wang JJ, Zhang PP, Hao HS, Pang YW, Wang HY, Du WH, Zhao SJ, Ruan WM, Zou HY, Hao T, Zhu HB, Zhao XM. Oocyte IVM or vitrification significantly impairs DNA methylation patterns in blastocysts as analysed by single-cell whole-genome methylation sequencing. Reprod Fertil Dev 2021; 32:676-689. [PMID: 32317092 DOI: 10.1071/rd19234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
To explore the mechanisms leading to the poor quality of IVF blastocysts, the single-cell whole-genome methylation sequencing technique was used in this study to analyse the methylation patterns of bovine blastocysts derived from invivo, fresh (IVF) or vitrified (V_IVF) oocytes. Genome methylation levels of blastocysts in the IVF and V_IVF groups were significantly lower than those of the invivo group (P<0.05). In all, 1149 differentially methylated regions (DMRs) were identified between the IVF and invivo groups, 1578 DMRs were identified between the V_IVF and invivo groups and 151 DMRs were identified between the V_IVF and IVF groups. For imprinted genes, methylation levels of insulin-like growth factor 2 receptor (IGF2R) and protein phosphatase 1 regulatory subunit 9A (PPP1R9A) were lower in the IVF and V_IVF groups than in the invivo group, and the methylation level of paternally expressed 3 (PEG3) was lower in the V_IVF group than in the IVF and invivo groups. Genes with DMRs between the IVF and invivo and the V_IVF and IVF groups were primarily enriched in oocyte maturation pathways, whereas DMRs between the V_IVF and invivo groups were enriched in fertilisation and vitrification-vulnerable pathways. The results of this study indicate that differences in the methylation of critical DMRs may contribute to the differences in quality between invitro- and invivo-derived embryos.
Collapse
Affiliation(s)
- Ya-Han Zhao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Jing-Jing Wang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Pei-Pei Zhang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Yun-Wei Pang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Hao-Yu Wang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Shan-Jiang Zhao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Wei-Min Ruan
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Ming Lun Street, Kaifeng, Henan, 475004, PR China
| | - Hui-Ying Zou
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Tong Hao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China; and Corresponding author.
| |
Collapse
|
9
|
Zhu W, Zheng J, Wen Y, Li Y, Zhou C, Wang Z. Effect of embryo vitrification on the expression of brain tissue proteins in mouse offspring. Gynecol Endocrinol 2020; 36:973-977. [PMID: 32129689 DOI: 10.1080/09513590.2020.1734785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vitrification is widely used in assisted reproductive technologies. However, the nervous system of vitrification offspring is of concern, and research on this is lacking. Vitrification-born mice (vitrification group), conventional in vitro fertilization-embryo transfer pregnancy-born mice (IVF group), and natural pregnancy-born mice (control group) were used to study the effects of vitrification of mouse embryos on protein levels in the brain of offspring. Proteins differentially expressed among the three groups were analyzed using proteomic methods, including two-dimensional electrophoresis, mass spectrometry, and bioinformatics analysis. Immunohistochemistry was used to verify the expression of differentially expressed proteins, such as Actb and Actg1, in each group. Twenty differentially expressed proteins in the brain tissue were identified using two-dimensional protein electrophoresis and mass spectrometry. Bioinformatics analysis revealed that these proteins were related to the development of anatomical structure, signal transduction, transport, cell differentiation, and stress response (biological processes) and the binding of molecules in vivo (molecular functions). The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the differentially expressed proteins were involved in 54 pathways, including phagosome, metabolic pathway, apoptosis, and cysteine and methionine metabolism. Thus, embryo vitrification may cause some changes in the mouse brain at the protein level, necessitating further safety assessment.
Collapse
Affiliation(s)
- Wenjing Zhu
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- The Key Laboratory for Reproductive Medicine of Guangdong Province, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingxuan Zheng
- Department of Neurology, People's Hospital of Yangjiang, Yangjiang, China
| | - Yangxing Wen
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- The Key Laboratory for Reproductive Medicine of Guangdong Province, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yubin Li
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- The Key Laboratory for Reproductive Medicine of Guangdong Province, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Canquan Zhou
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- The Key Laboratory for Reproductive Medicine of Guangdong Province, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zengyan Wang
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- The Key Laboratory for Reproductive Medicine of Guangdong Province, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Lamas S, Franquinho F, Morgado M, Mesquita JR, Gärtner F, Amorim I. C57BL/6J and B6129F1 Embryo Transfer: Unilateral and Bilateral Transfer, Embryo Number and Recipient Female Background Control for the Optimization of Embryo Survival and Litter Size. Animals (Basel) 2020; 10:ani10081424. [PMID: 32824021 PMCID: PMC7459990 DOI: 10.3390/ani10081424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Embryo transfer is a common procedure in rodent facilities related to rederivation protocols, recovery of cryopreserved embryos and production of genetically engineered animals. This procedure consists of the transfer of mouse embryos into the oviduct of a pseudopregnant recipient female in order to obtain live pups. The aim of this study is to further characterize the optimal conditions to perform embryo transfer using wild type strains and particularly the bilateral transfer. C57BL/6J and B6129F1 embryos were freshly collected and transferred to recipient females, after overnight culture to a 2-cell stage and tested for different conditions (unilateral and bilateral surgical procedures, variable number of embryos and reciprocity between recipient mother and embryo’s genetic background). The results achieved show that C57BL/6J transfers with a low number of embryos provide higher success rates when using unilateral transfers, but for bilateral transfers a minimum number of embryos seems to be necessary. B6129F1 presented similar results, but bilateral transfers were more effective with low number of embryos. These results allow a better planning of the embryo transfer procedure, considering low number of embryos and the choice of unilateral transfers as the ideal condition for an optimal outcome. This optimization has a positive impact on the 3R’s application: it can help to reduce the number of recipient and donor females and to improve recipient female’s welfare through the use of a less invasive technique. Abstract Embryo transfer (ET) is a common procedure in rodent facilities. Optimizing this technique may help to reduce the number of animals, but little information is available regarding wild type strains and the conditions that affect embryo transfer. To explore this theme, 2-cell C57BL/6J embryos were transferred after overnight culture of freshly collected zygotes using different conditions: unilateral transfers using a total of 6, 8, 12, 15, 20 and 25 embryos were performed initially; then, this strain was also used for bilateral transfers using a total of 6, 12 and 20 embryos equally divided by the two oviducts. Groups of 25 embryos were not tested for the bilateral technique, since this condition produced the lower success rate when using the unilateral technique and 20 embryos would still represent a large number of embryos. A group of 2-cell B6129F1 embryos was also transferred using unilateral and bilateral ET with 6, 12 and 20 embryos. Crl:CD1(ICR) were used as recipient females for non-reciprocal transfers and C57BL/6J were used to test reciprocal transfers (only tested for six C57BL/6J unilateral transfers). Unilateral transfers using C57BL/6J mice produced higher success rates using six embryos, compared to the other groups transferred unilaterally (p-values between 0.0001 and 0.0267), but the mean number of pups per litter was not different among groups. Bilateral transfer produced higher number of pups when 20 embryos were divided by the two oviducts compared to six (p = 0.0012) or 12 (p = 0.0148) embryos, but with no differences in success rates. No statistical differences were found between the groups of B6129F1, but better results were obtained on bilateral transfers using a total of six embryos. For the strain tested (C57BL/6J), the uterine environment (Crl:CD1(ICR) or C57BL/6J recipient) does not impact the outcome of the technique. These results complement previous work published using genetically engineered mice strains and show that unilateral transfers using low number of embryos (6), produce better outcomes when compared to bilateral or unilateral transfers using more embryos. It also highlights differences between the outcome of bilateral transfers in the two strains tested. A set of historical data of genetically engineered mice at a C57BL/6J background was also included, confirming that lower embryo numbers are related to higher success rates. Together, the outcome of these experiments can be important to reduce the number of recipient and donor females, optimize embryo transfers and improve animal welfare discouraging the use of a more invasive technique.
Collapse
Affiliation(s)
- Sofia Lamas
- Animal Facility, i3S/ IBMC, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (F.F.); (M.M.); (F.G.)
- Instituto de Biologia Molecular e Celular—IBMC, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Correspondence:
| | - Filipa Franquinho
- Animal Facility, i3S/ IBMC, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (F.F.); (M.M.); (F.G.)
- Instituto de Biologia Molecular e Celular—IBMC, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Marlene Morgado
- Animal Facility, i3S/ IBMC, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (F.F.); (M.M.); (F.G.)
- Instituto de Biologia Molecular e Celular—IBMC, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - João R. Mesquita
- Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, 4050-313 Porto, Portugal;
- Institute of Biomedical Science Abel Salazar—ICBAS, R. Jorge de Viterbo Ferreira 228, University of Porto, 4050-313 Porto, Portugal;
| | - Fátima Gärtner
- Animal Facility, i3S/ IBMC, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (F.F.); (M.M.); (F.G.)
- Institute of Biomedical Science Abel Salazar—ICBAS, R. Jorge de Viterbo Ferreira 228, University of Porto, 4050-313 Porto, Portugal;
- Glycobiology in Cancer, IPATIMUP, R. Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Science Abel Salazar—ICBAS, R. Jorge de Viterbo Ferreira 228, University of Porto, 4050-313 Porto, Portugal;
- Glycobiology in Cancer, IPATIMUP, R. Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| |
Collapse
|
11
|
Barros FFPDC, Teixeira PPM, Padilha-Nakaghi LC, Uscategui RAR, Lima MR, Santos VJC, Rossy KDC, Borges LPB, Machado MRF, Vicente WRR. Ovum pick-up and in vitro maturation in spotted paca (Cuniculus paca-Linnaeus, 1766). Reprod Domest Anim 2020; 55:442-447. [PMID: 31916295 DOI: 10.1111/rda.13627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/04/2020] [Indexed: 12/13/2022]
Abstract
We tested FSHp, eCG and FSHp + eCG to establish ovum pick-up (OPU) and in vitro maturation method in spotted paca. Eight healthy adult females were subjected to each of four treatments to stimulate ovarian follicular growth. All females were subjected to a hormonal protocol using a single dose of 45 mg of injectable progesterone and single intramuscular injection of 0.075 mg d-cloprostenol on day 6. Ovarian stimulation was carried out as follows: in Group TFE (FSHp and eCG), animals were treated with a single dose of 80 mg of FSHp and 200 IU of eCG intramuscularly on day 6 after the application of progesterone; in Group TF (FSHp), they were treated with a single dose of 80 mg of FSHp intramuscularly on day 6 after application of progesterone; in Group treatment eCG, they were treated with 200 IU of eCG intramuscularly on day 6 after application of progesterone; and in Group TC (saline solution), 1 ml of saline solution was administered to control does. The OPU was performed between 22 and 26 hr after gonadotropin treatments. All recovered oocytes were placed into maturation media and incubated for 24 hr. There were no differences among the mean number of observed follicles, aspirated follicles and oocytes recovered per treatment. Oocyte maturation rates did not differ among groups, except, TF and treatment eCG oocytes had greater maturation rates than TC oocytes. In this study, gonadotropin administration failed to superovulate treated does and increase oocyte retrieval efficiency. Despite the feasibility of the procedure, further studies are needed to develop and refine hormonal protocols for oocyte recovery and in vitro maturation in this species.
Collapse
Affiliation(s)
- Felipe Farias Pereira da Câmara Barros
- College of Agricultural and Veterinary Science (FCAV), UNESP Univ Estadual Paulista, Jaboticabal, Brazil.,Medicine and Veterinary Surgery Department, Rio de Janeiro Rural Federal University - UFRRJ, Seropédica, Brazil
| | | | | | | | - Marina Ragagnin Lima
- College of Agricultural and Veterinary Science (FCAV), UNESP Univ Estadual Paulista, Jaboticabal, Brazil
| | - Victor José Correia Santos
- College of Agricultural and Veterinary Science (FCAV), UNESP Univ Estadual Paulista, Jaboticabal, Brazil
| | | | | | | | | |
Collapse
|
12
|
Chen S, Zhang M, Li L, Wang M, Shi Y, Zhang H, Kang B, Tang N, Li B. Loss of methylation of H19-imprinted gene derived from assisted reproductive technologies can be mitigated by cleavage-stage embryo transfer in mice. J Assist Reprod Genet 2019; 36:2259-2269. [PMID: 31515683 DOI: 10.1007/s10815-019-01575-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/28/2019] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Studies on rodents have shown that assisted reproductive technologies (ARTs) are associated with perturbation of genomic imprinting in blastocyst-stage embryos. However, the vulnerable developmental window for ART influence on the genomic imprinting of embryos is still undetermined. The purpose of this study was to establish the specific embryonic development stage at which the loss of methylation of H19 imprinting control regions (ICRs) was caused by ART occurrence. Additionally, we explored protocols to safeguard against possible negative impacts of ART on embryo H19 imprinting. METHODS Mouse embryos were generated under four different experimental conditions, divided into four groups: control, in vitro culture (IVC), in vitro fertilization (IVF), and intracytoplasmic sperm injection (ICSI). The methylation levels of H19 ICR of the grouped or individual embryos were analyzed by bisulfite-sequencing PCR. RESULTS Our data showed that the loss of methylation of H19 ICR in mouse blastocysts was inflicted to a similar extent by IVC, IVF, and ICSI. Specifically, we observed a significant loss of methylation of H19 ICR between the mouse 8-cell and morula stages. In addition, we revealed that the transfer of mouse embryos generated by ARTs in the uterus at the 8-cell stage induced the occurrence of methylation patterns in the blastocysts closer to the in vivo ones. CONCLUSIONS Our findings indicate that the loss of methylation of H19 ICR caused by ARTs occurs between the 8-cell and the morula stages, and the transfer of cleavage embryos to the uterus mitigates the loss methylation of H19 derived by mice ARTs.
Collapse
Affiliation(s)
- Shuqiang Chen
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Meizi Zhang
- Reproductive Medicine Center, Tianjin Frist Central Hospital, Tianjin, 300192, China
| | - Li Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Ming Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Yongqian Shi
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Hengde Zhang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Bin Kang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China
| | - Na Tang
- Shaanxi Institute for Food and Drug Control, Xi'an, 710038, People's Republic of China.
| | - Bo Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
13
|
Wang Y, Liu Q, Tang F, Yan L, Qiao J. Epigenetic Regulation and Risk Factors During the Development of Human Gametes and Early Embryos. Annu Rev Genomics Hum Genet 2019; 20:21-40. [DOI: 10.1146/annurev-genom-083118-015143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drastic epigenetic reprogramming occurs during human gametogenesis and early embryo development. Advances in low-input and single-cell epigenetic techniques have provided powerful tools to dissect the genome-wide dynamics of different epigenetic molecular layers in these processes. In this review, we focus mainly on the most recent progress in understanding the dynamics of DNA methylation, chromatin accessibility, and histone modifications in human gametogenesis and early embryo development. Deficiencies in remodeling of the epigenomes can cause severe developmental defects, infertility, and long-term health issues in offspring. Aspects of the external environment, including assisted reproductive technology procedures, parental diets, and unhealthy parental habits, may disturb the epigenetic reprogramming processes and lead to an aberrant epigenome in the offspring. Here, we review the current knowledge of the potential risk factors of aberrant epigenomes in humans.
Collapse
Affiliation(s)
- Yang Wang
- Beijing Advanced Innovation Center for Genomics, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;, , ,
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;, , ,
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Liying Yan
- Beijing Advanced Innovation Center for Genomics, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;, , ,
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;, , ,
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Ma Y, Ma Y, Wen L, Lei H, Chen S, Wang X. Changes in DNA methylation and imprinting disorders in E9.5 mouse fetuses and placentas derived from vitrified eight-cell embryos. Mol Reprod Dev 2019; 86:404-415. [PMID: 30680835 DOI: 10.1002/mrd.23118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/08/2019] [Accepted: 01/20/2019] [Indexed: 01/21/2023]
Abstract
Vitrification is increasingly used in assisted reproductive technology (ART) laboratories worldwide, and potential vitrification-induced risks require further exploration. The effect of vitrification on changes in DNA methylation and imprinting disorders was investigated in E9.5 mouse fetuses and placentas. Fetus and placental tissues were collected from the natural mating (nautural conception [NC]) group, in vitro culture (IVC) group and vitrified embryo transfer (VET) group. The fetal crown-rump length at E9.5 in both the IVC (0.210 ± 0.059 mm) and VET (0.205 ± 0.048 mm) groups was significantly reduced compared with the NC group (0.288 ± 0.083 mm). The global methylation levels of fetuses were decreased in the IVC group compared with the NC group and it was increased after vitrification compared with IVC (p < 0.05), similar to what was observed in the NC group (p > 0.05). The changes could be attributed to the disorders of DNA methyltransferases and ten-eleven translocations. In the IVC and VET fetuses, a majority of maternally expressed genes were upregulated, which repressed fetal growth. Furthermore, vitrification led to a change in the methylation level of KvDMR1, which resulted in the disturbance of gene imprinting. According to our results, vitrification could contribute to increased methylation compared with IVC and contributes to a gene imprinting disorder rather than recovery. Despite the routine use of embryo vitrification in clinical settings, the effect that this procedure may have on genomic imprinting deserves much greater attention.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Obstetrics and Gynecology, The Reproductive Medicine Center, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Yefei Ma
- Department of Obstetrics and Gynecology, The Reproductive Medicine Center, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Liang Wen
- Department of Obstetrics and Gynecology, The Reproductive Medicine Center, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Hui Lei
- Department of Obstetrics and Gynecology, The Reproductive Medicine Center, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Shuqiang Chen
- Department of Obstetrics and Gynecology, The Reproductive Medicine Center, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, The Reproductive Medicine Center, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Ramos-Ibeas P, Heras S, Gómez-Redondo I, Planells B, Fernández-González R, Pericuesta E, Laguna-Barraza R, Pérez-Cerezales S, Gutiérrez-Adán A. Embryo responses to stress induced by assisted reproductive technologies. Mol Reprod Dev 2019; 86:1292-1306. [PMID: 30719806 DOI: 10.1002/mrd.23119] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
Assisted reproductive technology (ART) has led to the birth of millions of babies. In cattle, thousands of embryos are produced annually. However, since the introduction and widespread use of ART, negative effects on embryos and offspring are starting to emerge. Knowledge so far, mostly provided by animal models, indicates that suboptimal conditions during ART can affect embryo viability and quality, and may induce embryonic stress responses. These stress responses take the form of severe gene expression alterations or modifications in critical epigenetic marks established during early developmental stages that can persist after birth. Unfortunately, while developmental plasticity allows the embryo to survive these stressful conditions, such insult may lead to adult health problems and to long-term effects on offspring that could be transmitted to subsequent generations. In this review, we describe how in mice, livestock, and humans, besides affecting the development of the embryo itself, ART stressors may also have significant repercussions on offspring health and physiology. Finally, we argue the case that better control of stressors during ART will help improve embryo quality and offspring health.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Sonia Heras
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Isabel Gómez-Redondo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Benjamín Planells
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Raúl Fernández-González
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Ricardo Laguna-Barraza
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Serafín Pérez-Cerezales
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|