1
|
Sperling JD, Frikke-Schmidt R, Scheike T, Kessing LV, Miskowiak K, Vinberg M. APOE Genotype, ApoE Plasma Levels, Lipid Metabolism, and Cognition in Monozygotic Twins with, at Risk of, and without Affective Disorders. J Clin Med 2024; 13:2361. [PMID: 38673634 PMCID: PMC11051543 DOI: 10.3390/jcm13082361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Lipids influence brain function and mental health. Understanding the role of apolipoproteins in affective disorders could provide valuable insights and potentially pave the way for novel therapeutic approaches. Methods: We examined the apolipoprotein E genotype and ApoE-levels, lipid profiles, and the correlation with cognition in 204 monozygotic (MZ) twins with unipolar or bipolar disorder in remission or partial remission (affected, AT), their unaffected co-twins (high-risk, HR), and twins with no personal or family history of affective disorder (low-risk, LR). Results: The APOE genotype was not associated with affective disorders. No significant group differences in ApoE levels were found between the three risk groups. Post hoc analysis group-wise comparisons showed higher ApoE levels in the AT than HR twins and in the concordant AT twin pairs relative to the discordant twin pairs. Within the discordant twin pairs, higher ApoE levels were observed in the affected twins (AT = 39.4 mg/L vs. HR = 36.8 mg/L, p = 0.037). Limitations: The present study could benefit from a larger sample size. We did not assess dietary habits. Conclusions: The results did not support our main hypothesis. However, exploratory post hoc analysis suggests a role for plasma ApoE and triglycerides in affective disorders. Future research is needed.
Collapse
Affiliation(s)
- Jon Dyg Sperling
- The Early Multimodular Prevention and Intervention Research Institution (EMPIRI), Mental Health Centre, Northern Zealand, Copenhagen University Hospital—Mental Health Services CPH, 3400 North Zealand, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark (L.V.K.)
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark (L.V.K.)
- Department of Clinical Biochemistry Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Thomas Scheike
- Department of Biostatistics, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Lars Vedel Kessing
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark (L.V.K.)
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, 2000 Frederiksberg, Denmark
| | - Kamilla Miskowiak
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark (L.V.K.)
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, 2000 Frederiksberg, Denmark
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Department of Psychology, University of Copenhagen, and Mental Health Services, Capital Region of Denmark, 2000 Frederiksberg, Denmark
| | - Maj Vinberg
- The Early Multimodular Prevention and Intervention Research Institution (EMPIRI), Mental Health Centre, Northern Zealand, Copenhagen University Hospital—Mental Health Services CPH, 3400 North Zealand, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark (L.V.K.)
| |
Collapse
|
2
|
Shin D, Lee J, Kim Y, Park J, Shin D, Song Y, Joo EJ, Roh S, Lee KY, Oh S, Ahn YM, Rhee SJ, Kim Y. Evaluation of a Nondepleted Plasma Multiprotein-Based Model for Discriminating Psychiatric Disorders Using Multiple Reaction Monitoring-Mass Spectrometry: Proof-of-Concept Study. J Proteome Res 2024; 23:329-343. [PMID: 38063806 DOI: 10.1021/acs.jproteome.3c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Psychiatric evaluation relies on subjective symptoms and behavioral observation, which sometimes leads to misdiagnosis. Despite previous efforts to utilize plasma proteins as objective markers, the depletion method is time-consuming. Therefore, this study aimed to enhance previous quantification methods and construct objective discriminative models for major psychiatric disorders using nondepleted plasma. Multiple reaction monitoring-mass spectrometry (MRM-MS) assays for quantifying 453 peptides in nondepleted plasma from 132 individuals [35 major depressive disorder (MDD), 47 bipolar disorder (BD), 23 schizophrenia (SCZ) patients, and 27 healthy controls (HC)] were developed. Pairwise discriminative models for MDD, BD, and SCZ, and a discriminative model between patients and HC were constructed by machine learning approaches. In addition, the proteins from nondepleted plasma-based discriminative models were compared with previously developed depleted plasma-based discriminative models. Discriminative models for MDD versus BD, BD versus SCZ, MDD versus SCZ, and patients versus HC were constructed with 11 to 13 proteins and showed reasonable performances (AUROC = 0.890-0.955). Most of the shared proteins between nondepleted and depleted plasma models had consistent directions of expression levels and were associated with neural signaling, inflammatory, and lipid metabolism pathways. These results suggest that multiprotein markers from nondepleted plasma have a potential role in psychiatric evaluation.
Collapse
Affiliation(s)
- Dongyoon Shin
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam 13520, Republic of Korea
| | - Jihyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yeongshin Kim
- Department of Life Science, General Graduate School, CHA University, Seongnam 13488, Republic of Korea
| | - Junho Park
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam 13520, Republic of Korea
- Department of Life Science, General Graduate School, CHA University, Seongnam 13488, Republic of Korea
| | - Daun Shin
- Department of Psychiatry, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Yoojin Song
- Department of Psychiatry, Kangwon National University Hospital, Chuncheon 24289, Republic of Korea
| | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Sungwon Roh
- Department of Psychiatry, Hanyang University Hospital and Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Kyu Young Lee
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
- Department of Psychiatry, Nowon Eulji University Hospital, Seoul 01830, Republic of Korea
| | - Sanghoon Oh
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Sang Jin Rhee
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Youngsoo Kim
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam 13520, Republic of Korea
- Department of Life Science, General Graduate School, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
3
|
del Valle E, Rubio-Sardón N, Menéndez-Pérez C, Martínez-Pinilla E, Navarro A. Apolipoprotein D as a Potential Biomarker in Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:15631. [PMID: 37958618 PMCID: PMC10650001 DOI: 10.3390/ijms242115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Neuropsychiatric disorders (NDs) are a diverse group of pathologies, including schizophrenia or bipolar disorders, that directly affect the mental and physical health of those who suffer from them, with an incidence that is increasing worldwide. Most NDs result from a complex interaction of multiple genes and environmental factors such as stress or traumatic events, including the recent Coronavirus Disease (COVID-19) pandemic. In addition to diverse clinical presentations, these diseases are heterogeneous in their pathogenesis, brain regions affected, and clinical symptoms, making diagnosis difficult. Therefore, finding new biomarkers is essential for the detection, prognosis, response prediction, and development of new treatments for NDs. Among the most promising candidates is the apolipoprotein D (Apo D), a component of lipoproteins implicated in lipid metabolism. Evidence suggests an increase in Apo D expression in association with aging and in the presence of neuropathological processes. As a part of the cellular neuroprotective defense machinery against oxidative stress and inflammation, changes in Apo D levels have been demonstrated in neuropsychiatric conditions like schizophrenia (SZ) or bipolar disorders (BPD), not only in some brain areas but in corporal fluids, i.e., blood or serum of patients. What is not clear is whether variation in Apo D quantity could be used as an indicator to detect NDs and their progression. This review aims to provide an updated view of the clinical potential of Apo D as a possible biomarker for NDs.
Collapse
Affiliation(s)
- Eva del Valle
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Nuria Rubio-Sardón
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Carlota Menéndez-Pérez
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Ana Navarro
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
4
|
Wang Y, Meng W, Liu Z, An Q, Hu X. Cognitive impairment in psychiatric diseases: Biomarkers of diagnosis, treatment, and prevention. Front Cell Neurosci 2022; 16:1046692. [DOI: 10.3389/fncel.2022.1046692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Psychiatric diseases, such as schizophrenia, bipolar disorder, autism spectrum disorder, and major depressive disorder, place a huge health burden on society. Cognitive impairment is one of the core characteristics of psychiatric disorders and a vital determinant of social function and disease recurrence in patients. This review thus aims to explore the underlying molecular mechanisms of cognitive impairment in major psychiatric disorders and identify valuable biomarkers for diagnosis, treatment and prevention of patients.
Collapse
|
5
|
Luckhoff HK, Asmal L, Scheffler F, Phahladira L, Smit R, van den Heuvel L, Fouche JP, Seedat S, Emsley R, du Plessis S. Associations between BMI and brain structures involved in food intake regulation in first-episode schizophrenia spectrum disorders and healthy controls. J Psychiatr Res 2022; 152:250-259. [PMID: 35753245 DOI: 10.1016/j.jpsychires.2022.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
Structural brain differences have been described in first-episode schizophrenia spectrum disorders (FES), and often overlap with those evident in the metabolic syndrome (MetS). We examined the associations between body mass index (BMI) and brain structures involved in food intake regulation in minimally treated FES patients (n = 117) compared to healthy controls (n = 117). The effects of FES diagnosis, BMI and their interactions on our selected prefrontal cortical thickness and subcortical gray matter volume regions of interest (ROIs) were investigated with hierarchical multivariate regressions, followed by post-hoc regressions for the individual ROIs. In a secondary analysis, we examined the relationships of other MetS risk factors and psychopathology with the brain ROIs. Both illness and BMI significantly predicted the grouped prefrontal cortical thickness ROIs, whereas only BMI predicted the grouped subcortical volume ROIs. For the individual ROIs, schizophrenia diagnosis predicted thinner left and right frontal pole and right lateral OFC thickness, and increased BMI predicted thinner left and right caudal ACC thickness. There were no significant main or interaction effects for diagnosis and BMI on any of the individual subcortical volume ROIs. Secondary analyses suggest associations between several brain ROIs and individual MetS risk factors, but not with psychopathology. Our findings indicate differential, independent effects for FES diagnosis and BMI on brain structures. Limited evidence suggests that the BMI effects are more prominent in FES. Exploratory analyses suggest associations between other MetS risk factors and some brain ROIs.
Collapse
Affiliation(s)
- H K Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa.
| | - L Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - F Scheffler
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - L Phahladira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - R Smit
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - L van den Heuvel
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - J P Fouche
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - S Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - R Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| | - S du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7550, South Africa
| |
Collapse
|
6
|
Rodrigues JE, Martinho A, Santos V, Santa C, Madeira N, Martins MJ, Pato CN, Macedo A, Manadas B. Systematic Review and Meta-Analysis on MS-Based Proteomics Applied to Human Peripheral Fluids to Assess Potential Biomarkers of Bipolar Disorder. Int J Mol Sci 2022; 23:5460. [PMID: 35628270 PMCID: PMC9141521 DOI: 10.3390/ijms23105460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
Bipolar disorder (BD) is a clinically heterogeneous condition, presenting a complex underlying etiopathogenesis that is not sufficiently characterized. Without molecular biomarkers being used in the clinical environment, several large screen proteomics studies have been conducted to provide valuable molecular information. Mass spectrometry (MS)-based techniques can be a powerful tool for the identification of disease biomarkers, improving prediction and diagnosis ability. Here, we evaluate the efficacy of MS proteomics applied to human peripheral fluids to assess BD biomarkers and identify relevant networks of biological pathways. Following PRISMA guidelines, we searched for studies using MS proteomics to identify proteomic differences between BD patients and healthy controls (PROSPERO database: CRD42021264955). Fourteen articles fulfilled the inclusion criteria, allowing the identification of 266 differentially expressed proteins. Gene ontology analysis identified complement and coagulation cascades, lipid and cholesterol metabolism, and focal adhesion as the main enriched biological pathways. A meta-analysis was performed for apolipoproteins (A-I, C-III, and E); however, no significant differences were found. Although the proven ability of MS proteomics to characterize BD, there are several confounding factors contributing to the heterogeneity of the findings. In the future, we encourage the scientific community to use broader samples and validation cohorts, integrating omics with bioinformatics tools towards providing a comprehensive understanding of proteome alterations, seeking biomarkers of BD, and contributing to individualized prognosis and stratification strategies, besides aiding in the differential diagnosis.
Collapse
Affiliation(s)
- Joao E. Rodrigues
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Ana Martinho
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Vítor Santos
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Catia Santa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Nuno Madeira
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria J. Martins
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Medical Services, University of Coimbra Medical Services, 3004-517 Coimbra, Portugal
| | - Carlos N. Pato
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Antonio Macedo
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
- III Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| |
Collapse
|
7
|
Rodrigues JE, Martinho A, Santa C, Madeira N, Coroa M, Santos V, Martins MJ, Pato CN, Macedo A, Manadas B. Systematic Review and Meta-Analysis of Mass Spectrometry Proteomics Applied to Human Peripheral Fluids to Assess Potential Biomarkers of Schizophrenia. Int J Mol Sci 2022; 23:ijms23094917. [PMID: 35563307 PMCID: PMC9105255 DOI: 10.3390/ijms23094917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Mass spectrometry (MS)-based techniques can be a powerful tool to identify neuropsychiatric disorder biomarkers, improving prediction and diagnosis ability. Here, we evaluate the efficacy of MS proteomics applied to human peripheral fluids of schizophrenia (SCZ) patients to identify disease biomarkers and relevant networks of biological pathways. Following PRISMA guidelines, a search was performed for studies that used MS proteomics approaches to identify proteomic differences between SCZ patients and healthy control groups (PROSPERO database: CRD42021274183). Nineteen articles fulfilled the inclusion criteria, allowing the identification of 217 differentially expressed proteins. Gene ontology analysis identified lipid metabolism, complement and coagulation cascades, and immune response as the main enriched biological pathways. Meta-analysis results suggest the upregulation of FCN3 and downregulation of APO1, APOA2, APOC1, and APOC3 in SCZ patients. Despite the proven ability of MS proteomics to characterize SCZ, several confounding factors contribute to the heterogeneity of the findings. In the future, we encourage the scientific community to perform studies with more extensive sampling and validation cohorts, integrating omics with bioinformatics tools to provide additional comprehension of differentially expressed proteins. The produced information could harbor potential proteomic biomarkers of SCZ, contributing to individualized prognosis and stratification strategies, besides aiding in the differential diagnosis.
Collapse
Affiliation(s)
- João E. Rodrigues
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
| | - Ana Martinho
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
| | - Catia Santa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
| | - Nuno Madeira
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Manuel Coroa
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Vítor Santos
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Maria J. Martins
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
- Medical Services, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carlos N. Pato
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Antonio Macedo
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (A.M.); (B.M.)
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
- III Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
- Correspondence: (A.M.); (B.M.)
| |
Collapse
|
8
|
Abstract
Early-life adverse events or childhood adversities (CAs) are stressors and harmful experiences severely impacting on a child's wellbeing and development. Examples of CAs include parental neglect, emotional and physical abuse and bullying. Even though the prevalence of CAs and their psychological effects in both healthy and psychiatric populations is established, only a paucity of studies have investigated the neurobiological firms associated with CAs in bipolar disorder (BD). In particular, the exact neural mechanisms and trajectories of biopsychosocial models integrating both environmental and genetic effects are still debated. Considering the potential impact of CAs on BD, including its clinical manifestations, we reviewed existing literature discussing the association between CAs and brain alterations in BD patients. Results showed that CAs are associated with volume alterations of several grey matter regions including the hippocampus, thalamus, amygdala and frontal cortex. A handful of studies suggest the presence of alterations in the corpus callosum and the pre-fronto-limbic connectivity at rest. Alterations in these regions of the brain of patients with BD are possibly due to the effect of stress produced by CAs, being hippocampus part of the hypothalamus-pituitary-adrenal axis and thalamus together with amygdala filtering sensory information and regulating emotional responses. However, results are mixed possibly due to the heterogeneity of methods and study design. Future neuroimaging studies disentangling between different types of CAs or differentiating between BD sub-types are needed in order to understand the link between CAs and BD.
Collapse
|
9
|
Engelke R, Ouanes S, Ghuloum S, Chamali R, Kiwan N, Sarwath H, Schmidt F, Suhre K, Al-Amin H. Proteomic Analysis of Plasma Markers in Patients Maintained on Antipsychotics: Comparison to Patients Off Antipsychotics and Normal Controls. Front Psychiatry 2022; 13:809071. [PMID: 35546954 PMCID: PMC9081931 DOI: 10.3389/fpsyt.2022.809071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Schizophrenia (SZ) and bipolar disorder (BD) share many features: overlap in mood and psychotic symptoms, common genetic predisposition, treatment with antipsychotics (APs), and similar metabolic comorbidities. The pathophysiology of both is still not well defined, and no biomarkers can be used clinically for diagnosis and management. This study aimed to assess the plasma proteomics profile of patients with SZ and BD maintained on APs compared to those who had been off APs for 6 months and to healthy controls (HCs). METHODS We analyzed the data using functional enrichment, random forest modeling to identify potential biomarkers, and multivariate regression for the associations with metabolic abnormalities. RESULTS We identified several proteins known to play roles in the differentiation of the nervous system like NTRK2, CNTN1, ROBO2, and PLXNC1, which were downregulated in AP-free SZ and BD patients but were "normalized" in those on APs. Other proteins (like NCAM1 and TNFRSF17) were "normal" in AP-free patients but downregulated in patients on APs, suggesting that these changes are related to medication's effects. We found significant enrichment of proteins involved in neuronal plasticity, mainly in SZ patients on APs. Most of the proteins associated with metabolic abnormalities were more related to APs use than having SZ or BD. The biomarkers identification showed specific and sensitive results for schizophrenia, where two proteins (PRL and MRC2) produced adequate results. CONCLUSIONS Our results confirmed the utility of blood samples to identify protein signatures and mechanisms involved in the pathophysiology and treatment of SZ and BD.
Collapse
Affiliation(s)
- Rudolf Engelke
- Proteomics Core, Research Department, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - Sami Ouanes
- Psychiatry Department, Hamad Medical Corporation, Doha, Qatar
| | - Suhaila Ghuloum
- Psychiatry Department, Hamad Medical Corporation, Doha, Qatar
| | - Rifka Chamali
- Psychiatry Department, Weill Cornell Medicine, Doha, Qatar
| | - Nancy Kiwan
- Psychiatry Department, Weill Cornell Medicine, Doha, Qatar
| | - Hina Sarwath
- Proteomics Core, Research Department, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - Frank Schmidt
- Proteomics Core, Research Department, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - Karsten Suhre
- Bioinformatics Core, Research Department, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - Hassen Al-Amin
- Psychiatry Department, Weill Cornell Medicine, Doha, Qatar
| |
Collapse
|
10
|
Li M, Yang X, Sun L, Qing Y, Hu X, Jiang J, Wang D, Cui G, Gao Y, Zhang E, Zhang J, Yang Y, Wan C. Decreased serum apolipoprotein A4 as a potential peripheral biomarker for patients with schizophrenia. J Psychiatr Res 2021; 137:14-21. [PMID: 33640722 DOI: 10.1016/j.jpsychires.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/15/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Recent evidence supports an association between lipid metabolism dysfunction and the pathology of schizophrenia which has led to the search for peripheral blood-based biomarkers. The purpose of this study was to investigate the proteins involved in lipid metabolism (especially apolipoprotein) and to explore their potential as biomarkers for schizophrenia. Using multiple reaction monitoring mass spectrometry (MRM-MS), we quantified 22 proteins in serum samples of 109 healthy controls (HCs) and 111 patients with schizophrenia (SCZ), who were divided into discovery and validation sets. We found serum apolipoprotein A4 (ApoA4) to be significantly decreased in SCZ patients compared to HCs (p=1.61E-05). Moreover, the serum ApoA4 level served as an effective diagnostic tool, achieving area under the receiver operating characteristic curves (AUROC) of 0.840 in the discovery set and 0.791 in the validation set. Additionally, apolipoprotein F (ApoF), angiotensinogen (AGT), and alpha1-antichymotrypsin (ACT) levels were significantly higher in patients with schizophrenia than in healthy controls. These proteins combined with ApoA4, provided higher diagnostic accuracy for schizophrenia in the discovery set (AUROC=0.901) and in the validation set (AUROC=0.879). Our results suggest that the serum level of ApoA4 is a novel potential biomarker for schizophrenia. The proteins identified in this study expand the pool of biomarker candidates for schizophrenia and may be linked to the underlying mechanism of the disease.
Collapse
Affiliation(s)
- Minghui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xuhan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Gaoping Cui
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - En Zhang
- The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yang
- Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou, China.
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
Santa Cruz EC, Zandonadi FDS, Fontes W, Sussulini A. A pilot study indicating the dysregulation of the complement and coagulation cascades in treated schizophrenia and bipolar disorder patients. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140657. [PMID: 33839315 DOI: 10.1016/j.bbapap.2021.140657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
A better understanding of the proteome profile after bipolar disorder (BD) and schizophrenia (SCZ) treatment, besides monitoring disease progression, may assist on the development of novel therapeutic strategies with the ability to reduce or control possible side effects. In this pilot study, proteomics analysis employing nano liquid chromatography coupled to mass spectrometry (nLC-MS) and bioinformatic tools were applied to identify differentially abundant proteins in serum of treated BD and SCZ patients. In total, 10 BD patients, 10 SCZ patients, and 14 healthy controls (HC) were included in this study. 24 serum proteins were significantly altered (p < 0.05) in BD and SCZ treated patients and, considering log2FC > 0.58, 8 proteins presented lower abundance in the BD group, while 7 proteins presented higher abundance and 2 lower abundance in SCZ group when compared against HC. Bioinformatics analysis based on these 24 proteins indicated two main altered pathways previously described in the literature; furthermore, it revealed that opposite abundances of the complement and coagulation cascades were the most significant biological processes involved in these pathologies. Moreover, we describe disease-related proteins and pathways associations suggesting the necessity of clinical follow-up improvement besides treatment, as a precaution or safety measure, along with the disease progression. Further biological validation and investigations are required to define whether there is a correlation between complement and coagulation cascade expression for BD and SCZ and cardiovascular diseases.
Collapse
Affiliation(s)
- Elisa Castañeda Santa Cruz
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Flávia da Silva Zandonadi
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia (UnB), 70910-900 Brasilia, DF, Brazil
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics - INCTBio, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
12
|
Antunes ASLM, de Almeida V, Crunfli F, Carregari VC, Martins-de-Souza D. Proteomics for Target Identification in Psychiatric and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:251-264. [PMID: 33725358 DOI: 10.1007/978-3-030-55035-6_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Psychiatric and neurodegenerative disorders such as schizophrenia (SCZ), Parkinson's disease (PD), and Alzheimer's disease (AD) continue to grow around the world with a high impact on health, social, and economic outcomes for the patient and society. Despite efforts, the etiology and pathophysiology of these disorders remain unclear. Omics technologies have contributed to the understanding of the molecular mechanisms that underlie these complex disorders and have suggested novel potential targets for treatment and diagnostics. Here, we have highlighted the unique and common pathways shared between SCZ, PD, and AD and highlight the main proteomic findings over the last 5 years using in vitro models, postmortem brain samples, and cerebrospinal fluid (CSF) or blood of patients. These studies have identified possible therapeutic targets and disease biomarkers. Further studies including target validation, the use of large sample sizes, and the integration of omics findings with bioinformatics tools are required to provide a better comprehension of pharmacological targets.
Collapse
Affiliation(s)
- André S L M Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Victor C Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| |
Collapse
|
13
|
Muneer A. The Discovery of Clinically Applicable Biomarkers for Bipolar Disorder: A Review of Candidate and Proteomic Approaches. Chonnam Med J 2020; 56:166-179. [PMID: 33014755 PMCID: PMC7520367 DOI: 10.4068/cmj.2020.56.3.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric condition which affects innumerable people across the globe. The etiopathogenesis of BD is multi-faceted with genetic, environmental and psychosocial factors playing a role. Hitherto, the diagnosis and management of BD are purely on empirical grounds as we lack confirmed biomarkers for this condition. In this regard, hypothesis-driven investigations have been unable to identify clinically applicable biomarkers, steering the field towards newer technologies. Innovative, state-of-the-art techniques like multiplex immunoassays and mass spectrometry can potentially investigate the entire proteome. By detecting up or down regulated proteins, novel biomarkers are identified and new postulates about the etiopathogenesis of BD are specified. Hence, biological pathways are uncovered which are involved in the initiation and advancement of the disease and new therapeutic targets are identified. In this manuscript, the extant literature is thoroughly reviewed and the latest findings on candidate BD biomarkers are provided, followed by an overview of the proteomic approaches. It was found that due to the heterogeneous nature of BD no single biomarker is feasible, instead a panel of tests is more likely to be useful. With the application of latest technologies, it is expected that validated biomarkers will be discovered which will be useful as diagnostic tools and help in the delivery of individually tailored therapies to the patients.
Collapse
Affiliation(s)
- Ather Muneer
- Islamic International Medical College, Riphah International University, Rawalpindi, Pakistan
| |
Collapse
|
14
|
Kontostathi G, Makridakis M, Zoidakis J, Vlahou A. Applications of multiple reaction monitoring targeted proteomics assays in human plasma. Expert Rev Mol Diagn 2019; 19:499-515. [PMID: 31057016 DOI: 10.1080/14737159.2019.1615448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Multiple (or selected) reaction monitoring-mass spectrometry (MRM/SRM) is a targeted proteomic method that can be used for relative and absolute quantification. Multiple reports exist supporting the potential of the approach in proteomic biomarker validation. Areas covered: To get an overview of the applications of MRM in protein quantification in plasma, a search in MedLine/PubMed was performed using the keywords: 'MRM/SRM plasma proteomic/proteomics/proteome'. The retrieved studies were further filtered to focus on disease biomarkers and the main results are summarized. Expert opinion: MRM is increasingly employed for the quantification of both well-established but also newly discovered putative biomarkers and occasionally their post-translationally modified forms in plasma. Fractionation is regularly required for the detection of low abundance proteins. Standardized procedures to facilitate assay establishment and marker quantification have been proposed and, in few cases, implemented. Nevertheless, in most cases, absolute quantification is not performed. To advance, multiple technical issues including the regular use of standard labeled peptides and appropriate quality controls to monitor assay performance should be considered. Additionally, clinical aspects involving careful study design to address biomarker clinical use should also be considered.
Collapse
Affiliation(s)
- Georgia Kontostathi
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Manousos Makridakis
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Jerome Zoidakis
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Antonia Vlahou
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| |
Collapse
|
15
|
Evidence of microglial activation following exposure to serum from first-onset drug-naïve schizophrenia patients. Brain Behav Immun 2018; 67:364-373. [PMID: 28988033 DOI: 10.1016/j.bbi.2017.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 01/29/2023] Open
Abstract
Abnormal activation of brain microglial cells is widely implicated in the pathogenesis of schizophrenia. Previously the pathophysiology of microglial activation was considered to be intrinsic to the central nervous system. We hypothesised that due to their perivascular localization, microglia can also be activated by factors present in circulating blood. Through application of high-content functional screening, we show that peripheral blood serum from first-onset drug-naïve schizophrenia patients is sufficient to provoke microglial cell signalling network responses in vitro which are indicative of proinflammatory activation. We further explore the composition of the serum for the presence of analytes, with the potential to activate microglia, and the utility of the resultant microglial cellular phenotype for novel drug discovery.
Collapse
|
16
|
Cooper JD, Ozcan S, Gardner RM, Rustogi N, Wicks S, van Rees GF, Leweke FM, Dalman C, Karlsson H, Bahn S. Schizophrenia-risk and urban birth are associated with proteomic changes in neonatal dried blood spots. Transl Psychiatry 2017; 7:1290. [PMID: 29249827 PMCID: PMC5802534 DOI: 10.1038/s41398-017-0027-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/12/2017] [Accepted: 08/20/2017] [Indexed: 12/22/2022] Open
Abstract
In the present study, we tested whether there were proteomic differences in blood between schizophrenia patients after the initial onset of the disorder and controls; and whether those differences were also present at birth among neonates who later developed schizophrenia compared to those without a psychiatric admission. We used multiple reaction monitoring mass spectrometry to quantify 77 proteins (147 peptides) in serum samples from 60 first-onset drug-naive schizophrenia patients and 77 controls, and 96 proteins (152 peptides) in 892 newborn blood-spot (NBS) samples collected between 1975 and 1985. Both serum and NBS studies showed significant alterations in protein levels. Serum results revealed that Haptoglobin and Plasma protease C1 inhibitor were significantly upregulated in first-onset schizophrenia patients (corrected P < 0.05). Alpha-2-antiplasmin, Complement C4-A and Antithrombin-III were increased in first-onset schizophrenia patients (uncorrected P-values 0.041, 0.036 and 0.013, respectively) and also increased in newborn babies who later develop schizophrenia (P-values 0.0058, 0.013 and 0.044, respectively). We also tested whether protein abundance at birth was associated with exposure to an urban environment during pregnancy and found highly significant proteomic differences at birth between urban and rural environments. The prediction model for urbanicity had excellent predictive performance in both discovery (area under the receiver operating characteristic curve (AUC) = 0.90) and validation (AUC = 0.89) sample sets. We hope that future biomarker studies based on stored NBS samples will identify prognostic disease indicators and targets for preventive measures for neurodevelopmental conditions, particularly those with onset during early childhood, such as autism spectrum disorder.
Collapse
Affiliation(s)
- Jason D. Cooper
- 0000000121885934grid.5335.0Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Sureyya Ozcan
- 0000000121885934grid.5335.0Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Renee M. Gardner
- 0000 0004 1937 0626grid.4714.6Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Nitin Rustogi
- 0000000121885934grid.5335.0Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Susanne Wicks
- 0000 0004 1937 0626grid.4714.6Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden ,0000 0001 2326 2191grid.425979.4Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| | - Geertje F. van Rees
- 0000000121885934grid.5335.0Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - F. Markus Leweke
- 0000 0004 1936 834Xgrid.1013.3Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Christina Dalman
- 0000 0004 1937 0626grid.4714.6Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden ,0000 0001 2326 2191grid.425979.4Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| | - Håkan Karlsson
- 0000 0004 1937 0626grid.4714.6Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Parallel changes in serum proteins and diffusion tensor imaging in methamphetamine-associated psychosis. Sci Rep 2017; 7:43777. [PMID: 28252112 PMCID: PMC5333148 DOI: 10.1038/srep43777] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/30/2017] [Indexed: 11/09/2022] Open
Abstract
Methamphetamine-associated psychosis (MAP) involves widespread neurocognitive and molecular deficits, however accurate diagnosis remains challenging. Integrating relationships between biological markers, brain imaging and clinical parameters may provide an improved mechanistic understanding of MAP, that could in turn drive the development of better diagnostics and treatment approaches. We applied selected reaction monitoring (SRM)-based proteomics, profiling 43 proteins in serum previously implicated in the etiology of major psychiatric disorders, and integrated these data with diffusion tensor imaging (DTI) and psychometric measurements from patients diagnosed with MAP (N = 12), methamphetamine dependence without psychosis (MA; N = 14) and healthy controls (N = 16). Protein analysis identified changes in APOC2 and APOH, which differed significantly in MAP compared to MA and controls. DTI analysis indicated widespread increases in mean diffusivity and radial diffusivity delineating extensive loss of white matter integrity and axon demyelination in MAP. Upon integration, several co-linear relationships between serum proteins and DTI measures reported in healthy controls were disrupted in MA and MAP groups; these involved areas of the brain critical for memory and social emotional processing. These findings suggest that serum proteomics and DTI are sensitive measures for detecting pathophysiological changes in MAP and describe a potential diagnostic fingerprint of the disorder.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Mass spectrometry is an ever evolving technology that is equipped with a variety of tools for protein research. Some lipoprotein studies, especially those pertaining to HDL biology, have been exploiting the versatility of mass spectrometry to understand HDL function through its proteome. Despite the role of mass spectrometry in advancing research as a whole, however, the technology remains obscure to those without hands on experience, but still wishing to understand it. In this review, we walk the reader through the coevolution of common mass spectrometry workflows and HDL research, starting from the basic unbiased mass spectrometry methods used to profile the HDL proteome to the most recent targeted methods that have enabled an unprecedented view of HDL metabolism. RECENT FINDINGS Unbiased global proteomics have demonstrated that the HDL proteome is organized into subgroups across the HDL size fractions providing further evidence that HDL functional heterogeneity is in part governed by its varying protein constituents. Parallel reaction monitoring, a novel targeted mass spectrometry method, was used to monitor the metabolism of HDL apolipoproteins in humans and revealed that apolipoproteins contained within the same HDL size fraction exhibit diverse metabolic properties. SUMMARY Mass spectrometry provides a variety of tools and strategies to facilitate understanding, through its proteins, the complex biology of HDL.
Collapse
Affiliation(s)
- Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|