1
|
Mascio G, Nicoletti F, Battaglia G, Notartomaso S. A type-5 metabotropic glutamate receptor-perineuronal net axis shapes the function of cortical GABAergic interneurons in chronic pain. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2025; 5:10. [PMID: 39985105 DOI: 10.1186/s44158-025-00228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Parvalbumin-positive (PV+) interneurons (basket and chandelier cells) regulate the firing rate of pyramidal neurons in the cerebral cortex and play a key role in the generation of network oscillations in the cerebral cortex. A growing body of evidence suggest that cortical PV+ interneurons become overactive in chronic pain and contribute to nociceptive sensitization by inhibiting a top-down analgesic pathway. Here, we provide further support to this hypothesis showing that intracortical infusion of the GABAA receptor antagonist, bicuculline, caused analgesia in a mouse model of chronic inflammatory pain, although it reduced pain thresholds in healthy mice. We propose that mGlu5 metabotropic glutamate receptors and perineuronal nets (PNNs) shape the activity of PV+ interneurons in chronic pain, generating a form of maladaptive plasticity that enhances behavioural pain responses. mGlu5 receptors might be locally targeted by drugs activated by light delivered in cortical regions of the pain matrix, whereas the density of PNNs enwrapping PV+ interneurons might be reduced by local activation of PNN-degrading enzyme, such as type-9 matrix metalloproteinase. These strategies, which may require invasive treatments, might be beneficial in the management of severe pain which is refractory to conventional pharmacological and non-pharmacological interventions.
Collapse
Affiliation(s)
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
2
|
Brown J, Iacovelli L, Di Cicco G, Grayson B, Rimmer L, Fletcher J, Neill JC, Wall MJ, Ngomba RT, Harte M. The comparative effects of mGlu5 receptor positive allosteric modulators VU0409551 and VU0360172 on cognitive deficits and signalling in the sub-chronic PCP rat model for schizophrenia. Neuropharmacology 2022; 208:108982. [DOI: 10.1016/j.neuropharm.2022.108982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023]
|
3
|
Imbriglio T, Verhaeghe R, Antenucci N, Maccari S, Battaglia G, Nicoletti F, Cannella M. Developmental up-regulation of NMDA receptors in the prefrontal cortex and hippocampus of mGlu5 receptor knock-out mice. Mol Brain 2021; 14:77. [PMID: 33962661 PMCID: PMC8106212 DOI: 10.1186/s13041-021-00784-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/21/2021] [Indexed: 12/02/2022] Open
Abstract
mGlu5 metabotropic glutamate receptors are highly expressed and functional in the early postnatal life, and are known to positively modulate NMDA receptor function. Here, we examined the expression of NMDA receptor subunits and interneuron-related genes in the prefrontal cortex and hippocampus of mGlu5-/- mice and wild-type littermates at three developmental time points (PND9, - 21, and - 75). We were surprised to find that expression of all NMDA receptor subunits was greatly enhanced in mGlu5-/- mice at PND21. In contrast, at PND9, expression of the GluN2B subunit was enhanced, whereas expression of GluN2A and GluN2D subunits was reduced in both regions. These modifications were transient and disappeared in the adult life (PND75). Changes in the transcripts of interneuron-related genes (encoding parvalbumin, somatostatin, vasoactive intestinal peptide, reelin, and the two isoforms of glutamate decarboxylase) were also observed in mGlu5-/- mice across postnatal development. For example, the transcript encoding parvalbumin was up-regulated in the prefrontal cortex of mGlu5-/- mice at PND9 and PND21, whereas it was significantly reduced at PND75. These findings suggest that in mGlu5-/- mice a transient overexpression of NMDA receptor subunits may compensate for the lack of the NMDA receptor partner, mGlu5. Interestingly, in mGlu5-/- mice the behavioral response to the NMDA channel blocker, MK-801, was significantly increased at PND21, and largely reduced at PND75. The impact of adaptive changes in the expression of NMDA receptor subunits should be taken into account when mGlu5-/- mice are used for developmental studies.
Collapse
Affiliation(s)
| | | | - Nico Antenucci
- Department of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Stefania Maccari
- Department of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, Lille, France
| | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, IS, Italy.
- Department of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy.
| | | |
Collapse
|
4
|
Mascio G, Bucci D, Notartomaso S, Liberatore F, Antenucci N, Scarselli P, Imbriglio T, Caruso S, Gradini R, Cannella M, Di Menna L, Bruno V, Battaglia G, Nicoletti F. Perineuronal nets are under the control of type-5 metabotropic glutamate receptors in the developing somatosensory cortex. Transl Psychiatry 2021; 11:109. [PMID: 33597513 PMCID: PMC7889908 DOI: 10.1038/s41398-021-01210-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
mGlu5 metabotropic glutamate receptors are highly functional in the early postnatal life, and regulate developmental plasticity of parvalbumin-positive (PV+) interneurons in the cerebral cortex. PV+ cells are enwrapped by perineuronal nets (PNNs) at the closure of critical windows of cortical plasticity. Changes in PNNs have been associated with neurodevelopmental disorders. We found that the number of Wisteria Fluoribunda Agglutinin (WFA)+ PNNs and the density of WFA+/PV+ cells were largely increased in the somatosensory cortex of mGlu5-/- mice at PND16. An increased WFA+ PNN density was also observed after pharmacological blockade of mGlu5 receptors in the first two postnatal weeks. The number of WFA+ PNNs in mGlu5-/- mice was close to a plateau at PND16, whereas continued to increase in wild-type mice, and there was no difference between the two genotypes at PND21 and PND60. mGlu5-/- mice at PND16 showed increases in the transcripts of genes involved in PNN formation and a reduced expression and activity of type-9 matrix metalloproteinase in the somatosensory cortex suggesting that mGlu5 receptors control both PNN formation and degradation. Finally, unilateral whisker stimulation from PND9 to PND16 enhanced WFA+ PNN density in the contralateral somatosensory cortex only in mGlu5+/+ mice, whereas whisker trimming from PND9 to PND16 reduced WFA+ PNN density exclusively in mGlu5-/- mice, suggesting that mGlu5 receptors shape the PNN response to sensory experience. These findings disclose a novel undescribed mechanism of PNN regulation, and lay the groundwork for the study of mGlu5 receptors and PNNs in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Giada Mascio
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | - Domenico Bucci
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | | | | | - Nico Antenucci
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | | | - Stefano Caruso
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Roberto Gradini
- grid.7841.aDepartment of Experimental Medicine, Sapienza University, Rome, Italy
| | - Milena Cannella
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | - Luisa Di Menna
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | - Valeria Bruno
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Battaglia
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy. .,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|
5
|
Bonifacino T, Provenzano F, Gallia E, Ravera S, Torazza C, Bossi S, Ferrando S, Puliti A, Van Den Bosch L, Bonanno G, Milanese M. In-vivo genetic ablation of metabotropic glutamate receptor type 5 slows down disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2019; 129:79-92. [DOI: 10.1016/j.nbd.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/19/2019] [Accepted: 05/11/2019] [Indexed: 11/30/2022] Open
|
6
|
Nicoletti F, Orlando R, Di Menna L, Cannella M, Notartomaso S, Mascio G, Iacovelli L, Matrisciano F, Fazio F, Caraci F, Copani A, Battaglia G, Bruno V. Targeting mGlu Receptors for Optimization of Antipsychotic Activity and Disease-Modifying Effect in Schizophrenia. Front Psychiatry 2019; 10:49. [PMID: 30890967 PMCID: PMC6413697 DOI: 10.3389/fpsyt.2019.00049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
Metabotropic glutamate (mGlu) receptors are considered as candidate drug targets for the treatment of schizophrenia. These receptors form a family of eight subtypes (mGlu1 to -8), of which mGlu1 and -5 are coupled to Gq/11, and all other subtypes are coupled to Gi/o. Here, we discuss the possibility that selective ligands of individual mGlu receptor subtypes may be effective in controlling the core symptoms of schizophrenia, and, in some cases, may impact mechanisms underlying the progression of the disorder. Recent evidence indicates that activation of mGlu1 receptors inhibits dopamine release in the meso-striatal system. Hence, selective positive allosteric modulators (PAMs) of mGlu1 receptors hold promise for the treatment of positive symptoms of schizophrenia. mGlu5 receptors are widely expressed in the CNS and regulate the activity of cells that are involved in the pathophysiology of schizophrenia, such as cortical GABAergic interneurons and microglial cells. mGlu5 receptor PAMs are under development for the treatment of schizophrenia and cater the potential to act as disease modifiers by restraining neuroinflammation. mGlu2 receptors have attracted considerable interest because they negatively modulate 5-HT2A serotonin receptor signaling in the cerebral cortex. Both mGlu2 receptor PAMs and orthosteric mGlu2/3 receptor agonists display antipsychotic-like activity in animal models, and the latter drugs are inactive in mice lacking mGlu2 receptors. So far, mGlu3 receptors have been left apart as drug targets for schizophrenia. However, activation of mGlu3 receptors boosts mGlu5 receptor signaling, supports neuronal survival, and drives microglial cells toward an antiinflammatory phenotype. This strongly encourages research of mGlu3 receptors in schizophrenia. Finally, preclical studies suggest that mGlu4 receptors might be targeted by novel antipsychotic drugs, whereas studies of mGlu7 and mGlu8 receptors in animal models of psychosis are still at their infancy.
Collapse
Affiliation(s)
- Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Francesco Matrisciano
- Department of Psychiatry, The Psychiatric Institute, College of Medicine, University of Illinois, Chicago, IL, United States
| | | | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute (IRCCS), Troina, Italy
| | - Agata Copani
- Department of Drug Sciences, University of Catania, Catania, Italy.,Institute of Biostructure and Bioimaging, National Research Council, Catania, Italy
| | | | - Valeria Bruno
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
7
|
Di Menna L, Joffe ME, Iacovelli L, Orlando R, Lindsley CW, Mairesse J, Gressèns P, Cannella M, Caraci F, Copani A, Bruno V, Battaglia G, Conn PJ, Nicoletti F. Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology 2017; 128:301-313. [PMID: 29079293 DOI: 10.1016/j.neuropharm.2017.10.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/09/2017] [Accepted: 10/21/2017] [Indexed: 12/19/2022]
Abstract
mGlu5 receptors are involved in mechanisms of activity-dependent synaptic plasticity, and are targeted by drugs developed for the treatment of CNS disorders. We report that mGlu3 receptors, which are traditionally linked to the control of neurotransmitter release, support mGlu5 receptor signaling in neurons and largely contribute to the robust mGlu5 receptor-mediated polyphosphoinositide hydrolysis in the early postnatal life. In cortical pyramidal neurons, mGlu3 receptor activation potentiated mGlu5 receptor-mediated somatic Ca2+ mobilization, and mGlu3 receptor-mediated long-term depression in the prefrontal cortex required the endogenous activation of mGlu5 receptors. The interaction between mGlu3 and mGlu5 receptors was also relevant to mechanisms of neuronal toxicity, with mGlu3 receptors shaping the influence of mGlu5 receptors on excitotoxic neuronal death. These findings shed new light into the complex role played by mGlu receptors in physiology and pathology, and suggest reconsideration of some of the current dogmas in the mGlu receptor field.
Collapse
Affiliation(s)
| | - Max E Joffe
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-0697, USA
| | - Luisa Iacovelli
- Department of Physiology and Pharmacology, University Sapienza of Roma, 00185 Roma, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, University Sapienza of Roma, 00185 Roma, Italy
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-0697, USA
| | - Jèrome Mairesse
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 1141 Paris, France
| | - Pierre Gressèns
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 1141 Paris, France; Centre for the Developing Brain, Department of Perinatal Health and Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | | | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; I.R.C.C.S. Oasi Maria SS, 94018 Troina, Italy
| | - Agata Copani
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; Institute of Biostructure and Bioimaging, National Research Council, 95126 Catania, Italy
| | - Valeria Bruno
- I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy; Department of Physiology and Pharmacology, University Sapienza of Roma, 00185 Roma, Italy
| | | | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-0697, USA
| | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy; Department of Physiology and Pharmacology, University Sapienza of Roma, 00185 Roma, Italy.
| |
Collapse
|