1
|
Cale JA, Chauhan EJ, Cleaver JJ, Fusciardi AR, McCann S, Waters HC, Žavbi J, King MV. GABAergic and inflammatory changes in the frontal cortex following neonatal PCP plus isolation rearing, as a dual-hit neurodevelopmental model for schizophrenia. Mol Neurobiol 2024; 61:6968-6983. [PMID: 38363536 PMCID: PMC11339149 DOI: 10.1007/s12035-024-03987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
The pathogenesis of schizophrenia begins in early neurodevelopment and leads to excitatory-inhibitory imbalance. It is therefore essential that preclinical models used to understand disease, select drug targets and evaluate novel therapeutics encompass similar neurochemical deficits. One approach to improved preclinical modelling incorporates dual-hit neurodevelopmental insults, like neonatal administration of phencyclidine (PCP, to disrupt development of glutamatergic circuitry) then post-weaning isolation (Iso, to mimic adolescent social stress). We recently showed that male Lister-hooded rats exposed to PCP-Iso exhibit reduced hippocampal expression of the GABA interneuron marker calbindin. The current study expanded on this by investigating changes to additional populations of GABAergic interneurons in frontal cortical and hippocampal tissue from the same animals (by immunohistochemistry) as well as levels of GABA itself (via ELISA). Because inflammatory changes are also implicated in schizophrenia, we performed additional immunohistochemical evaluations of Iba-1 positive microglia as well as ELISA analysis of IL-6 in the same brain regions. Single-hit isolation-reared and dual-hit PCP-Iso rats both showed reduced parvalbumin immunoreactivity in the prelimbic/infralimbic region of the frontal cortex. However, this was more widespread in PCP-Iso, extending to the medial/ventral and lateral/dorsolateral orbitofrontal cortices. Loss of GABAergic markers was accompanied by increased microglial activation in the medial/ventral orbitofrontal cortices of PCP-Iso, together with frontal cortical IL-6 elevations not seen following single-hit isolation rearing. These findings enhance the face validity of PCP-Iso, and we advocate the use of this preclinical model for future evaluation of novel therapeutics-especially those designed to normalise excitatory-inhibitory imbalance or reduce neuroinflammation.
Collapse
Affiliation(s)
- Jennifer A Cale
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Ethan J Chauhan
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Joshua J Cleaver
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Anthoio R Fusciardi
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Sophie McCann
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Hannah C Waters
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Juš Žavbi
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Madeleine V King
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
2
|
Filipović D, Inderhees J, Korda A, Tadić P, Schwaninger M, Inta D, Borgwardt S. Serum Metabolites as Potential Markers and Predictors of Depression-like Behavior and Effective Fluoxetine Treatment in Chronically Socially Isolated Rats. Metabolites 2024; 14:405. [PMID: 39195501 DOI: 10.3390/metabo14080405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic perturbation has been associated with depression. An untargeted metabolomics approach using liquid chromatography-high resolution mass spectrometry was employed to detect and measure the rat serum metabolic changes following chronic social isolation (CSIS), an animal model of depression, and effective antidepressant fluoxetine (Flx) treatment. Univariate and multivariate statistics were used for metabolic data analysis and differentially expressed metabolites (DEMs) determination. Potential markers and predictive metabolites of CSIS-induced depressive-like behavior and Flx efficacy in CSIS were evaluated by the receiver operating characteristic (ROC) curve, and machine learning (ML) algorithms, such as support vector machine with linear kernel (SVM-LK) and random forest (RF). Upregulated choline following CSIS may represent a potential marker of depressive-like behavior. Succinate, stachydrine, guanidinoacetate, kynurenic acid, and 7-methylguanine were revealed as potential markers of effective Flx treatment in CSIS rats. RF yielded better accuracy than SVM-LK (98.50% vs. 85.70%, respectively) in predicting Flx efficacy in CSIS vs. CSIS, however, it performed almost identically in classifying CSIS vs. control (75.83% and 75%, respectively). Obtained DEMs combined with ROC curve and ML algorithms provide a research strategy for assessing potential markers or predictive metabolites for the designation or classification of stress-induced depressive phenotype and mode of drug action.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Bioanalytic Core Facility, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Alexandra Korda
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Predrag Tadić
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Bioanalytic Core Facility, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Dragoš Inta
- Department for Community Health, Faculty of Natural Sciences, Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
3
|
Stanisavljević Ilić A, Đorđević S, Inta D, Borgwardt S, Filipović D. Olanzapine Effects on Parvalbumin/GAD67 Cell Numbers in Layers/Subregions of Dorsal Hippocampus of Chronically Socially Isolated Rats. Int J Mol Sci 2023; 24:17181. [PMID: 38139008 PMCID: PMC10743576 DOI: 10.3390/ijms242417181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Depression is linked to changes in GABAergic inhibitory neurons, especially parvalbumin (PV) interneurons, which are susceptible to redox dysregulation. Olanzapine (Olz) is an atypical antipsychotic whose mode of action remains unclear. We determined the effect of Olz on PV-positive (+) and glutamate decarboxylase 67 (GAD67) + cell numbers in the layers of dorsal hippocampus (dHIPP) cornu ammonis (CA1-CA3) and dentate gyrus (DG) subregions in rats exposed to chronic social isolation (CSIS), which is an animal model of depression. Antioxidative enzymes and proinflammatory cytokine levels were also examined. CSIS decreased the PV+ cell numbers in the Stratum Oriens (SO) and Stratum Pyramidale (SP) of dCA1 and dDG. It increased interleukin-6 (IL-6), suppressor of cytokine signaling 3 (SOCS3), and copper-zinc superoxide dismutase (CuZnSOD) levels, and it decreased catalase (CAT) protein levels. Olz in CSIS increased the number of GAD67+ cells in the SO and SP layers of dCA1 with no effect on PV+ cells. It reduced the PV+ and GAD67+ cell numbers in the Stratum Radiatum of dCA3 in CSIS. Olz antagonizes the CSIS-induced increase in CuZnSOD, CAT and SOCS3 protein levels with no effect on IL-6. Data suggest that the protective Olz effects in CSIS may be mediated by altering the number of PV+ and GAD67+ cells in dHIPP subregional layers.
Collapse
Affiliation(s)
- Andrijana Stanisavljević Ilić
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Snežana Đorđević
- Poisoning Control Centre, Military Medical Academy, 11000 Belgrade, Serbia;
| | - Dragoš Inta
- Department for Community Health Faculty of Natural Sciences, Medicine, University of Fribourg, 1700 Fribourg, Switzerland;
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany;
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
4
|
Borozdenko DA, Gonchar DI, Bogorodova VI, Tarasenko DV, Kramarova EP, Khovanova SS, Golubev YV, Kiseleva NM, Shmigol TA, Ezdoglian AA, Sobyanin KA, Negrebetsky VV, Baukov YI. The Antidepressant Activity of a Taurine-Containing Derivative of 4-Phenylpyrrolidone-2 in a Model of Chronic Unpredictable Mild Stress. Int J Mol Sci 2023; 24:16564. [PMID: 38068887 PMCID: PMC10705968 DOI: 10.3390/ijms242316564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
This study investigates the therapeutic potential of a new compound, potassium 2-[2-(2-oxo-4-phenylpyrrolidin-1-yl) acetamido]ethanesulfonate (Compound I), in depression. Willner's chronic unpredictable mild stress model of male Wistar rats was used as a depression model. The rats were randomized into four groups, including an intact group, a Compound I group, a Fluoxetine group, and a control group with saline. Behavioral tests, such as the Porsolt forced swim test, hole-board test, elevated plus maze test, and light-dark box, were used to assess the animals' conditions. Our results demonstrated that Compound I effectively reduced the immobilization time of rats in the forced swim test, increased orientation and exploratory behavior, and decreased the latency period of going into the dark compartment compared to the control group. Hippocampal and striatal serotonin concentrations were increased in the Compound I group, and the compound also reduced the level of corticosterone in the blood plasma of rats compared to the intact animals. These results suggest that Compound I has reliable antidepressant activity, comparable to that of the reference antidepressant Fluoxetine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yuri I. Baukov
- Institute of Pharmacy and Medicinal Chemistry, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.A.B.); (D.I.G.); (V.I.B.); (D.V.T.); (E.P.K.); (S.S.K.); (Y.V.G.); (N.M.K.); (T.A.S.); (A.A.E.); (K.A.S.); (V.V.N.)
| |
Collapse
|
5
|
Hilakivi-Clarke L, de Oliveira Andrade F. Social Isolation and Breast Cancer. Endocrinology 2023; 164:bqad126. [PMID: 37586098 DOI: 10.1210/endocr/bqad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Although the role of life stressors in breast cancer remains unclear, social isolation is consistently associated with increased breast cancer risk and mortality. Social isolation can be defined as loneliness or an absence of perceived social connections. In female mice and rats, social isolation is mimicked by housing animals 1 per cage. Social isolation causes many biological changes, of which an increase in inflammatory markers and disruptions in mitochondrial and cellular metabolism are commonly reported. It is not clear how the 2 traditional stress-induced pathways, namely, the hypothalamic-pituitary-adrenocortical axis (HPA), resulting in a release of glucocorticoids from the adrenal cortex, and autonomic nervous system (ANS), resulting in a release of catecholamines from the adrenal medulla and postganglionic neurons, could explain the increased breast cancer risk in socially isolated individuals. For instance, glucocorticoid receptor activation in estrogen receptor positive breast cancer cells inhibits their proliferation, and activation of β-adrenergic receptor in immature immune cells promotes their differentiation toward antitumorigenic T cells. However, activation of HPA and ANS pathways may cause a disruption in the brain-gut-microbiome axis, resulting in gut dysbiosis. Gut dysbiosis, in turn, leads to an alteration in the production of bacterial metabolites, such as short chain fatty acids, causing a systemic low-grade inflammation and inducing dysfunction in mitochondrial and cellular metabolism. A possible causal link between social isolation-induced increased breast cancer risk and mortality and gut dysbiosis should be investigated, as it offers new tools to prevent breast cancer.
Collapse
Affiliation(s)
- Leena Hilakivi-Clarke
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Fabia de Oliveira Andrade
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
6
|
Filipović D, Inderhees J, Korda A, Tadić P, Schwaninger M, Inta D, Borgwardt S. Metabolic Fingerprints of Effective Fluoxetine Treatment in the Prefrontal Cortex of Chronically Socially Isolated Rats: Marker Candidates and Predictive Metabolites. Int J Mol Sci 2023; 24:10957. [PMID: 37446133 PMCID: PMC10341512 DOI: 10.3390/ijms241310957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The increasing prevalence of depression requires more effective therapy and the understanding of antidepressants' mode of action. We carried out untargeted metabolomics of the prefrontal cortex of rats exposed to chronic social isolation (CSIS), a rat model of depression, and/or fluoxetine treatment using liquid chromatography-high resolution mass spectrometry. The behavioral phenotype was assessed by the forced swim test. To analyze the metabolomics data, we employed univariate and multivariate analysis and biomarker capacity assessment using the receiver operating characteristic (ROC) curve. We also identified the most predictive biomarkers using a support vector machine with linear kernel (SVM-LK). Upregulated myo-inositol following CSIS may represent a potential marker of depressive phenotype. Effective fluoxetine treatment reversed depressive-like behavior and increased sedoheptulose 7-phosphate, hypotaurine, and acetyl-L-carnitine contents, which were identified as marker candidates for fluoxetine efficacy. ROC analysis revealed 4 significant marker candidates for CSIS group discrimination, and 10 for fluoxetine efficacy. SVM-LK with accuracies of 61.50% or 93.30% identified a panel of 7 or 25 predictive metabolites for depressive-like behavior or fluoxetine effectiveness, respectively. Overall, metabolic fingerprints combined with the ROC curve and SVM-LK may represent a new approach to identifying marker candidates or predictive metabolites for ongoing disease or disease risk and treatment outcome.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany; (J.I.); (M.S.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg-Kiel-Lübeck, 20251 Hamburg, Germany
- Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Alexandra Korda
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany;
| | - Predrag Tadić
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia;
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany; (J.I.); (M.S.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg-Kiel-Lübeck, 20251 Hamburg, Germany
| | - Dragoš Inta
- Department for Community Health, Faculty of Natural Sciences, Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (D.I.); (S.B.)
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Stefan Borgwardt
- Department for Community Health, Faculty of Natural Sciences, Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (D.I.); (S.B.)
| |
Collapse
|
7
|
Filipović D, Novak B, Xiao J, Yan Y, Bernardi RE, Turck CW. Chronic fluoxetine treatment in socially-isolated rats modulates the prefrontal cortex synaptoproteome. J Proteomics 2023; 282:104925. [PMID: 37164273 DOI: 10.1016/j.jprot.2023.104925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Exposure to chronic social isolation (CSIS) and synapse dysfunction have been implicated in the etiology of major depressive disorder (MDD). Fluoxetine (Flx) has been widely used to treat MDD, but its mechanisms of action remain elusive. We employed comparative synaptoproteomics to investigate the changes in the levels of proteins and molecular signaling pathways in prefrontal cortical samples of adult male Wistar rats exposed to CSIS, a rat model of depression, and CSIS rats treated with chronic Flx and controls, using liquid chromatography coupled to tandem mass spectrometry. Flx-treated control rats showed a decreased level of proteins involved in vesicle-mediated transport, and a predominantly increased level of exocytosis-associated proteins. CSIS significantly reduced the level of proteins involved in the ATP metabolic process, clathrin-dependent endocytosis, and proteolysis. Flx treatment in CSIS rats stimulated synaptic vesicle trafficking by increasing the regulation of exo/endocytosis-associated proteins, proteins involved in synaptic plasticity including neurogenesis, Cox5a, mitochondria-associated proteins involved in oxidative phosphorylation, and ion transport proteins (Slc8a2, Atp1b2). Flx treatment resulted in an increased synaptic vesicle dynamic, plasticity and mitochondrial functionality, and a suppression of CSIS-induced impairment of these processes. BIOLOGICAL SIGNIFICANCE: Identifying biomarkers of MDD and treatment response is the goal of many studies. Contemporary studies have shown that many molecular alterations associated with the pathophysiology of MDD reside within the synapse. As part of this research, a growing importance is the use of proteomics, as monitoring the changes in protein levels enables the identification of (possible) biochemical pathways and processes of importance for the development of depressive-like behavior and the efficacy of antidepressant treatments. We profiled proteomic changes representative of the development of CSIS-induced depressive-like behavior and the antidepressant effects of Flx. Our study has identified synaptosomal proteins and altered molecular pathways that may be potential markers of prefrontal cortical synaptic dysfunction associated with depressive-like behavior, and further clarified the mechanisms of depressive-like behavior and mode of action of Flx. Our findings indicate potential PFC synaptic targets for antidepressant treatment.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Božidar Novak
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jinqiu Xiao
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Yu Yan
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
8
|
Romano GL, Gozzo L, Maurel OM, Di Martino S, Riolo V, Micale V, Drago F, Bucolo C. Fluoxetine Protects Retinal Ischemic Damage in Mice. Pharmaceutics 2023; 15:pharmaceutics15051370. [PMID: 37242611 DOI: 10.3390/pharmaceutics15051370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND To evaluate the neuroprotective effect of the topical ocular administration of fluoxetine (FLX) in a mouse model of acute retinal damage. METHODS Ocular ischemia/reperfusion (I/R) injury in C57BL/6J mice was used to elicit retinal damage. Mice were divided into three groups: control group, I/R group, and I/R group treated with topical FLX. A pattern electroretinogram (PERG) was used as a sensitive measure of retinal ganglion cell (RGC) function. Finally, we analyzed the retinal mRNA expression of inflammatory markers (IL-6, TNF-α, Iba-1, IL-1β, and S100β) through Digital Droplet PCR. RESULTS PERG amplitude values were significantly (p < 0.05) higher in the I/R-FLX group compared to the I/R group, whereas PERG latency values were significantly (p < 0.05) reduced in I/R-FLX-treated mice compared to the I/R group. Retinal inflammatory markers increased significantly (p < 0.05) after I/R injury. FLX treatment was able to significantly (p < 0.05) attenuate the expression of inflammatory markers after I/R damage. CONCLUSIONS Topical treatment with FLX was effective in counteracting the damage of RGCs and preserving retinal function. Moreover, FLX treatment attenuates the production of pro-inflammatory molecules elicited by retinal I/R damage. Further studies need to be performed to support the use of FLX as neuroprotective agent in retinal degenerative diseases.
Collapse
Affiliation(s)
- Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| | - Lucia Gozzo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Oriana Maria Maurel
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Valentina Riolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| |
Collapse
|
9
|
Qiu T, Li X, Chen W, He J, Shi L, Zhou C, Zheng A, Lei Z, Tang C, Yu Q, Du L, Guo J. Prospective study on Maresin-1 and cytokine levels in medication-naïve adolescents with first-episode major depressive disorder. Front Psychiatry 2023; 14:1132791. [PMID: 37009097 PMCID: PMC10050445 DOI: 10.3389/fpsyt.2023.1132791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundInflammation and immune activation may play a role in the pathological mechanism of Major Depressive Disorder (MDD). Evidence from cross-sectional and longitudinal studies of adolescents and adults has shown that MDD is associated with increased plasma pro-inflammatory cytokines (e.g., IL-1β, IL-6). It has been reported that Specialized Pro-resolving Mediators (SPMs) mediate inflammation resolution, and Maresin-1 can activate the process of inflammation and promote inflammation resolution by promoting macrophage phagocytosis. However, no clinical studies have been conducted to evaluate the relationship between the levels of Maresin-1 and cytokine and the severity of MDD symptomatology in adolescents.Methods40 untreated adolescent patients with primary and moderate to severe MDD and 30 healthy participants as the healthy control (HC) group aged between 13 and 18 years old were enrolled. They received clinical and Hamilton Depression Rating Scale (HDRS-17) evaluation and then, blood samples were collected. Patients in the MDD group were re-evaluated for HDRS-17, and blood samples were taken after a six to eight-week fluoxetine treatment.ResultsThe adolescent patients with MDD had lower serum levels of Maresin-1 and higher serum levels of interleukin 6 (IL-6) compared with the HC group. Fluoxetine treatment alleviated depressive symptoms in MDD adolescent patients, which was reflected by higher serum levels of Maresin-1 and IL-4 and lower HDRS-17 scores, serum levels of IL-6, and IL-1β. Moreover, the serum level of Maresin-1 was negatively correlated with the depression severity scores on the HDRS-17.ConclusionAdolescent patients with primary MDD had lower levels of Maresin-1 and higher levels of IL-6 compared with the HC group, implying that the peripheral level of pro-inflammatory cytokines may be elevated in MDD, resulting in the insufficiency of inflammation resolution. The Maresin-1 and IL-4 levels increased after anti-depressant treatment, whereas IL-6 and IL-1β levels decreased significantly. Moreover, Maresin-1 level negatively correlated with depression severity, suggesting that reduced levels of Maresin-1 promoted the progression of MDD.
Collapse
|
10
|
Filipović D, Costina V, Findeisen P, Inta D. Fluoxetine Enhances Synaptic Vesicle Trafficking and Energy Metabolism in the Hippocampus of Socially Isolated Rats. Int J Mol Sci 2022; 23:ijms232315351. [PMID: 36499675 PMCID: PMC9735484 DOI: 10.3390/ijms232315351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic social isolation (CSIS)-induced alternation in synaptic and mitochondrial function of specific brain regions is associated with major depressive disorder (MDD). Despite the wide number of available medications, treating MDD remains an important challenge. Although fluoxetine (Flx) is the most frequently prescribed antidepressant, its mode of action is still unknown. To delineate affected molecular pathways of depressive-like behavior and identify potential targets upon Flx treatment, we performed a comparative proteomic analysis of hippocampal purified synaptic terminals (synaptosomes) of rats exposed to six weeks of CSIS, an animal model of depression, and/or followed by Flx treatment (lasting three weeks of six-week CSIS) to explore synaptic protein profile changes. Results showed that Flx in controls mainly induced decreased expression of proteins involved in energy metabolism and the redox system. CSIS led to increased expression of proteins that mainly participate in Ca2+/calmodulin-dependent protein kinase II (Camk2)-related neurotransmission, vesicle transport, and ubiquitination. Flx treatment of CSIS rats predominantly increased expression of proteins involved in synaptic vesicle trafficking (exocytosis and endocytosis), and energy metabolism (glycolytic and mitochondrial respiration). Overall, these Flx-regulated changes in synaptic and mitochondrial proteins of CSIS rats might be critical targets for new therapeutic development for the treatment of MDD.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA”, Institute of Nuclear Sciences—National Institute of thе Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: ; Tel./Fax: +381-(11)-6455-561
| | - Victor Costina
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, 68159 Mannhem, Germany
| | - Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, 68159 Mannhem, Germany
| | - Dragos Inta
- Department for Community Health Faculty of Natural Sciences, Medicine University of Fribourg, 1700 Fribourg, Switzerland
- Department of Biomedicine, University of Basel, 4052 Basel, Switzerland
| |
Collapse
|
11
|
Perić I, Lješević M, Beškoski V, Nikolić M, Filipović D. Metabolomic profiling relates tianeptine effectiveness with hippocampal GABA, myo-inositol, cholesterol, and fatty acid metabolism restoration in socially isolated rats. Psychopharmacology (Berl) 2022; 239:2955-2974. [PMID: 35776189 DOI: 10.1007/s00213-022-06180-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/16/2022] [Indexed: 12/28/2022]
Abstract
RATIONALE Discovering biomarkers of major depressive disorder (MDD) can give a deeper understanding of this mood disorder and improve the ability to screen for, diagnose, and treat MDD. OBJECTIVES In this study, metabolomics was used in unraveling metabolite fluctuations of MDD and drug outcome by creating specific metabolomic fingerprints. We report metabolomic patterns of change of the hippocampus of adult male Wistar rats following chronic social isolation (CSIS) (6 weeks), an animal model of depression, and/or chronic tianeptine (Tian) treatment (10 mg kg-1 per day) (lasting 3 weeks of 6-week CSIS), monitored by using comprehensive GC × GC-MS. RESULTS The comparative metabolomic analysis highlighted the role of gamma aminobutyric acid (GABA), iso-allocholate, and unsaturated fatty acid metabolism alterations following the CSIS, which was corroborated with moderate to strong negative Pearson's correlation of GABA, docosahexaenoic, 9-hexadecenoic acid, 5,8,11,14-eicosatetraynoic, and arachidonic acids with immobility behavior in the forced swim test. The antidepressant effect of Tian restored GABA levels, which was absent in Tian resilient rats. Tian decreased myo-inositol and increased TCA cycle intermediates, amino acids, and cholesterol and its metabolite. As key molecules of divergence between Tian effectiveness and resilience, metabolomics revealed myo-inositol, GABA, cholesterol, and its metabolite. A significant moderate positive correlation between myo-inositol and immobility was revealed. Tian probably acted by upregulating NMDAR's and α2 adrenergic receptors (AR) or norepinephrine transporter in both control and stressed animals. CONCLUSION Metabolomics revealed several dysregulations underlying CSIS-induced depressive-like behavior and responsiveness to Tian, predominantly converging into NMDAR-mediated glutamate and myo-inositol signalization and GABA inhibitory pathways.
Collapse
Affiliation(s)
- Ivana Perić
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351, Vinča, Belgrade, Serbia
| | - Marija Lješević
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Vladimir Beškoski
- Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Milan Nikolić
- Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351, Vinča, Belgrade, Serbia.
| |
Collapse
|
12
|
Filipović D, Novak B, Xiao J, Yan Y, Yeoh K, Turck CW. Chronic Fluoxetine Treatment of Socially Isolated Rats Modulates Prefrontal Cortex Proteome. Neuroscience 2022; 501:52-71. [PMID: 35963583 DOI: 10.1016/j.neuroscience.2022.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
Fluoxetine (Flx) is the most commonly used antidepressant to treat major depressive disorder. However, its molecular mechanisms of action are not defined as yet. A comparative proteomic approach was used to identify proteome changes in the prefrontal cortex (PFC) cytosolic and non-synaptic mitochondria (NSM)-enriched fractions of adult male Wistar rats following chronic social isolation (CSIS), a rat model of depression, and Flx treatment in CSIS and control rats, using liquid chromatography online tandem mass spectrometry. Flx reversed CSIS-induced depressive - like behavior according to preference for sucrose and immobility in the forced swim test, indicating its antidepressant effect. Flx treatment in controls led to an increase of the expression of cytosolic proteins involved in the microtubule cytoskeleton and intracellular calcium homeostasis and of enzymes involved in bioenergetic and transmembrane transport in NSM. CSIS downregulated the cytosolic proteins involved in proteasome pathway, and glutathione antioxidative system, and upregulated the expression of enzymes participating in mitochondrial-energy metabolism and transport. The presence of cytochrome c in the cytosol may suggest compromised mitochondrial membrane integrity. Flx treatment in CSIS rats downregulated protein involved in oxidative phosphorylation, such as complex III and manganese superoxide dismutase, and upregulated vesicle-mediated transport and synaptic signaling proteins in the cytosol, and neuronal calcium-binding protein 1 in NSM. Our study identified PFC modulated proteins and affected biochemical pathways that may represent potential markers/targets underlying CSIS-induced depression and effective Flx treatment, and highlights the role of protein systems involved in NSM and various metabolic pathways potentially involved in neuronal plasticity.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Božidar Novak
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jinqiu Xiao
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Yu Yan
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Karin Yeoh
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
13
|
Aswar U, Shende H, Aswar M. Buspirone, a 5-HT1A agonist attenuates social isolation-induced behavior deficits in rats: a comparative study with fluoxetine. Behav Pharmacol 2022; 33:309-321. [PMID: 35438678 DOI: 10.1097/fbp.0000000000000679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Social isolation is a potent stressor in both humans and animals that results in increased anger-like emotion, (anger in humans), aggression and suicidal ideation in humans [suicidal trait-related behavior in rats (STRB)]. The study's purpose was to compare the effects of buspirone (BUS) and fluoxetine (Flx) on social isolation-induced behavior deficits in rats. The male Wistar rats were randomized into six groups and caged individually for 14 days except for the non stress control (nSC) group. They were then divided into the following groups, stress control (SC), Flx (30), BUS (10), BUS (20) and BUS (40) and treated from day 14 to day 28. On the last day of treatment behavior parameters were recorded. Serum cortisol, blood pressure (BP) measurement, magnetic resonance imaging (MRI) of the rat's brain and brain-derived neurotrophic factor (BDNF) expression were performed. SC group showed a significant increase in anger-like emotion, aggression, irritability score, learned helplessness, increased cortisol level and reduced BDNF. These behavioral deficits were attenuated by BUS and Flx, Both were found to be equally beneficial in preventing anger-like emotions and aggression. Flx, which has been found to promote suicidal thoughts in people, did not reduce irritability in rats, showing that it did not affect it. BUS significantly improved all behavioral traits also reduced cortisol levels, significantly increased BDNF and normalized BP. Neuroimaging studies in SC brains showed a reduction in amygdala size compared to nSC, BUS treatment mitigated this reduction. Buspirone is effective in preventing social isolation induced behavioural-deficits.
Collapse
Affiliation(s)
- Urmila Aswar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane
| | - Hrudaya Shende
- Department of Pharmacology, Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra, India
| | - Manoj Aswar
- Department of Pharmacology, Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra, India
| |
Collapse
|
14
|
Targeting NRF2 in Type 2 diabetes mellitus and depression: Efficacy of natural and synthetic compounds. Eur J Pharmacol 2022; 925:174993. [PMID: 35513015 DOI: 10.1016/j.ejphar.2022.174993] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022]
Abstract
Evidence supports a strong bidirectional association between depression and Type 2 diabetes mellitus (T2DM). The harmful impact of oxidative stress and chronic inflammation on the development of both disorders is widely accepted. Nuclear factor erythroid 2-related factor 2 (NRF2) is a pertinent target in disease management owing to its reputation as the master regulator of antioxidant responses. NRF2 influences the expression of various cytoprotective phase 2 antioxidant genes, which is hampered in both depression and T2DM. Through interaction and crosstalk with several signaling pathways, NRF2 endeavors to contain the widespread oxidative damage and persistent inflammation involved in the pathophysiology of depression and T2DM. NRF2 promotes the neuroprotective and insulin-sensitizing properties of its upstream and downstream targets, thereby interrupting and preventing disease advancement. Standard antidepressant and antidiabetic drugs may be powerful against these disorders, but unfortunately, they come bearing distressing side effects. Therefore, exploiting the therapeutic potential of NRF2 activators presents an exciting opportunity to manage such bidirectional and comorbid conditions.
Collapse
|
15
|
He Y, Han Y, Liao X, Zou M, Wang Y. Biology of cyclooxygenase-2: An application in depression therapeutics. Front Psychiatry 2022; 13:1037588. [PMID: 36440427 PMCID: PMC9684729 DOI: 10.3389/fpsyt.2022.1037588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Depressive Disorder is a common mood disorder or affective disorder that is dominated by depressed mood. It is characterized by a high incidence and recurrence. The onset of depression is related to genetic, biological and psychosocial factors. However, the pathogenesis is still unclear. In recent years, there has been an increasing amount of research on the inflammatory hypothesis of depression, in which cyclo-oxygen-ase 2 (COX-2), a pro-inflammatory cytokine, is closely associated with depression. A variety of chemical drugs and natural products have been found to exert therapeutic effects by modulating COX-2 levels. This paper summarizes the relationship between COX-2 and depression in terms of neuroinflammation, intestinal flora, neurotransmitters, HPA axis, mitochondrial dysfunction and hippocampal neuronal damage, which can provide a reference for further preventive control, clinical treatment and scientific research on depression.
Collapse
Affiliation(s)
- Ying He
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuanshan Han
- Department of Scientific Research, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaolin Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Manshu Zou
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.,Hunan Provincial Key Laboratory for the Prevention and Treatment of Depressive Diseases with Traditional Chinese Medicine, Changsha, China.,Hunan Key Laboratory of Power and Innovative Drugs State Key Laboratory of Ministry Training Bases, Changsha, China
| |
Collapse
|
16
|
The underestimated sex: a review on female animal models of depression. Neurosci Biobehav Rev 2021; 133:104498. [PMID: 34953920 DOI: 10.1016/j.neubiorev.2021.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/19/2023]
Abstract
Major depression (MD) is the most common psychiatric disorder, predicted to affect around 264 million people worldwide. Although the etiology of depression remains elusive, the interplay between genetics and environmental factors, such as early life events, stress, exposure to drugs and health problems appears to underlie its development. Whereas depression is twice more prevalent in women than in men, most preclinical studies are performed in male rodents. In fact, females' physiology and reproductive experience are associated with changes to brain, behavior and endocrine profiles that may influence both stress, an important precipitating factor for depression, and response to treatment. These specificities emphasize the need to choose the most suitable models and readouts in order to better understand the pathophysiological mechanisms of depression in females. With this review, we aim to provide an overview of female animal models of depression highlighting the major differences between models, regarding behavioral, physiological, and molecular readouts, but also the major gaps in research, attending to the role of etiological factors, protocol variability and sex.
Collapse
|
17
|
Pilarzyk K, Farmer R, Porcher L, Kelly MP. The Role of PDE11A4 in Social Isolation-Induced Changes in Intracellular Signaling and Neuroinflammation. Front Pharmacol 2021; 12:749628. [PMID: 34887755 PMCID: PMC8650591 DOI: 10.3389/fphar.2021.749628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
Phosphodiesterase 11A (PDE11A), an enzyme that degrades cyclic nucleotides (cAMP and cGMP), is the only PDE whose mRNA expression in brain is restricted to the hippocampal formation. Previously, we showed that chronic social isolation changes subsequent social behaviors in adult mice by reducing expression of PDE11A4 in the membrane fraction of the ventral hippocampus (VHIPP). Here we seek extend these findings by determining 1) if isolation-induced decreases in PDE11A4 require chronic social isolation or if they occur acutely and are sustained long-term, 2) if isolation-induced decreases occur uniquely in adults (i.e., not adolescents), and 3) how the loss of PDE11 signaling may increase neuroinflammation. Both acute and chronic social isolation decrease PDE11A4 expression in adult but not adolescent mice. This decrease in PDE11A4 is specific to the membrane compartment of the VHIPP, as it occurs neither in the soluble nor nuclear fractions of the VHIPP nor in any compartment of the dorsal HIPP. The effect of social isolation on membrane PDE11A4 is also selective in that PDE2A and PDE10A expression remain unchanged. Isolation-induced decreases in PDE11A4 expression appear to be functional as social isolation elicited changes in PDE11A-relevant signal transduction cascades (i.e., decreased pCamKIIα and pS6-235/236) and behavior (i.e., increased remote long-term memory for social odor recognition). Interestingly, we found that isolation-induced decreases in membrane PDE11A4 correlated with increased expression of interleukin-6 (IL-6) in the soluble fraction, suggesting pro-inflammatory signaling for this cytokine. This effect on IL-6 is consistent with the fact that PDE11A deletion increased microglia activation, although it left astrocytes unchanged. Together, these data suggest that isolation-induced decreases in PDE11A4 may alter subsequent social behavior via increased neuroinflammatory processes in adult mice.
Collapse
Affiliation(s)
- Katy Pilarzyk
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Reagan Farmer
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Latarsha Porcher
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Michy P Kelly
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Aging Research, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Perić I, Costina V, Djordjević S, Gass P, Findeisen P, Inta D, Borgwardt S, Filipović D. Tianeptine modulates synaptic vesicle dynamics and favors synaptic mitochondria processes in socially isolated rats. Sci Rep 2021; 11:17747. [PMID: 34493757 PMCID: PMC8423821 DOI: 10.1038/s41598-021-97186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/09/2021] [Indexed: 11/09/2022] Open
Abstract
Deregulation of synaptic function and neurotransmission has been linked with the development of major depression disorder (MDD). Tianeptine (Tian) has been used as antidepressant with anxiolytic properties and recently as a nootropic to improve cognitive performance, but its mechanism of action is unknown. We conducted a proteomic study on the hippocampal synaptosomal fractions of adult male Wistar rats exposed to chronic social isolation (CSIS, 6 weeks), an animal model of depression and after chronic Tian treatment in controls (nootropic effect) and CSIS-exposed rats (lasting 3 weeks of 6-week CSIS) (therapeutic effect). Increased expression of Syn1 and Camk2-related neurotransmission, vesicle transport and energy processes in Tian-treated controls were found. CSIS led to upregulation of proteins associated with actin cytoskeleton, signaling transduction and glucose metabolism. In CSIS rats, Tian up-regulated proteins involved in mitochondrial energy production, mitochondrial transport and dynamics, antioxidative defense and glutamate clearance, while attenuating the CSIS-increased glycolytic pathway and cytoskeleton organization proteins expression and decreased the expression of proteins involved in V-ATPase and vesicle endocytosis. Our overall findings revealed that synaptic vesicle dynamics, specifically exocytosis, and mitochondria-related energy processes might be key biological pathways modulated by the effective nootropic and antidepressant treatment with Tian and be a potential target for therapeutic efficacy of the stress-related mood disorders.
Collapse
Affiliation(s)
- Ivana Perić
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Victor Costina
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, 68159, Mannheim, Germany
| | | | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, 68159, Mannheim, Germany
| | - Dragoš Inta
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
19
|
Fluoxetine exerts subregion/layer specific effects on parvalbumin/GAD67 protein expression in the dorsal hippocampus of male rats showing social isolation-induced depressive-like behaviour. Brain Res Bull 2021; 173:174-183. [PMID: 34048829 DOI: 10.1016/j.brainresbull.2021.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/29/2021] [Accepted: 05/23/2021] [Indexed: 11/21/2022]
Abstract
The molecular background of depression is intensively studied in terms of alterations of inhibitory circuits, mediated by gamma aminobutyric acid (GABA) signalization. We investigated the effects of chronic social isolation (CSIS) and chronic fluoxetine (Flx) treatment (15 mg/kg/day) (3 weeks), on Parvalbumin (PV) and GAD67 expression in a layer-specific manner in rat dorsal hippocampal subregions. CSIS-induced depressive- and anxiety-like behaviours were confirmed with decrease in sucrose preference and increase in marble burying during behavioural testing, while Flx antagonized these effects. CSIS altered PV expression in stratum pyramidale (SP) of dorsal cornu ammonis 1 (dCA1) and stratum radiatum (SR) of dCA3. Flx antagonized this effect, and boosted PV expression in SP of the entire dCA and the dorsal dentate gyrus (dDG), as well as in the SR of dCA1/CA3. CSIS showed no significant effects on GAD67 expression, while Flx boosted its expression within the SR of the entire CA and SO of the dCA3. A correlation between SP of dCA1 and SR of dCA3 with regard to PV changes, implicates their possible role in the inhibitory circuit alterations. Flx-induced increase in GAD67 expression, specifically in SR of the entire dHIPP, may impose its involvement in the cell metabolic processes. Strong negative correlation between GAD67 and sucrose preference following Flx-treatment of CSIS rats was revealed. PV + cells of the SP layer of dCA1 and CA2 could be a potential target for the antidepressant action of Flx, while strong effect of Flx on GAD67 expression in the SR should be more extensively studied.
Collapse
|
20
|
Ji Y, Luo J, Zeng J, Fang Y, Liu R, Luan F, Zeng N. Xiaoyao Pills Ameliorate Depression-like Behaviors and Oxidative Stress Induced by Olfactory Bulbectomy in Rats via the Activation of the PIK3CA-AKT1-NFE2L2/BDNF Signaling Pathway. Front Pharmacol 2021; 12:643456. [PMID: 33935736 PMCID: PMC8082504 DOI: 10.3389/fphar.2021.643456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
Numerous studies have revealed that oxidative stress is closely associated with the occurrence and development of depression. Xiaoyao Pills (XYW) are included in the Chinese Pharmacopoeia and are frequently used for treating anxiety and depression by smoothing the liver, strengthening the spleen, and nourishing the blood. However, the antidepressant effects of XYW have not yet been thoroughly investigated. The objective of our study was to investigate the antidepressant-like effects of XYW and the underlying molecular mechanism in the olfactory bulbectomized (OB) rat model of depression using the open field test (OFT), sucrose preference test (SPT), splash test (ST), and novelty suppressed feeding test (NSFT). Results showed that XYW (0.93 and 1.86 g·kg−1) significantly alleviated depression-like behaviors in rats, which was indicated by increased sucrose preference in the SPT, prolonged grooming time in the ST, decreased horizontal movement in the OFT, and shorter feeding latency in the NSFT. In addition, XYW treatment dramatically reversed the reduced activity of superoxide dismutase and the decreased level of glutathione, while also lowering levels of malondialdehyde, an inflammatory mediator (nitric oxide), and pro-inflammatory cytokines (interleukin-6 and 1β) in the serum and cortex of OB rats. Mechanistically, XYW induced marked upregulation of mRNA and protein expression levels of NFE2L2, KEAP1, GPX3, HMOX1, SOD1, NQO1, OGG1, PIK3CA, p-AKT1/AKT1, NTRK2, and BDNF, and downregulation of ROS in the cortex and hippocampus via the activation of the NFE2L2/KEAP1, PIK3CA/AKT1, and NTRK2/BDNF pathways. These findings suggest that XYW exert antidepressant-like effects in OB rats with depression-like symptoms, and these effects are mediated by the alleviation of oxidative stress and the enhancement of neuroprotective effects through the activation of the PIK3CA-AKT1-NFE2L2/BDNF signaling pathways.
Collapse
Affiliation(s)
- Yafei Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Luo
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiuseng Zeng
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Fang
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Liu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Tianeptine Enhances Energy-related Processes in the Hippocampal Non-synaptic Mitochondria in a Rat Model of Depression. Neuroscience 2020; 451:111-125. [DOI: 10.1016/j.neuroscience.2020.09.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
|
22
|
Perić I, Costina V, Gass P, Findeisen P, Filipović D. Hippocampal synaptoproteomic changes of susceptibility and resilience of male rats to chronic social isolation. Brain Res Bull 2020; 166:128-141. [PMID: 33238171 DOI: 10.1016/j.brainresbull.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/07/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
The susceptibility of an individual to chronic social isolation (CSIS) stress may cause major depression (MD) whereby some individuals are resistant to the stress. Recent studies relate MD with altered expression of synaptic proteins in specific brain regions. To explore the neurobiological underpinnings and identify candidate biomarkers of susceptibility or resilience to CSIS, a comparative proteomic approach was used to map hippocampal synaptic protein alterations of rats exposed to 6 weeks of CSIS, an animal model of depression. This model generates two stress-response phenotypes: CSIS-sensitive (depressive-like behaviour) and CSIS-resilience assessed by means of sucrose preference and forced swim tests. Our aim was to characterize the synaptoproteome changes representative of potential long-term changes in protein expression underlying susceptibility or resilience to stress. Proteomic data showed increased expression of glycolytic enzymes, the energy-related mitochondrial proteins, actin cytoskeleton, signalling transduction and synaptic transmission proteins in CSIS-sensitive rats. Protein levels of glutamate-related enzymes such as glutamate dehydrogenase and glutamine synthetase were also increased. CSIS-resilient rats showed similar proteome changes, however with a weaker increase compared to CSIS-sensitive rats. The main difference was observed in the level of protein expression of vesicle-mediated transport proteins. Nonetheless, only few proteins were uniquely up-regulated in the CSIS-resilient rats, whereby Cytochrome b-c1 complex subunit 2, mitochondrial (Uqcrc2) and Voltage-dependent anion-selective channel protein 1 (Vdac1) were uniquely down-regulated. Identified altered activated pathways and potential protein biomarkers may help us better understand the molecular mechanisms underlying synaptic neurotransmission in MD or resilience, crucial for development of new therapeutics.
Collapse
Affiliation(s)
- Ivana Perić
- Molecular Biology and Endocrinology MBE-090, "VINČA", Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Victor Costina
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Peter Gass
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Dragana Filipović
- Molecular Biology and Endocrinology MBE-090, "VINČA", Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
23
|
The anti-inflammatory role of SSRI and SNRI in the treatment of depression: a review of human and rodent research studies. Inflammopharmacology 2020; 29:75-90. [PMID: 33164143 DOI: 10.1007/s10787-020-00777-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
RATIONALE Depression has the topmost prevalence of all psychiatric diseases. It is characterized by a high recurrence rate, disability, and numerous and mostly unclear pathogenic mechanisms. Besides the monoamine or the neurotrophic hypothesis of depression, the inflammatory mechanism has begun to be supported by more and more evidence. At the same time, the current knowledge about the standard treatment of choice, the selective serotonin reuptake inhibitors (SSRIs) and serotonin and noradrenaline reuptake inhibitors (SNRIs), is expanding rapidly, adding more features to the initial ones. OBJECTIVES This review summarizes the in vivo anti-inflammatory effects of SSRIs and SNRIs in the treatment of depression and outlines the particular mechanisms of these effects for each drug separately. In addition, we provide an overview of the inflammation-related theory of depression and the underlying mechanisms. RESULTS SSRIs and SNRIs decrease the neuroinflammation through multiple mechanisms including the reduction of blood or tissue cytokines or regulating complex inflammatory pathways: nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), inflammasomes, Toll-like receptor 4 (TLR4), peroxisome proliferator-activated receptor gamma (PPARγ). Also, SSRIs and SNRIs show these effects in association with an antidepressant action. CONCLUSIONS SSRIs and SNRIs have an anti-neuroinflammatory role which might contribute the antidepressant effect.
Collapse
|
24
|
Stanisavljević A, Perić I, Gass P, Inta D, Lang UE, Borgwardt S, Filipović D. Fluoxetine modulates neuronal activity in stress-related limbic areas of adult rats subjected to the chronic social isolation. Brain Res Bull 2020; 163:95-108. [DOI: 10.1016/j.brainresbull.2020.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
|
25
|
Rappeneau V, Wilmes L, Touma C. Molecular correlates of mitochondrial dysfunctions in major depression: Evidence from clinical and rodent studies. Mol Cell Neurosci 2020; 109:103555. [PMID: 32979495 DOI: 10.1016/j.mcn.2020.103555] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent stress-related mental disorders worldwide. Several biological mechanisms underlying the pathophysiology of MDD have been proposed, including endocrine disturbances, neurotransmitter deficits, impaired neuronal plasticity, and more recently, mitochondrial dysfunctions. In this review, we provide an overview of relevant molecular correlates of mitochondrial dysfunction in MDD, based on findings from clinical studies and stress-induced rodent models. We also compare differences and similarities between the phenotypes of MDD patients and animal models. Our analysis of the literature reveals that both MDD and stress are associated, in humans and animals, with changes in mitochondrial biogenesis, redox imbalance, increased oxidative damages of cellular macromolecules, and apoptosis. Yet, a considerable amount of conflicting data exist and therefore, the translation of findings from clinical and preclinical research to novel therapies for MDD remains complex. Further studies are needed to advance our understanding of the molecular networks and biological mechanisms involving mitochondria in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Virginie Rappeneau
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany.
| | - Lars Wilmes
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Chadi Touma
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
26
|
Effects of age and social isolation on murine hippocampal biochemistry and behavior. Mech Ageing Dev 2020; 191:111337. [PMID: 32866520 DOI: 10.1016/j.mad.2020.111337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022]
Abstract
Social isolation (SI) is a major health risk in older people leading to cognitive decline. This study examined how SI and age influence performance in the novel object recognition (NOR) and elevated plus maze (EPM) tasks in C57BL/6 mice aged 3 or 24 months. Mice were group-housed (groups of 2-3) or isolated for 2 weeks prior to experimentation. Following NOR and EPM testing hippocampal norepinephrine (NE), 5, hydroxytryptamine (5-HT), 5, hydroxyindole acetic acid (5-HIAA), corticosterone (CORT) and interleukin-6 (IL-6) were determined and serum collected for basal CORT analysis. A separate set of mice were exposed to the forced swim test (FST), sacrificed immediately and serum CORT determined. SI impaired performance in the NOR and the FST, reduced hippocampal 5-HT, increased hippocampal IL-6 and increased serum CORT post-FST in young mice. Aged mice either failed to respond significantly to SI (NOR, FST, hippocampal 5-HT, serum CORT post FST) or SI had synergistic effects with age (hippocampal NE, 5-HIAA:5-HT). In conclusion, the lack of response to SI in the aged mice may affect health by preventing them adapting to new stressors, while the synergistic effects of SI with age would increase allostatic load and enhance the deleterious effects of the ageing process.
Collapse
|
27
|
Filipović D, Perić I, Costina V, Stanisavljević A, Gass P, Findeisen P. Social isolation stress-resilient rats reveal energy shift from glycolysis to oxidative phosphorylation in hippocampal nonsynaptic mitochondria. Life Sci 2020; 254:117790. [DOI: 10.1016/j.lfs.2020.117790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 11/28/2022]
|
28
|
Zalachoras I, Hollis F, Ramos-Fernández E, Trovo L, Sonnay S, Geiser E, Preitner N, Steiner P, Sandi C, Morató L. Therapeutic potential of glutathione-enhancers in stress-related psychopathologies. Neurosci Biobehav Rev 2020; 114:134-155. [DOI: 10.1016/j.neubiorev.2020.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
29
|
Panwar R, Sivakumar M, Menon V, Vairappan B. Changes in the levels of comet parameters before and after fluoxetine therapy in major depression patients. Anat Cell Biol 2020; 53:194-200. [PMID: 32647087 PMCID: PMC7343562 DOI: 10.5115/acb.19.217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 11/27/2022] Open
Abstract
Major depression belongs to mood disorders and characterized by worthlessness, no interest or happiness in any activity; lasting for atleast two weeks. Etio-pathological changes of major depression include oxidative stress leading to free radical synthesis which causes damage to carbohydrates, proteins, lipids and nucleic acids. Nucleic acid damage can be identified by either single or double strand breaks and for quantitative estimation of the same, neutral or alkaline comet assay is performed. Fluoxetine is the drug of choice for treatment of major depression having antioxidant function. In the current study eighty drug naïve major depression patients were recruited and comet parameters namely total comet length, head diameter and tail length were measured before starting the treatment and after completion of eight week fluoxetine therapy. The levels of comet parameters were higher in females than males suggesting higher prevalence of major depression among females. On categorizing into three age groups, the numbers of major depression patients belonging to 18–30 year age group were higher than 31–40 and 41–50 year age groups. All the parameters of deoxyribonucleic acid damage were reduced after eight week of fluoxetine therapy indicating that fluoxetine has anti-oxidant action along with its antidepressant properties, which cause reversal of oxidative stress induced damage occurring during major depression.
Collapse
Affiliation(s)
- Rajeev Panwar
- Department of Anatomy, Shri Sathya Sai Medical College and Research Institute, Nellikuppam, India
| | - M Sivakumar
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vikas Menon
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Balasubramaniyan Vairappan
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
30
|
Braz GRF, Silva SCDA, Pedroza AADS, de Lemos MD, de Lima FA, da Silva AI, Lagranha CJ. Fluoxetine administration in juvenile overfed rats improves hypothalamic mitochondrial respiration and REDOX status and induces mitochondrial biogenesis transcriptional expression. Eur J Pharmacol 2020; 881:173200. [PMID: 32445706 DOI: 10.1016/j.ejphar.2020.173200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022]
Abstract
Nutritional imbalance in early life may disrupt the hypothalamic control of energy homeostasis and increase the risk of metabolic disease. The hypothalamic serotonin (5-hydroxytryptamine; 5-HT) system based in the hypothalamus plays an important role in the homeostatic control of energy balance, however the mechanisms underlying the regulation of energy metabolism by 5-HT remain poorly described. Several crucial mitochondrial functions are altered by mitochondrial stress. Adaptations to this stress include changes in mitochondrial multiplication (i.e, mitochondrial biogenesis). Due to the scarcity of evidence regarding the effects of serotonin reuptake inhibitors (SSRI) such as fluoxetine (FLX) on mitochondrial function, we sought to investigate the potential contribution of FLX on changes in mitochondrial function and biogenesis occurring in overfed rats. Using a neonatal overfeeding model, male Wistar rats were divided into 4 groups between 39 and 59 days of age based on nutrition and FLX administration: normofed + vehicle (NV), normofed + FLX (NF), overfed + vehicle (OV) and overfed + FLX (OF). We found that neonatal overfeeding impaired mitochondrial respiration and increased oxidative stress biomarkers in the hypothalamus. FLX administration in overfed rats reestablished mitochondrial oxygen consumption, increased mitochondrial uncoupling protein 2 (Ucp2) expression, reduced total reactive species (RS) production and oxidative stress biomarkers, and up-regulated mitochondrial biogenesis-related genes. Taken together our results suggest that FLX administration in overfed rats improves mitochondrial respiratory chain activity and oxidative balance and increases the transcription of genes employed in mitochondrial biogenesis favoring mitochondrial energy efficiency in response to early nutritional imbalance.
Collapse
Affiliation(s)
- Glauber Rudá Feitoza Braz
- Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil
| | | | | | - Maria Daniele de Lemos
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco-UFPE, Academic Center of Vitória-CAV, Vitória de Santo Antão, Pernambuco, Brazil
| | - Flávia Ariane de Lima
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco-UFPE, Academic Center of Vitória-CAV, Vitória de Santo Antão, Pernambuco, Brazil
| | - Aline Isabel da Silva
- Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil
| | - Claudia Jacques Lagranha
- Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil; Biochemistry and Physiology Graduate Program, Federal University of Pernambuco-UFPE, Recife, Pernambuco, Brazil; Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco-UFPE, Academic Center of Vitória-CAV, Vitória de Santo Antão, Pernambuco, Brazil.
| |
Collapse
|
31
|
Begni V, Zampar S, Longo L, Riva MA. Sex Differences in the Enduring Effects of Social Deprivation during Adolescence in Rats: Implications for Psychiatric Disorders. Neuroscience 2020; 437:11-22. [PMID: 32334072 DOI: 10.1016/j.neuroscience.2020.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/14/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
The exposure to adverse environmental situations during sensitive periods of development may induce re-organizational effects on different systems and increase the vulnerability to develop psychiatric disorders later in life. The adolescent period has been demonstrated extremely susceptible to stressful events. However, most of the studies focused on the immediate effects of stress exposure and few of them investigated sex differences. This raised the question if these modulations might also be long-lasting and how the differential maturational events taking place during adolescence between males and females might have a role in the detrimental effects of stress. Given the importance of social play for the right maturation of behavior during adolescence, we used the preclinical model of social deprivation, based on the lack of all social contacts, for four weeks after weaning, followed by re-socialization until adulthood. We found that both male and female animals reared in isolation during adolescence developed an anhedonic phenotype at adulthood, without any impairments in the cognitive domain. At molecular level, these functional changes were associated with sex-specific impairments in the expression of neuroplastic markers as well as of hypothalamic-pituitary-adrenal axis-related genes. Lastly, we also reported anatomically-selective changes associated with the enduring effects of social isolation.
Collapse
Affiliation(s)
- Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy.
| | - Silvia Zampar
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy
| | - Linda Longo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan Italy.
| |
Collapse
|
32
|
Ting EYC, Yang AC, Tsai SJ. Role of Interleukin-6 in Depressive Disorder. Int J Mol Sci 2020; 21:ijms21062194. [PMID: 32235786 PMCID: PMC7139933 DOI: 10.3390/ijms21062194] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 12/20/2022] Open
Abstract
Major depressive disorder (MDD), which is a leading psychiatric illness across the world, severely affects quality of life and causes an increased incidence of suicide. Evidence from animal as well as clinical studies have indicated that increased peripheral or central cytokine interleukin-6 (IL-6) levels play an important role in stress reaction and depressive disorder, especially physical disorders comorbid with depression. Increased release of IL-6 in MDD has been found to be a factor associated with MDD prognosis and therapeutic response, and may affect a wide range of depressive symptomatology. However, study results of the IL6 genetic effects in MDD are controversial. Increased IL-6 activity may cause depression through activation of hypothalamic-pituitary-adrenal axis or influence of the neurotransmitter metabolism. The important role of neuroinflammation in MDD pathogenesis has created a new perspective that the combining of blood IL-6 and other depression-related cytokine levels may help to classify MDD biological subtypes, which may allow physicians to identify the optimal treatment for MDD patients. To modulate the IL-6 activity by IL-6-related agents, current antidepressive agents, herb medication, pre-/probiotics or non-pharmacological interventions may hold great promise for the MDD patients with inflammatory features.
Collapse
Affiliation(s)
- Emily Yi-Chih Ting
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Albert C. Yang
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan;
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess, Medical Center, Boston, MA 02115, USA
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan;
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-2-28757027 (ext. 276); Fax: +886-2-28725643
| |
Collapse
|
33
|
Perić I, Stanisavljević A, Inta D, Gass P, Lang UE, Borgwardt S, Filipović D. Tianeptine antagonizes the reduction of PV+ and GAD67 cells number in dorsal hippocampus of socially isolated rats. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:386-399. [PMID: 30367961 DOI: 10.1016/j.pnpbp.2018.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022]
Abstract
Adult male rats exposed to chronic social isolation (CSIS) show depressive- and anxiety-like behaviors and reduce the numbers of parvalbumin-positive (PV+) interneurons in the dorsal hippocampus. We aimed to determine whether tianeptine (Tian), administered during the last three weeks of a six-week-social isolation (10 mg/kg/day), may reverse CSIS-induced behavioral changes and antagonize the CSIS-induced reduction in the number of PV+ interneurons. We also studied whether Tian affects the GABA-producing enzyme GAD67+ cells, in Stratum Oriens (SO), Stratum Pyramidale (SP), Stratum Radiatum (SR) and Stratum Lacunosum Moleculare (LM) of CA1-3, as well as in molecular layer-granule cell layer (ML-GCL) and Hilus (H) of the dentate gyrus (DG). CSIS-induced reduction in the number of PV+ cells was layer/subregion-specific with the greatest decrease in SO of CA2. Reduction in the number of PV+ cells was significantly higher than GAD67+ cells, indicating that PV+ cells are the main target following CSIS. Tian reversed CSIS-induced behavior phenotype and antagonized the reduction in the number of PV+ and GAD67+ cells in all subregions. In controls, Tian led to an increase in the number of PV+ and GAD67+ cells in SP of all subregions and PV+ interneurons in ML-GCL of DG, while treatment during CSIS, compared to CSIS alone, resulted with an increase of PV+ interneurons in SO and SP CA1, SP CA2/CA3 and ML-GCL DG with simultaneous increase in GAD67+ cells in all CA1, LM CA2, SO/SR/LM CA3. Data show that Tian offers protection from CSIS via modulation of the dorsal hippocampal GABAergic system.
Collapse
Affiliation(s)
- Ivana Perić
- Vinča Institute of Nuclear Sciences, Laboratory for molecular biology and endocrinology, University of Belgrade, Serbia
| | - Andrijana Stanisavljević
- Vinča Institute of Nuclear Sciences, Laboratory for molecular biology and endocrinology, University of Belgrade, Serbia
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Undine E Lang
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Dragana Filipović
- Vinča Institute of Nuclear Sciences, Laboratory for molecular biology and endocrinology, University of Belgrade, Serbia.
| |
Collapse
|
34
|
Zhang D, Babayan L, Ho H, Heaney AP. Chromogranin A regulates neuroblastoma proliferation and phenotype. Biol Open 2019; 8:8/3/bio036566. [PMID: 30833285 PMCID: PMC6451332 DOI: 10.1242/bio.036566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma is a commonly encountered solid tumor in early childhood with high neuroplasticity, and differentiation therapy is hypothesized to lead to tumor mass shrinkage and/or symptom relief. CgA is a tissue specific protein restricted to the diffuse neuroendocrine system, and widely expressed in neuroblastomas. Using knockdown and knockout approaches to deplete CgA levels, we demonstrated that CgA loss inhibits SH-SY5Y cell proliferation and leads to a morphological shift with increased expression of Schwann and extracellular matrix specific molecules, and suppression of chromaffin features. We further confirmed the effects of CgA in a series of neuroblastoma cells with [BE(2)-M17 and IMR-32] and without (SK-N-SH) N-Myc amplification. We demonstrated that CgA depletion reduced IGF-II and IGFBP-2 expression, increased IGFBP-3 levels, and suppresses IGF downstream signaling as evidenced by reduced AKT/ERK pathway activation. This was further supported by an increased anti-proliferative effect of the ERK inhibitor in the CgA depleted cells. In an in vivo xenograft neuroblastoma model, CgA knockdown led to increased S-phenotypic marker expression at both protein and mRNA levels. Together these results suggest that CgA maintains IGF secretion and intracellular signaling to regulate proliferation and differentiation in neuroblastomas.
Collapse
Affiliation(s)
- Dongyun Zhang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | - Lilit Babayan
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | - Hillary Ho
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | - Anthony P Heaney
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA .,Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| |
Collapse
|
35
|
Stanisavljević A, Perić I, Gass P, Inta D, Lang UE, Borgwardt S, Filipović D. Brain Sub/Region-Specific Effects of Olanzapine on c-Fos Expression of Chronically Socially Isolated Rats. Neuroscience 2018; 396:46-65. [PMID: 30458222 DOI: 10.1016/j.neuroscience.2018.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022]
Abstract
Olanzapine (Olz) is an atypical antipsychotic used to treat depression, anxiety and schizophrenia, which can be caused by chronic psychosocial stress. c-Fos protein expression has been used as an indirect marker of neuronal activity in response to various forms of stress or pharmacological treatments. We examined the effects of a 3-week treatment of Olz (7.5 mg/kg/day) on c-Fos protein expression in stress-relevant brain sub/regions, its relationship with isolation-induced behavioral changes, and potential sites of Olz action on control and male rats exposed to 6 weeks of chronic social isolation (CSIS), an animal model of depression. Olz treatment reversed depression- and anxiety-like behaviors induced by CSIS and suppressed a CSIS-induced increase in the number of c-Fos-positive cells in subregions of the dorsal hippocampus, ventral (v) DG, retrosplenial cortex, and medial prefrontal cortex. In contrast, no change in c-Fos expression was seen in the CA3v, amygdala and thalamic, hypothalamic or striatal subregions in Olz-treated CSIS rats, suggesting different brain sub/regions' susceptibility to Olz. An increased number of c-Fos-positive cells in the CA1v, amygdala and thalamic, hypothalamic and striatal subregions in controls as well as in the CA1v and subregion of the hypothalamus and nucleus accumbens in Olz-treated CSIS rats was found. Results suggest the activation of brain sub/regions following CSIS that may be involved in depressive and anxiety-like behaviors. Olz treatment showed region-specific effects on neuronal activation. Our data contribute to a better understanding of the mechanisms underlying the CSIS response and potential brain targets of Olz in socially isolated rats.
Collapse
Affiliation(s)
- Andrijana Stanisavljević
- Vinča Institute of Nuclear Sciences, Laboratory for Molecular Biology and Endocrinology, University of Belgrade, Serbia
| | - Ivana Perić
- Vinča Institute of Nuclear Sciences, Laboratory for Molecular Biology and Endocrinology, University of Belgrade, Serbia
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Undine E Lang
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Dragana Filipović
- Vinča Institute of Nuclear Sciences, Laboratory for Molecular Biology and Endocrinology, University of Belgrade, Serbia.
| |
Collapse
|
36
|
Perić I, Costina V, Stanisavljević A, Findeisen P, Filipović D. Proteomic characterization of hippocampus of chronically socially isolated rats treated with fluoxetine: Depression-like behaviour and fluoxetine mechanism of action. Neuropharmacology 2018; 135:268-283. [DOI: 10.1016/j.neuropharm.2018.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
|
37
|
Elsaed WM, Alahmadi AM, Al-Ahmadi BT, Taha JA, Tarabishi RM. Gastroprotective and antioxidant effects of fluvoxamine on stress-induced peptic ulcer in rats. J Taibah Univ Med Sci 2018; 13:422-431. [PMID: 31555068 PMCID: PMC6708076 DOI: 10.1016/j.jtumed.2018.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 02/07/2023] Open
Abstract
Objectives Stress-induced peptic ulcer disease (SPUD) refers to erosions in the mucosa of the upper gastrointestinal tract that are caused by stress. Some antidepressants are reported to have antioxidant and antiulcer effects. However, histopathological and biochemical evaluation of the anti-ulcer activity of a comparable antidepressant, fluvoxamine, has not been adequately investigated. This study aims to determine the anti-ulcer efficacy of fluvoxamine in reducing stress-induced histopathological and biochemical changes in the gastric mucosa. Methods Thirty adult male albino rats were divided into three groups of 10 rats each: the control groups, the SPUD group, and the fluvoxamine-pre-treated group, which received fluvoxamine for eight days before stress exposure. The cold-restraint stress method was used to induce stomach ulcers in the SPUD and fluvoxamine groups. Afterward, the stomachs of rats were removed, opened, and ulcer indices were calculated. Light microscopy was performed following haematoxylin and eosin staining, periodic acid Schiff's, Masson's trichrome staining, and proliferating cell nuclear antigen immunostaining. Gastric tissue levels of oxidative stress markers were measured and compared among groups. Results The stomachs of the fluvoxamine-treated rats showed a significantly lower number of ulcers with minimal mucosal injury compared with those of rats from the SPUD group. The oxidative stress marker levels and SPUD ulcer indices were significantly different among groups. Conclusion Fluvoxamine pre-treatment exerted a gastroprotective effect against ulcer development and promoted healing of the developed lesions.
Collapse
Affiliation(s)
- Wael M Elsaed
- Anatomy & Embryology Department, Taibah University, Almadinah Almunawwarah, KSA.,Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | - Jumana A Taha
- College of Medicine, Taibah University, Almadinah Almunawwarah, KSA
| | | |
Collapse
|
38
|
Chronic Treatment with Fluoxetine or Clozapine of Socially Isolated Rats Prevents Subsector-Specific Reduction of Parvalbumin Immunoreactive Cells in the Hippocampus. Neuroscience 2018; 371:384-394. [DOI: 10.1016/j.neuroscience.2017.12.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
|
39
|
Todorović N, Filipović D. The antidepressant- and anxiolytic-like effects of fluoxetine and clozapine in chronically isolated rats involve inhibition of hippocampal TNF-α. Pharmacol Biochem Behav 2017; 163:57-65. [DOI: 10.1016/j.pbb.2017.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/20/2023]
|