1
|
Torrens WA, Pablo JN, Berryhill ME, Haigh SM. Pattern glare sensitivity distinguishes subclinical autism and schizotypy. Cogn Neuropsychiatry 2024; 29:155-172. [PMID: 38551240 PMCID: PMC11296901 DOI: 10.1080/13546805.2024.2335103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 03/20/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Schizophrenia and autism spectrum disorder are distinct neurodevelopmental disorders sharing clinically relevant behaviours. However, early sensory responses show divergent responses. Individuals with schizophrenia typically exhibit cortical hypo-excitability whereas individuals with autism show cortical hyperexcitability. Identifying reliable neurobiological differences between the disorders can diminish misdiagnosis and optimise treatments. METHODS The pattern glare test (PGT) is a simple measure of behavioural hyperexcitability. It measures the number of illusions seen in a static horizontal grating. We collected PGT data from non-clinical adults varying in traits of autism and schizophrenia (schizotypy). 576 undergraduate students completed an online survey consisting of the Schizotypal Personality Questionnaire - Brief Revised, the Autism Spectrum Quotient, and the PGT. RESULTS Subclinical autism and schizotypy traits were highly positively correlated. However, only schizotypy scores were significantly predictive of reporting more pattern glare (PG) illusions. When assessing the subcomponents of the schizotypy and autism scores, positive and disorganised schizotypy traits were predictive of reporting more PG illusions. Whereas, subclinical autism factors were not predictive of PG illusions. CONCLUSIONS High schizotypy performed the PGT in a manner consistent with behavioural hyperexcitability. The PGT distinguished subclinical autistic traits from schizotypy, suggesting potential clinical application.
Collapse
Affiliation(s)
- Wendy A Torrens
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| | - Jenna N Pablo
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| | - Marian E Berryhill
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| | - Sarah M Haigh
- Department of Psychology and Institute for Neuroscience, University of Nevada, Reno, USA
| |
Collapse
|
2
|
Tranfa M, Iasevoli F, Cocozza S, Ciccarelli M, Barone A, Brunetti A, de Bartolomeis A, Pontillo G. Neural substrates of verbal memory impairment in schizophrenia: A multimodal connectomics study. Hum Brain Mapp 2023; 44:2829-2840. [PMID: 36852587 PMCID: PMC10089087 DOI: 10.1002/hbm.26248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
While verbal memory is among the most compromised cognitive domains in schizophrenia (SZ), its neural substrates remain elusive. Here, we explored the structural and functional brain network correlates of verbal memory impairment in SZ. We acquired diffusion and resting-state functional MRI data of 49 SZ patients, classified as having preserved (VMP, n = 22) or impaired (VMI, n = 26) verbal memory based on the List Learning task, and 55 healthy controls (HC). Structural and functional connectivity matrices were obtained and analyzed to assess associations with disease status (SZ vs. HC) and verbal memory impairment (VMI vs. VMP) using two complementary data-driven approaches: threshold-free network-based statistics (TFNBS) and hybrid connectivity independent component analysis (connICA). TFNBS showed altered connectivity in SZ patients compared with HC (p < .05, FWER-corrected), with distributed structural changes and functional reorganization centered around sensorimotor areas. Specifically, functional connectivity was reduced within the visual and somatomotor networks and increased between visual areas and associative and subcortical regions. Only a tiny cluster of increased functional connectivity between visual and bilateral parietal attention-related areas correlated with verbal memory dysfunction. Hybrid connICA identified four robust traits, representing fundamental patterns of joint structural-functional connectivity. One of these, mainly capturing the functional connectivity profile of the visual network, was significantly associated with SZ (HC vs. SZ: Cohen's d = .828, p < .0001) and verbal memory impairment (VMP vs. VMI: Cohen's d = -.805, p = .01). We suggest that aberrant connectivity of sensorimotor networks may be a key connectomic signature of SZ and a putative biomarker of SZ-related verbal memory impairment, in consistency with bottom-up models of cognitive disruption.
Collapse
Affiliation(s)
- Mario Tranfa
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
| | - Felice Iasevoli
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
| | - Sirio Cocozza
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
| | - Mariateresa Ciccarelli
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
| | - Annarita Barone
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
| | - Arturo Brunetti
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
| | - Andrea de Bartolomeis
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
- Staff of UNESCO Chair on Health Education and Sustainable DevelopmentUniversity “Federico II”NaplesItaly
| | - Giuseppe Pontillo
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
- Department of Electrical Engineering and Information Technology (DIETI)University “Federico II”NaplesItaly
| |
Collapse
|
3
|
MacLean MW, Hadid V, Spreng RN, Lepore F. Revealing robust neural correlates of conscious and unconscious visual processing: activation likelihood estimation meta-analyses. Neuroimage 2023; 273:120088. [PMID: 37030413 DOI: 10.1016/j.neuroimage.2023.120088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Our ability to consciously perceive information from the visual scene relies on a myriad of intrinsic neural mechanisms. Functional neuroimaging studies have sought to identify the neural correlates of conscious visual processing and to further dissociate from those pertaining to preconscious and unconscious visual processing. However, delineating what core brain regions are involved in eliciting a conscious percept remains a challenge, particularly regarding the role of prefrontal-parietal regions. We performed a systematic search of the literature that yielded a total of 54 functional neuroimaging studies. We conducted two quantitative meta-analyses using activation likelihood estimation to identify reliable patterns of activation engaged by i. conscious (n = 45 studies, comprising 704 participants) and ii. unconscious (n = 16 studies, comprising 262 participants) visual processing during various task performances. Results of the meta-analysis specific to conscious percepts quantitatively revealed reliable activations across a constellation of regions comprising the bilateral inferior frontal junction, intraparietal sulcus, dorsal anterior cingulate, angular gyrus, temporo-occipital cortex and anterior insula. Neurosynth reverse inference revealed conscious visual processing to be intertwined with cognitive terms related to attention, cognitive control and working memory. Results of the meta-analysis on unconscious percepts revealed consistent activations in the lateral occipital complex, intraparietal sulcus and precuneus. These findings highlight the notion that conscious visual processing readily engages higher-level regions including the inferior frontal junction and unconscious processing reliably recruits posterior regions, mainly the lateral occipital complex.
Collapse
|
4
|
Conscious interpretation: A distinct aspect for the neural markers of the contents of consciousness. Conscious Cogn 2023; 108:103471. [PMID: 36736210 DOI: 10.1016/j.concog.2023.103471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
Progress in the science of consciousness depends on the experimental paradigms and varieties of contrastive analysis available to researchers. Here we highlight paradigms where the object is represented in consciousness as a set of its features but the interpretation of this set alternates in consciousness. We group experimental paradigms with this property under the label "conscious interpretation". We compare the paradigms studying conscious interpretation of the already consciously perceived objects with other types of experimental paradigms. We review previous and recent studies investigating this interpretative aspect of consciousness and propose future directions. We put forward the hypothesis that there are types of stimuli with a hierarchy of interpretations for which the rule applies: conscious experience is drawn towards higher-level interpretation and reverting back to the lower level of interpretation is impossible. We discuss how theories of consciousness might incorporate knowledge and constraints arising from the characteristics of conscious interpretation.
Collapse
|
5
|
Luo Q, Chen J, Li Y, Wu Z, Lin X, Yao J, Yu H, Peng H, Wu H. Altered regional brain activity and functional connectivity patterns in major depressive disorder: A function of childhood trauma or diagnosis? J Psychiatr Res 2022; 147:237-247. [PMID: 35066292 DOI: 10.1016/j.jpsychires.2022.01.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/26/2022]
Abstract
Childhood trauma (CT) is a non-specific risk factor for major depressive disorder (MDD). However, the neurobiological mechanisms of MDD with CT remain unclear. In the present study, we sought to determine the specific brain regions associated with CT and MDD etiology. Fractional amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC) analyses were performed to assess alterations of intrinsic brain activity in MDD with CT, MDD without CT, healthy controls with CT, and healthy controls without CT. Two-by-two factorial analyses were performed to examine the effects of the factors "MDD" and "CT" on fALFF and FC. Moderator analysis was used to explore whether the severity of depression moderated the relationship between CT and aberrant fALFF. We found that the etiological effects of MDD and CT exhibited negative impacts on brain dysfunction including altered fALFF in the left postcentral gyrus, left lingual gyrus, left paracentral lobule (PCL), and left cuneus. Decreased FC was observed in the following regions: (i) the left lingual gyrus seed and the left fusiform gyrus as well as the right calcarine cortex; (ii) the left PCL seed and the left supplementary motor area, left calcarine cortex, left precentral gyrus, and right cuneus; (iii) the left postcentral gyrus seed and left superior parietal lobule, right postcentral gyrus, and left precentral gyrus. Furthermore, the severity of depression acted as a moderator in the relationship between CT and aberrant fALFF in the left PCL. These data indicate that MDD patients with and without trauma exposure are clinically and neurobiologically distinct.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Juran Chen
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Yuhong Li
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Zhiyao Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Xinyi Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Jiazheng Yao
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Huiwen Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China.
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China.
| |
Collapse
|
6
|
Grave J, Madeira N, Martins MJ, Silva S, Korb S, Soares SC. Slower access to visual awareness but otherwise intact implicit perception of emotional faces in schizophrenia-spectrum disorders. Conscious Cogn 2021; 93:103165. [PMID: 34274640 DOI: 10.1016/j.concog.2021.103165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
Schizophrenia-spectrum disorders are characterized by deficits in social domains. Extant research has reported an impaired ability to perceive emotional faces in schizophrenia. Yet, it is unclear if these deficits occur already in the access to visual awareness. To investigate this question, 23 people with schizophrenia or schizoaffective disorder and 22 healthy controls performed a breaking continuous flash suppression task with fearful, happy, and neutral faces. Response times were analysed with generalized linear mixed models. People with schizophrenia-spectrum disorders were slower than controls in detecting faces, but did not show emotion-specific impairments. Moreover, happy faces were detected faster than neutral and fearful faces, across all participants. Although caution is needed when interpreting the main effect of group, our findings may suggest an elevated threshold for visual awareness in schizophrenia-spectrum disorders, but an intact implicit emotion perception. Our study provides a new insight into the mechanisms underlying emotion perception in schizophrenia-spectrum disorders.
Collapse
Affiliation(s)
- Joana Grave
- William James Center for Research, Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Center for Health Technology and Services Research, Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Nuno Madeira
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal; Institute of Psychological Medicine, Faculty of Medicine - University of Coimbra, Portugal, Rua Larga, 3004-504 Coimbra, Portugal
| | - Maria João Martins
- Institute of Psychological Medicine, Faculty of Medicine - University of Coimbra, Portugal, Rua Larga, 3004-504 Coimbra, Portugal; Ocupational Health and Safety Management Services, University of Coimbra Social Services, Rua Doutor Guilherme Moreira 12, 3000-210 Coimbra, Portugal
| | - Samuel Silva
- Department of Electronics, Telecommunication and Informatics (DETI)/Institute of Electronics and Informatics Engineering (IEETA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sebastian Korb
- Department of Psychology, University of Essex, CO4 3SQ Colchester, United Kingdom; Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5 1010, Vienna, Austria
| | - Sandra Cristina Soares
- William James Center for Research, Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Center for Health Technology and Services Research, Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Carrier M, Guilbert J, Lévesque JP, Tremblay MÈ, Desjardins M. Structural and Functional Features of Developing Brain Capillaries, and Their Alteration in Schizophrenia. Front Cell Neurosci 2021; 14:595002. [PMID: 33519380 PMCID: PMC7843388 DOI: 10.3389/fncel.2020.595002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia affects more than 1% of the world's population and shows very high heterogeneity in the positive, negative, and cognitive symptoms experienced by patients. The pathogenic mechanisms underlying this neurodevelopmental disorder are largely unknown, although it is proposed to emerge from multiple genetic and environmental risk factors. In this work, we explore the potential alterations in the developing blood vessel network which could contribute to the development of schizophrenia. Specifically, we discuss how the vascular network evolves during early postnatal life and how genetic and environmental risk factors can lead to detrimental changes. Blood vessels, capillaries in particular, constitute a dynamic and complex infrastructure distributing oxygen and nutrients to the brain. During postnatal development, capillaries undergo many structural and anatomical changes in order to form a fully functional, mature vascular network. Advanced technologies like magnetic resonance imaging and near infrared spectroscopy are now enabling to study how the brain vasculature and its supporting features are established in humans from birth until adulthood. Furthermore, the contribution of the different neurovascular unit elements, including pericytes, endothelial cells, astrocytes and microglia, to proper brain function and behavior, can be dissected. This investigation conducted among different brain regions altered in schizophrenia, such as the prefrontal cortex, may provide further evidence that schizophrenia can be considered a neurovascular disorder.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec, QC, Canada
| | - Jérémie Guilbert
- Axe Oncologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Department of Physics, Physical Engineering and Optics, Université Laval, Québec, QC, Canada
| | - Jean-Philippe Lévesque
- Axe Oncologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Department of Physics, Physical Engineering and Optics, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.,Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
| | - Michèle Desjardins
- Axe Oncologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Department of Physics, Physical Engineering and Optics, Université Laval, Québec, QC, Canada
| |
Collapse
|