1
|
Almodóvar-Payá C, Guardiola-Ripoll M, Giralt-López M, Oscoz-Irurozqui M, Canales-Rodríguez EJ, Madre M, Soler-Vidal J, Ramiro N, Callado LF, Arias B, Gallego C, Pomarol-Clotet E, Fatjó-Vilas M. NRN1 epistasis with BDNF and CACNA1C: mediation effects on symptom severity through neuroanatomical changes in schizophrenia. Brain Struct Funct 2024; 229:1299-1315. [PMID: 38720004 PMCID: PMC11147852 DOI: 10.1007/s00429-024-02793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/19/2024] [Indexed: 06/05/2024]
Abstract
The expression of Neuritin-1 (NRN1), a neurotrophic factor crucial for neurodevelopment and synaptic plasticity, is enhanced by the Brain Derived Neurotrophic Factor (BDNF). Although the receptor of NRN1 remains unclear, it is suggested that NRN1's activation of the insulin receptor (IR) pathway promotes the transcription of the calcium voltage-gated channel subunit alpha1 C (CACNA1C). These three genes have been independently associated with schizophrenia (SZ) risk, symptomatology, and brain differences. However, research on how they synergistically modulate these phenotypes is scarce. We aimed to study whether the genetic epistasis between these genes affects the risk and clinical presentation of the disorder via its effect on brain structure. First, we tested the epistatic effect of NRN1 and BDNF or CACNA1C on (i) the risk for SZ, (ii) clinical symptoms severity and functionality (onset, PANSS, CGI and GAF), and (iii) brain cortical structure (thickness, surface area and volume measures estimated using FreeSurfer) in a sample of 86 SZ patients and 89 healthy subjects. Second, we explored whether those brain clusters influenced by epistatic effects mediate the clinical profiles. Although we did not find a direct epistatic impact on the risk, our data unveiled significant effects on the disorder's clinical presentation. Specifically, the NRN1-rs10484320 x BDNF-rs6265 interplay influenced PANSS general psychopathology, and the NRN1-rs4960155 x CACNA1C-rs1006737 interaction affected GAF scores. Moreover, several interactions between NRN1 SNPs and BDNF-rs6265 significantly influenced the surface area and cortical volume of the frontal, parietal, and temporal brain regions within patients. The NRN1-rs10484320 x BDNF-rs6265 epistasis in the left lateral orbitofrontal cortex fully mediated the effect on PANSS general psychopathology. Our study not only adds clinical significance to the well-described molecular relationship between NRN1 and BDNF but also underscores the utility of deconstructing SZ into biologically validated brain-imaging markers to explore their mediation role in the path from genetics to complex clinical manifestation.
Collapse
Affiliation(s)
- Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERER (Biomedical Research Network in Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Giralt-López
- Department of Child and Adolescent Psychiatry, Germans Trias i Pujol University Hospital (HUGTP), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Maitane Oscoz-Irurozqui
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Red de Salud Mental de Gipuzkoa, Osakidetza-Basque Health Service, Gipuzkoa, Spain
| | - Erick Jorge Canales-Rodríguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mercè Madre
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Mental Health, IR SANT PAU, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma Barcelona, Barcelona, Spain
| | - Joan Soler-Vidal
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Benito Menni, Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain
| | - Núria Ramiro
- Hospital San Rafael, Germanes Hospitalàries, Barcelona, Spain
| | - Luis F Callado
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Bizkaia, Spain
- BioBizkaia Health Research Institute, Bizkaia, Spain
| | - Bárbara Arias
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Carme Gallego
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Schmitt A, Falkai P, Papiol S. Neurodevelopmental disturbances in schizophrenia: evidence from genetic and environmental factors. J Neural Transm (Vienna) 2023; 130:195-205. [PMID: 36370183 PMCID: PMC9660136 DOI: 10.1007/s00702-022-02567-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Since more than 3 decades, schizophrenia (SZ) has been regarded as a neurodevelopmental disorder. The neurodevelopmental hypothesis proposes that SZ is associated with genetic and environmental risk factors, which influence connectivity in neuronal circuits during vulnerable developmental periods. We carried out a non-systematic review of genetic/environmental factors that increase SZ risk in light of its neurodevelopmental hypothesis. We also reviewed the potential impact of SZ-related environmental and genetic risk factors on grey and white matter pathology and brain function based on magnetic resonance imaging and post-mortem studies. Finally, we reviewed studies that have used patient-derived neuronal models to gain knowledge of the role of genetic and environmental factors in early developmental stages. Taken together, these studies indicate that a variety of environmental factors may interact with genetic risk factors during the pre- or postnatal period and/or during adolescence to induce symptoms of SZ in early adulthood. These risk factors induce disturbances of macro- and microconnectivity in brain regions involving the prefrontal, temporal and parietal cortices and the hippocampus. On the molecular and cellular level, a disturbed synaptic plasticity, loss of oligodendrocytes and impaired myelination have been shown in brain regions of SZ patients. These cellular/histological phenotypes are related to environmental risk factors such as obstetric complications, maternal infections and childhood trauma and genetic risk factors identified in recent genome-wide association studies. SZ-related genetic risk may contribute to active processes interfering with synaptic plasticity in the adult brain. Advances in stem cell technologies are providing promising mechanistic insights into how SZ risk factors impact the developing brain. Further research is needed to understand the timing of the different complex biological processes taking place as a result of the interplay between genetic and environmental factors.
Collapse
Affiliation(s)
- Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstr. 7, 80336, Munich, Germany.
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstr. 7, 80336, Munich, Germany
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, Munich, Germany
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstr. 7, 80336, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|