1
|
Hourani T, Perez-Gonzalez A, Khoshmanesh K, Luwor R, Achuthan AA, Baratchi S, O'Brien-Simpson NM, Al-Hourani A. Label-free macrophage phenotype classification using machine learning methods. Sci Rep 2023; 13:5202. [PMID: 36997576 PMCID: PMC10061362 DOI: 10.1038/s41598-023-32158-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
Macrophages are heterogeneous innate immune cells that are functionally shaped by their surrounding microenvironment. Diverse macrophage populations have multifaceted differences related to their morphology, metabolism, expressed markers, and functions, where the identification of the different phenotypes is of an utmost importance in modelling immune response. While expressed markers are the most used signature to classify phenotypes, multiple reports indicate that macrophage morphology and autofluorescence are also valuable clues that can be used in the identification process. In this work, we investigated macrophage autofluorescence as a distinct feature for classifying six different macrophage phenotypes, namely: M0, M1, M2a, M2b, M2c, and M2d. The identification was based on extracted signals from multi-channel/multi-wavelength flow cytometer. To achieve the identification, we constructed a dataset containing 152,438 cell events each having a response vector of 45 optical signals fingerprint. Based on this dataset, we applied different supervised machine learning methods to detect phenotype specific fingerprint from the response vector, where the fully connected neural network architecture provided the highest classification accuracy of 75.8% for the six phenotypes compared simultaneously. Furthermore, by restricting the number of phenotypes in the experiment, the proposed framework produces higher classification accuracies, averaging 92.0%, 91.9%, 84.2%, and 80.4% for a pool of two, three, four, five phenotypes, respectively. These results indicate the potential of the intrinsic autofluorescence for classifying macrophage phenotypes, with the proposed method being quick, simple, and cost-effective way to accelerate the discovery of macrophage phenotypical diversity.
Collapse
Affiliation(s)
- Tetiana Hourani
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Alexis Perez-Gonzalez
- Melbourne Cytometry Platform, Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute of Infection and Immunity, Parkville, VIC, 3010, Australia
| | | | - Rodney Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, 3050, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Sara Baratchi
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3010, Australia
| | - Akram Al-Hourani
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
2
|
Reis D, Rodrigues M, Pinto S, Silva AAE, Moreira G, Campos L, Campos P, Fialho S, Lopes M, Gomes D, Russo R, Ferreira E, Cassali G. Evaluation of the immunomodulatory activity of thalidomide on tumor-associated macrophages in the 4T1 murine metastatic breast cancer model. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The present work evaluated the immunomodulatory effect of thalidomide (Thal) at different doses on tumor-associated macrophages (TAMs) using a mouse model of human breast cancer. Mice were inoculated with 4T1 cells in the left flank and treated with Thal once a day at concentrations of 50, 100, and 150mg/kg body weight from the 5th day until the 28th day of tumor inoculation. The tumors were sized, proliferation index and TAMs count were evaluated in primary tumors and metastatic lungs. In addition, the metastasis rate was evaluated in the lungs. Thal at 150mg/kg significantly decreased tumor growth, proliferation index, and TAMs infiltration in primary tumors. Conversely, a higher number of TAMs and lower proliferation index were observed in metastatic lungs in mice treated with 150mg/kg of Thal. Furthermore, Thal at 150mg/kg significantly decreased the metastatic nodules in the lungs. Our findings demonstrated that Thal treatment considerably decreased the primary tumor and lung metastasis in mice associated with different TAM infiltration effects in these sites.
Collapse
Affiliation(s)
- D.C. Reis
- Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | - L.C. Campos
- Universidade Federal de Minas Gerais, Brazil
| | - P.P. Campos
- Universidade Federal de Minas Gerais, Brazil
| | | | | | - D.A. Gomes
- Universidade Federal de Minas Gerais, Brazil
| | - R.C. Russo
- Universidade Federal de Minas Gerais, Brazil
| | - E. Ferreira
- Universidade Federal de Minas Gerais, Brazil
| | | |
Collapse
|
3
|
Barry M, Trivedi A, Miyazawa BY, Vivona LR, Khakoo M, Zhang H, Pathipati P, Bagri A, Gatmaitan MG, Kozar R, Stein D, Pati S. Cryoprecipitate attenuates the endotheliopathy of trauma in mice subjected to hemorrhagic shock and trauma. J Trauma Acute Care Surg 2021; 90:1022-1031. [PMID: 33797484 PMCID: PMC8141010 DOI: 10.1097/ta.0000000000003164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Plasma has been shown to mitigate the endotheliopathy of trauma. Protection of the endothelium may be due in part to fibrinogen and other plasma-derived proteins found in cryoprecipitate; however, the exact mechanisms remain unknown. Clinical trials are underway investigating early cryoprecipitate administration in trauma. In this study, we hypothesize that cryoprecipitate will inhibit endothelial cell (EC) permeability in vitro and will replicate the ability of plasma to attenuate pulmonary vascular permeability and inflammation induced by hemorrhagic shock and trauma (HS/T) in mice. METHODS In vitro, barrier permeability of ECs subjected to thrombin challenge was measured by transendothelial electrical resistance. In vivo, using an established mouse model of HS/T, we compared pulmonary vascular permeability among mice resuscitated with (1) lactated Ringer's solution (LR), (2) fresh frozen plasma (FFP), or (3) cryoprecipitate. Lung tissue from the mice in all groups was analyzed for markers of vascular integrity, inflammation, and inflammatory gene expression via NanoString messenger RNA quantification. RESULTS Cryoprecipitate attenuates EC permeability and EC junctional compromise induced by thrombin in vitro in a dose-dependent fashion. In vivo, resuscitation of HS/T mice with either FFP or cryoprecipitate attenuates pulmonary vascular permeability (sham, 297 ± 155; LR, 848 ± 331; FFP, 379 ± 275; cryoprecipitate, 405 ± 207; p < 0.01, sham vs. LR; p < 0.01, LR vs. FFP; and p < 0.05, LR vs. cryoprecipitate). Lungs from cryoprecipitate- and FFP-treated mice demonstrate decreased lung injury, decreased infiltration of neutrophils and activation of macrophages, and preserved pericyte-endothelial interaction compared with LR-treated mice. Gene analysis of lung tissue from cryoprecipitate- and FFP-treated mice demonstrates decreased inflammatory gene expression, in particular, IL-1β and NLRP3, compared with LR-treated mice. CONCLUSION Our data suggest that cryoprecipitate attenuates the endotheliopathy of trauma in HS/T similar to FFP. Further investigation is warranted on active components and their mechanisms of action.
Collapse
Affiliation(s)
- Mark Barry
- University of California, San Francisco. Department of Surgery. 513 Parnassus Ave. San Francisco, CA 94143
| | - Alpa Trivedi
- University of California, San Francisco. Department of Laboratory Medicine. 513 Parnassus Ave. San Francisco, CA 94143
| | - Byron Y. Miyazawa
- University of California, San Francisco. Department of Laboratory Medicine. 513 Parnassus Ave. San Francisco, CA 94143
| | - Lindsay R. Vivona
- University of California, San Francisco. Department of Laboratory Medicine. 513 Parnassus Ave. San Francisco, CA 94143
| | - Manisha Khakoo
- University of California, San Francisco. Department of Laboratory Medicine. 513 Parnassus Ave. San Francisco, CA 94143
| | - Haoqian Zhang
- University of California, San Francisco. Department of Laboratory Medicine. 513 Parnassus Ave. San Francisco, CA 94143
| | - Praneeti Pathipati
- University of California, San Francisco. Department of Laboratory Medicine. 513 Parnassus Ave. San Francisco, CA 94143
| | - Anil Bagri
- Cerus Corporation. 1220 Concord Ave. Concord, CA
| | | | - Rosemary Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD
| | - Deborah Stein
- University of California, San Francisco. Department of Surgery. 513 Parnassus Ave. San Francisco, CA 94143
| | - Shibani Pati
- University of California, San Francisco. Department of Laboratory Medicine. 513 Parnassus Ave. San Francisco, CA 94143
| |
Collapse
|
4
|
Bianchi MG, Campagnolo L, Allegri M, Ortelli S, Blosi M, Chiu M, Taurino G, Lacconi V, Pietroiusti A, Costa AL, Poland CA, Baird D, Duffin R, Bussolati O, Bergamaschi E. Length-dependent toxicity of TiO 2 nanofibers: mitigation via shortening. Nanotoxicology 2019; 14:433-452. [PMID: 31726913 DOI: 10.1080/17435390.2019.1687775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Length and aspect ratio represent important toxicity determinants of fibrous nanomaterials. We have previously shown that anatase TiO2 nanofibers (TiO2 NF) cause a dose-dependent decrease of cell viability as well as the loss of epithelial barrier integrity in polarized airway cell monolayers. Herein we have investigated the impact of fiber shortening, obtained by ball-milling, on the biological effects of TiO2 NF of industrial origin. Long TiO2 NF (L-TiO2 NF) were more cytotoxic than their shortened counterparts (S-TiO2 NF) toward alveolar A549 cells and bronchial 16HBE cells. Moreover, L-TiO2 NF increased the permeability of 16HBE monolayers and perturbed the distribution of tight-junction proteins, an effect also mitigated by fiber shortening. Raw264.7 macrophages efficiently internalized shortened but not long NF, which caused cell stretching and deformation. Compared with L-TiO2 NF, S-TiO2 NF triggered a more evident macrophage activation, an effect suppressed by the phagocytosis inhibitor cytochalasin B. Conversely, a significant increase of inflammatory markers was detected in either the lungs or the peritoneal cavity of mice exposed to L-TiO2 NF but not to S-TiO2 NF, suggesting that short-term macrophage activation in vitro may not be always a reliable indicator of persistent inflammation in vivo. It is concluded that fiber shortening mitigates NF detrimental effects on cell viability and epithelial barrier competence in vitro as well as inflammation development in vivo. These data suggest that fiber shortening may represent an effective safe-by-design strategy for mitigating TiO2 NF toxic effects.
Collapse
Affiliation(s)
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Manfredi Allegri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Ortelli
- ISTEC-CNR, Institute of Science and Technology for Ceramics - National Research Council of Italy, Faenza, Italy
| | - Magda Blosi
- ISTEC-CNR, Institute of Science and Technology for Ceramics - National Research Council of Italy, Faenza, Italy
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Pietroiusti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Anna L Costa
- ISTEC-CNR, Institute of Science and Technology for Ceramics - National Research Council of Italy, Faenza, Italy
| | - Craig A Poland
- Centre for Inflammation Research, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh, UK
| | - Daniel Baird
- Centre for Inflammation Research, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh, UK
| | - Rodger Duffin
- Centre for Inflammation Research, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh, UK
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Enrico Bergamaschi
- Department of Public Health Science and Pediatrics, University of Turin, Turin
| |
Collapse
|
5
|
TAK1 inhibition attenuates both inflammation and fibrosis in experimental pneumoconiosis. Cell Discov 2017; 3:17023. [PMID: 28698801 PMCID: PMC5504492 DOI: 10.1038/celldisc.2017.23] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
Pneumoconiosis, caused by inhalation of mineral dusts, is a major occupational disease worldwide. Currently, there are no effective drugs owing to a lack of potential therapeutic targets during either the inflammation or fibrosis molecular events in pneumoconiosis. Here, we performed microarrays to identify aberrantly expressed genes in the above molecular events in vitro and found a hub gene transforming growth factor-β-activated kinase 1 (TAK1), which was highly expressed and activated in pneumoconiosis patients as well as silica-exposed rats with experimental pneumoconiosis. Genetic modulation of TAK1 by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9, RNA interference and overexpression indicated the important role of TAK1 in both inflammation and fibrosis in experimental pneumoconiosis. To achieve pharmacological TAK1 inhibition, we virtually screened out a natural product resveratrol, which targeted TAK1 at both N161 and A107 residues, and significantly inhibited TAK1 activation to attenuate inflammation and fibrosis in vitro. Consistently, in vivo prevention and intervention studies showed that resveratrol could inhibit pulmonary inflammation and fibrosis in silica-exposed rats.
Collapse
|
6
|
Chronic lung inflammation primes humoral immunity and augments antipneumococcal resistance. Sci Rep 2017; 7:4972. [PMID: 28694492 PMCID: PMC5504016 DOI: 10.1038/s41598-017-05212-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
Airway epithelial cells (AECs) display remarkable plasticity in response to infectious stimuli and their functional adaptations are critical for antimicrobial immunity. However, the roles of AECs and humoral mediators to host defense in non-communicable lung inflammation remain elusive. We dissected pulmonary defense against Streptococcus pneumoniae in hosts with pre-existing inflammatory conditions (SPC-HAxTCR-HA mice). Lung tissue transcriptomics and bronchoalveolar lavage fluid (BALF) proteomics revealed an induction of humoral defense mechanisms in inflamed lungs. Accordingly, besides antibacterial proteins and complement components being overrepresented in inflamed lungs, elevated polymeric immunoglobulin receptor (pIgR)-expression in AECs correlated with increased secretory immunoglobulin (SIg) transport. Consequently, opsonization assays revealed augmented pneumococcal coverage by SIgs present in the BALF of SPC-HAxTCR-HA mice, which was associated with enhanced antipneumococcal resistance. These findings emphasize the immunologic potential of AECs as well as their central role in providing antibacterial protection and put forward pIgR as potential target for therapeutic manipulation in infection-prone individuals.
Collapse
|