1
|
Luo T, Che Q, Guo Z, Song T, Zhao J, Xu D. Modulatory effects of traditional Chinese medicines on gut microbiota and the microbiota-gut-x axis. Front Pharmacol 2024; 15:1442854. [PMID: 39444598 PMCID: PMC11497133 DOI: 10.3389/fphar.2024.1442854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
The gut microbiota offers numerous benefits to the human body, including the promotion of nutrient absorption, participation in metabolic processes, and enhancement of immune function. Recent studies have introduced the concept of the gut-organ axis, which encompasses interactions such as the gut-brain axis, gut-liver axis, and gut-lung axis. This concept underscores the complex interplay between gut microbiota and various organs and tissues, including the brain, heart, lungs, liver, kidneys, muscles, and bones. Growing evidence indicates that gut microbiota can influence the onset and progression of multi-organ system diseases through their effects on the gut-organ axis. Traditional Chinese medicine has demonstrated significant efficacy in regulating the gastrointestinal system, leveraging its unique advantages. Considerable advancements have been made in understanding the role of gut microbiota and the gut-organ axis within the mechanisms of action of traditional Chinese medicine. This review aims to elucidate the roles of gut microbiota and the gut-organ axis in human health, explore the potential connections between traditional Chinese medicine and gut microbiota, and examine the therapeutic effects of traditional Chinese medicine on the microbiota-gut-organ axis. Furthermore, the review addresses the limitations and challenges present in current research while proposing potential directions for future investigations in this area.
Collapse
Affiliation(s)
- Tingting Luo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
| | - Qingya Che
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
| | - Ziyi Guo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Tingxia Song
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Sun M, Lu F, Yu D, Wang Y, Chen P, Liu S. Respiratory diseases and gut microbiota: relevance, pathogenesis, and treatment. Front Microbiol 2024; 15:1358597. [PMID: 39081882 PMCID: PMC11286581 DOI: 10.3389/fmicb.2024.1358597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Preclinical evidence has firmly established a bidirectional interaction among the lung, gut, and gut microbiome. There are many complex communication pathways between the lung and intestine, which affect each other's balance. Some metabolites produced by intestinal microorganisms, intestinal immune cells, and immune factors enter lung tissue through blood circulation and participate in lung immune function. Altered gut-lung-microbiome interactions have been identified in rodent models and humans of several lung diseases such as pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, asthma, etc. Emerging evidence suggests that microbial therapies can prevent and treat respiratory diseases, but it is unclear whether this association is a simple correlation with the pathological mechanisms of the disease or the result of causation. In this review, we summarize the complex and critical link between the gut microbiota and the lung, as well as the influence and mechanism of the gut microbiota on respiratory diseases, and discuss the role of interventions such as prebiotics and fecal bacteria transplantation on respiratory diseases. To provide a reference for the rational design of large-scale clinical studies, the direct application of microbial therapy to respiratory-related diseases can reduce the incidence and severity of diseases and accompanying complications.
Collapse
Affiliation(s)
- Mengdi Sun
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Li Y, Chen J, Xing Y, Wang J, Liang Q, Zeng J, Wang S, Yang Q, Lu J, Hu J, Lu W. Bufei Huoxue capsule attenuates COPD-related inflammation and regulates intestinal microflora, metabolites. Front Pharmacol 2024; 15:1270661. [PMID: 38659586 PMCID: PMC11041376 DOI: 10.3389/fphar.2024.1270661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
Background: Bufei Huoxue capsule (BFHX) is widely used for the clinical treatment of chronic obstructive pulmonary disease (COPD) in China. Objectives: The aim of this study is to explore the effects on COPD and the underlying mechanism of BFHX. The process and methods: In this study, we established a COPD mouse model through cigarette smoke (CS) exposure in combination with lipopolysaccharide (LPS) intratracheal instillation. Subsequently, BFHX was orally administrated to COPD mice, and their pulmonary function, lung pathology, and lung inflammation, including bronchoalveolar lavage fluid (BALF) cell count and classification and cytokines, were analyzed. In addition, the anti-oxidative stress ability of BFHX was detected by Western blotting, and the bacterial diversity, abundance, and fecal microbiome were examined using 16S rRNA sequencing technology. Outcome: BFHX was shown to improve pulmonary function, suppress lung inflammation, decrease emphysema, and increase anti-oxidative stress, whereas 16S rRNA sequencing indicated that BFHX can dynamically regulate the diversity, composition, and distribution of the intestinal flora microbiome and regulate the lysine degradation and phenylalanine metabolism of COPD mice. These results highlight another treatment option for COPD and provide insights into the mechanism of BFHX.
Collapse
Affiliation(s)
- Yuanyuan Li
- Guangzhou Medicine University,Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical, Guangzhou, China
| | - Jiali Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Xing
- Guangzhou Medicine University,Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical, Guangzhou, China
| | - Jian Wang
- Guangzhou Medicine University,Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical, Guangzhou, China
| | - Qiuling Liang
- First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiamin Zeng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siyi Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiong Yang
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jianing Lu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieying Hu
- Guangzhou Medicine University,Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical, Guangzhou, China
| | - Wenju Lu
- Guangzhou Medicine University,Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical, Guangzhou, China
| |
Collapse
|
4
|
Zhang DW, Lu JL, Dong BY, Fang MY, Xiong X, Qin XJ, Fan XM. Gut microbiota and its metabolic products in acute respiratory distress syndrome. Front Immunol 2024; 15:1330021. [PMID: 38433840 PMCID: PMC10904571 DOI: 10.3389/fimmu.2024.1330021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
The prevalence rate of acute respiratory distress syndrome (ARDS) is estimated at approximately 10% in critically ill patients worldwide, with the mortality rate ranging from 17% to 39%. Currently, ARDS mortality is usually higher in patients with COVID-19, giving another challenge for ARDS treatment. However, the treatment efficacy for ARDS is far from satisfactory. The relationship between the gut microbiota and ARDS has been substantiated by relevant scientific studies. ARDS not only changes the distribution of gut microbiota, but also influences intestinal mucosal barrier through the alteration of gut microbiota. The modulation of gut microbiota can impact the onset and progression of ARDS by triggering dysfunctions in inflammatory response and immune cells, oxidative stress, cell apoptosis, autophagy, pyroptosis, and ferroptosis mechanisms. Meanwhile, ARDS may also influence the distribution of metabolic products of gut microbiota. In this review, we focus on the impact of ARDS on gut microbiota and how the alteration of gut microbiota further influences the immune function, cellular functions and related signaling pathways during ARDS. The roles of gut microbiota-derived metabolites in the development and occurrence of ARDS are also discussed.
Collapse
Affiliation(s)
- Dong-Wei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Jia-Li Lu
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Bi-Ying Dong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Meng-Ying Fang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xue-Jun Qin
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Xian-Ming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Li H, Yang Y, Yang Y, Zhai C, Yao J, Liao W, Wang Y, Wang J, Cao C, Darwish HW, Wu W, Li W, Ge B, Ma Y, Wu H, Wu W, Zhai F. Multiomics was used to clarify the mechanism by which air pollutants affect chronic obstructive pulmonary disease: A human cohort study. Toxicology 2024; 501:153709. [PMID: 38123012 DOI: 10.1016/j.tox.2023.153709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Exposure to air pollutants has been associated with various adverse health outcomes, including chronic obstructive pulmonary disease (COPD). However, the precise underlying mechanism by which air pollution impacts COPD through remains insufficiently understood. To elucidated the molecular mechanism by which air pollutant exposure contributes to alterations in the gut microbiome and metabolism in AECOPD patients, we employed metagenomics and untargeted metabolomics to analyse the gut microbial, faecal, and serum metabolites. The correlations among air pollutants, gut microbes, serum metabolites, and blood biochemical markers were assessed using generalised additive mixed models and Spearman correlation analysis. The findings revealed that for every 10 μg/m3 increase in PM2.5 concentration, the α-diversity of the gut flora decreased by 2.16% (95% CI: 1.80%-2.53%). We found seven microorganisms that were significantly associated with air pollutants, of which Enterococcus faecium, Bacteroides fragilis, Ruthenibacterium lactatiformans, and Subdoligranulum sp.4_3_54A2FAA were primarily associated with glycolysis. We identified 13 serum metabolites and 17 faecal metabolites significantly linked to air pollutants. Seven of these metabolites, which were strongly associated with air pollutants and blood biochemical indices, were found in both serum and faecal samples. Some of these metabolites, such as 2,5-furandicarboxylic acid, C-8C1P and melatonin, were closely associated with disturbances in lipid and fatty acid metabolism in AECOPD patients. These findings underscore the impact of air pollutants on overall metabolism based on influencing gut microbes and metabolites in AECOPD patients. Moreover, these altered biomarkers establish the biologic connection between air pollutant exposure and AECOPD outcomes.The identification of pertinent biomarkers provides valuable insights for the development of precision COPD prevention strategies.
Collapse
Affiliation(s)
- Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yanting Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yanpeiyue Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Chengkai Zhai
- Pneumology Department, Xinxiang First People's Hospital, Xinxiang, Henan 453000, China
| | - Juan Yao
- Pneumology Department, Xinxiang First People's Hospital, Xinxiang, Henan 453000, China
| | - Wei Liao
- Pneumology Department, Xinxiang First People's Hospital, Xinxiang, Henan 453000, China
| | - Yongbin Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jing Wang
- Pneumology Department, Xinxiang First People's Hospital, Xinxiang, Henan 453000, China
| | - Chenlong Cao
- Pneumology Department, Xinxiang First People's Hospital, Xinxiang, Henan 453000, China
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenlong Li
- Institute of Infectious Disease Prevention and Control, Zhengzhou Center for Disease Control and Prevention, Zhengzhou, Henan 450000, China
| | - Beilei Ge
- Pneumology Department, Xinxiang First People's Hospital, Xinxiang, Henan 453000, China
| | - You Ma
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Hui Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Fei Zhai
- Pneumology Department, Xinxiang First People's Hospital, Xinxiang, Henan 453000, China.
| |
Collapse
|
6
|
Shuai Z, Xiao Q, Ling Y, Zhang Y, Zhang Y. Efficacy of Traditional Chinese exercise (Baduanjin) on patients with stable COPD: A Systematic review and Meta-analysis. Complement Ther Med 2023:102953. [PMID: 37220858 DOI: 10.1016/j.ctim.2023.102953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND COPD is a prevalent and intractable chronic airway disease. At present, COPD is one of the diseases with the highest morbidity and mortality in the world; and causes a significant economic burden to patients and society. As a traditional exercise, the Baduanjin exercise has been inherited in China for hundreds of years. However, the treatment effects of Baduanjin exercise are controversial. This systematic review was designed to evaluate the efficacy of Baduanjin exercise in patients with stable chronic obstructive pulmonary disease. METHODS Published articles were searched in nine English and Chinese databases from inception to December, 2022. Two investigators conducted study selection and data extraction independently. Review Manager software 5.4 were implemented for data synthesis and analysis. Quality assessment for each study was based on the modified PEDro scale. RESULTS This review included 41 studies with 3,835 participants with stable COPD. Compared with the control group, the pooled data of Baduanjin exercise group showed significant improvements in the following outcomes (mean difference, 95% confidence interval): FVC (0.29, 0.25-0.33), FEV1 (0.27, 0.22-0.33), FEV1% (5.38, 4.38-6.39), FEV1/FVC (5.16, 4.48-5.84), 6MWD (38.57, 35.63-41.51), CAT (-2.30, -2.89 to -1.70), mMRC (-0.57, -0.66 to -0.48), SGRQ (-8.80, -12.75 to -4.86), HAMA (-7.39, -8.77 to -6.01), HAMD (-7.80, -9.24 to -6.37), SF-36 (8.63, 6.31-10.95). CONCLUSIONS Baduanjin exercise may have the potential to enhance lung function, exercise capacity, health status, mental status, and quality of life for patients with stable COPD. ETHIC AND DISSEMINATION This study is a systematic review and it does not involve harming the rights of participants. Ethical approval will not be required for this study. The research results may be published in a peer-reviewed journal.
Collapse
Affiliation(s)
- Zhihao Shuai
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qionghua Xiao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yutong Ling
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Zhang
- Department of Rehabilitation, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yanxia Zhang
- Department of Respiratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
7
|
Affiliation(s)
- Peter V Dicpinigaitis
- Albert Einstein College of Medicine and Montefiore Medical Center/Einstein Division, 1825 Eastchester Road, Bronx, NY, 10461, USA.
| |
Collapse
|
8
|
Parrón-Ballesteros J, Gordo RG, López-Rodríguez JC, Olmo N, Villalba M, Batanero E, Turnay J. Beyond allergic progression: From molecules to microbes as barrier modulators in the gut-lung axis functionality. FRONTIERS IN ALLERGY 2023; 4:1093800. [PMID: 36793545 PMCID: PMC9923236 DOI: 10.3389/falgy.2023.1093800] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
The "epithelial barrier hypothesis" states that a barrier dysfunction can result in allergy development due to tolerance breakdown. This barrier alteration may come from the direct contact of epithelial and immune cells with the allergens, and indirectly, through deleterious effects caused by environmental changes triggered by industrialization, pollution, and changes in the lifestyle. Apart from their protective role, epithelial cells can respond to external factors secreting IL-25 IL-33, and TSLP, provoking the activation of ILC2 cells and a Th2-biased response. Several environmental agents that influence epithelial barrier function, such as allergenic proteases, food additives or certain xenobiotics are reviewed in this paper. In addition, dietary factors that influence the allergenic response in a positive or negative way will be also described here. Finally, we discuss how the gut microbiota, its composition, and microbe-derived metabolites, such as short-chain fatty acids, alter not only the gut but also the integrity of distant epithelial barriers, focusing this review on the gut-lung axis.
Collapse
Affiliation(s)
- Jorge Parrón-Ballesteros
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Rubén García Gordo
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Juan Carlos López-Rodríguez
- The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom,The Francis Crick Institute, London, United Kingdom
| | - Nieves Olmo
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Mayte Villalba
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Eva Batanero
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Javier Turnay
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain,Correspondence: Javier Turnay
| |
Collapse
|
9
|
The Molecular Pharmacology of Phloretin: Anti-Inflammatory Mechanisms of Action. Biomedicines 2023; 11:biomedicines11010143. [PMID: 36672652 PMCID: PMC9855955 DOI: 10.3390/biomedicines11010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The isolation of phlorizin from the bark of an apple tree in 1835 led to a flurry of research on its inhibitory effect on glucose transporters in the intestine and kidney. Using phlorizin as a prototype drug, antidiabetic agents with more selective inhibitory activity towards glucose transport at the kidney have subsequently been developed. In contrast, its hydrolysis product in the body, phloretin, which is also found in the apple plant, has weak antidiabetic properties. Phloretin, however, displays a range of pharmacological effects including antibacterial, anticancer, and cellular and organ protective properties both in vitro and in vivo. In this communication, the molecular basis of its anti-inflammatory mechanisms that attribute to its pharmacological effects is scrutinised. These include inhibiting the signalling pathways of inflammatory mediators' expression that support its suppressive effect in immune cells overactivation, obesity-induced inflammation, arthritis, endothelial, myocardial, hepatic, renal and lung injury, and inflammation in the gut, skin, and nervous system, among others.
Collapse
|
10
|
Salama KSM, Moazen EM, Elsawy SB, Kotb SF, Mohammed EM, Tahoun SA, Ramadan MAA, Abd Elhamid SM, Bahi RHM, Mohammad EA. Bacterial Species and Inflammatory Cell Variability in Respiratory Tracts of Patients with Chronic Obstructive Pulmonary Disease Exacerbation: A Multicentric Study. Infect Drug Resist 2023; 16:2107-2115. [PMID: 37070124 PMCID: PMC10105586 DOI: 10.2147/idr.s402828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/01/2023] [Indexed: 04/19/2023] Open
Abstract
Background and Aim Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) has profound effects on disease progression and patients' quality of life. Emerging evidence suggests an association between alterations in the respiratory microbiome flora species and airway inflammation in patients with AECOPD. The present study aimed to describe the inflammatory cells and bacterial microbiome distributions in respiratory tract in Egyptian patients with AECOPD. Subjects and Methods The present cross-sectional study included 208 patients with AECOPD. Sputum and broncho-alveolar lavage samples from the studied patients were submitted to microbial cultures using appropriate media. Total and differential leukocytic counts and were done via automated cell counter. Results The present study included 208 AECOPD patients. They comprised 167 males (80.3%) and 41 females (19.7%) with an age of 57.9 ± 4.9 years. AECOPD was categorized as mild, moderate and severe in 30.8%, 43.3% and 26%, respectively. Sputum samples had significantly higher TLC, neutrophil percent and eosinophil percent when compared with BAL samples. In contrast, lymphocyte percent was significantly higher in BAL samples. Sputum specimens had significantly lower frequency of positive growths (70.2% versus 86.5%, p = 0.001). Among the identified organisms, sputum specimens had significantly lower frequency of Strept. pneumoniae (14.4% versus 30.3%, p = 0.001), Klebsiella pneumoniae (19.7% versus 31.7%, p = 0.024), Haemophilus influenzae (12.5% versus 26.9%, p = 0.011), Pseudomonas aeruginosa (2.9% versus 10%, p = 0.019) and Acinetobacter spp. (1.9% versus 7.2%, p = 0.012) growths when compared with BAL samples. Conclusion The present study could identify a distinctive pattern of inflammatory cell distribution in sputum and BAL samples of AECOPD patients. The most commonly isolated organisms were Klebsiella pneumoniae and Strept. pneumoniae.
Collapse
Affiliation(s)
- Khadiga S M Salama
- Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Eman M Moazen
- Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Sawsan B Elsawy
- Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
- Correspondence: Sawsan B Elsawy, Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt, Email
| | - Sanaa F Kotb
- Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Eid M Mohammed
- Chest Diseases Department Faculty of Medicine for Men’s, Al-Azhar University, Cairo, Egypt
| | - Sara A Tahoun
- Clinical Pathology Department Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Marwa A A Ramadan
- Clinical Pathology Department Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Samar M Abd Elhamid
- Clinical Pathology Department Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Rania H M Bahi
- Chest Diseases Department Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Etemad A Mohammad
- Chest Diseases Department Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|