1
|
Huang W, Jiang M, Lin Y, Qi Y, Li B. Crosstalk between cancer cells and macrophages promotes OSCC cell migration and invasion through a CXCL1/EGF positive feedback loop. Discov Oncol 2024; 15:145. [PMID: 38713320 PMCID: PMC11076430 DOI: 10.1007/s12672-024-00972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND C-X-C motif chemokine ligand 1 (CXCL1) and epithelial growth factor (EGF) are highly secreted by oral squamous cell carcinoma (OSCC) cells and tumor-associated macrophages, respectively. Recent studies have shown that there is intricate "cross-talk" between OSCC cells and macrophages. However, the underlying mechanisms are still poorly elucidated. METHODS The expression of CXCL1 was detected by immunohistochemistry in OSCC clinical samples. CXCL1 levels were evaluated by RT‒PCR and ELISA in an OSCC cell line and a normal epithelial cell line. The expression of EGF was determined by RT‒PCR and ELISA. The effect of EGF on the proliferation of OSCC cells was evaluated by CCK-8 and colony formation assays. The effect of EGF on the migration and invasion ability and epithelial-mesenchymal transition (EMT) of OSCC cells was determined by wound healing, Transwell, RT‒PCR, Western blot and immunofluorescence assays. The polarization of macrophages was evaluated by RT‒PCR and flow cytometry. Western blotting was used to study the molecular mechanism in OSCC. RESULTS The expression of C-X-C motif chemokine ligand 1 (CXCL1) was higher in the OSCC cell line (Cal27) than in immortalized human keratinocytes (Hacat cells). CXCL1 derived from Cal27 cells upregulates the expression of epithelial growth factor (EGF) in macrophages. Paracrine stimulation mediated by EGF further facilitates the epithelial-mesenchymal transition (EMT) of Cal27 cells and initiates the upregulation of CXCL1 in a positive feedback-manner. Mechanistically, EGF signaling-induced OSCC cell invasion and migration can be ascribed to the activation of NF-κB signaling mediated by the epithelial growth factor receptor (EGFR), as determined by western blotting. CONCLUSIONS OSCC cell-derived CXCL1 can stimulate the M2 polarization of macrophages and the secretion of EGF. Moreover, EGF significantly activates NF-κB signaling and promotes the migration and invasion of OSCC cells in a paracrine manner. A positive feedback loop between OSCC cells and macrophages was formed, contributing to the promotion of OSCC progression.
Collapse
Affiliation(s)
- Wei Huang
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Mingjing Jiang
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Ying Lin
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Ying Qi
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Bo Li
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China.
- Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin University, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun, 130021, China.
| |
Collapse
|
2
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
3
|
Hannon G, Lesch ML, Gerber SA. Harnessing the Immunological Effects of Radiation to Improve Immunotherapies in Cancer. Int J Mol Sci 2023; 24:7359. [PMID: 37108522 PMCID: PMC10138513 DOI: 10.3390/ijms24087359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Ionizing radiation (IR) is used to treat 50% of cancers. While the cytotoxic effects related to DNA damage with IR have been known since the early 20th century, the role of the immune system in the treatment response is still yet to be fully determined. IR can induce immunogenic cell death (ICD), which activates innate and adaptive immunity against the cancer. It has also been widely reported that an intact immune system is essential to IR efficacy. However, this response is typically transient, and wound healing processes also become upregulated, dampening early immunological efforts to overcome the disease. This immune suppression involves many complex cellular and molecular mechanisms that ultimately result in the generation of radioresistance in many cases. Understanding the mechanisms behind these responses is challenging as the effects are extensive and often occur simultaneously within the tumor. Here, we describe the effects of IR on the immune landscape of tumors. ICD, along with myeloid and lymphoid responses to IR, are discussed, with the hope of shedding light on the complex immune stimulatory and immunosuppressive responses involved with this cornerstone cancer treatment. Leveraging these immunological effects can provide a platform for improving immunotherapy efficacy in the future.
Collapse
Affiliation(s)
- Gary Hannon
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.H.); (M.L.L.)
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maggie L. Lesch
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.H.); (M.L.L.)
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Scott A. Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.H.); (M.L.L.)
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
4
|
CCR3 blockage elicits polyploidization associated with the signatures of epithelial-mesenchymal transition in carcinoma cell lines. Cancer Gene Ther 2023; 30:137-148. [PMID: 36123391 DOI: 10.1038/s41417-022-00532-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 01/19/2023]
Abstract
Malignant features such as the acquisition of metastatic ability, stemness of cells, and therapeutic resistance of cancer cells are associated with epithelial-mesenchymal transition (EMT) accompanied by changes in motility and morphology. Recent reports implicated that the formation of polyploid giant cancer cells (PGCCs) in human malignancy correlated with the EMT processes. Chemokines are often involved in the regulation of cancer cell migration into tissues, and various types of human cancers exhibit enhanced expression of chemokine receptors, which could augment intrinsic potentials such as invasive activity, proliferating ability, and survival capacity in cancer cells. Nevertheless, the contribution of CCR3 in malignant cancer cells is controversial because it is a well-known primal receptor for the migration of eosinophils, one of the cells of the innate immune system. Here, we explored the blockage of chemokine receptor CCR3 in carcinoma cell lines and found that inhibition of CCR3 induced the formation of polyploid giant cells and stabilization of β-catenin via the PI3K/Akt/GSK-3β signaling pathway, which are processes associated with EMT. As a result of CCR3 inhibition, converted cells acquired enhanced mobile and proliferation abilities. In summary, these data indicate that modulation of the CCR3/PI3K/Akt/GSK-3β signaling pathway regulates polyploidization associated with the EMT processes.
Collapse
|
5
|
The interplay of cytokine signaling and non-coding RNAs in head and neck squamous cell carcinoma pathobiology. Mol Biol Rep 2022; 49:10825-10847. [DOI: 10.1007/s11033-022-07770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
|
6
|
Baysal H, De Pauw I, Zaryouh H, Peeters M, Vermorken JB, Lardon F, De Waele J, Wouters A. The Right Partner in Crime: Unlocking the Potential of the Anti-EGFR Antibody Cetuximab via Combination With Natural Killer Cell Chartering Immunotherapeutic Strategies. Front Immunol 2021; 12:737311. [PMID: 34557197 PMCID: PMC8453198 DOI: 10.3389/fimmu.2021.737311] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cetuximab has an established role in the treatment of patients with recurrent/metastatic colorectal cancer and head and neck squamous cell cancer (HNSCC). However, the long-term effectiveness of cetuximab has been limited by the development of acquired resistance, leading to tumor relapse. By contrast, immunotherapies can elicit long-term tumor regression, but the overall response rates are much more limited. In addition to epidermal growth factor (EGFR) inhibition, cetuximab can activate natural killer (NK) cells to induce antibody-dependent cellular cytotoxicity (ADCC). In view of the above, there is an unmet need for the majority of patients that are treated with both monotherapy cetuximab and immunotherapy. Accumulated evidence from (pre-)clinical studies suggests that targeted therapies can have synergistic antitumor effects through combination with immunotherapy. However, further optimizations, aimed towards illuminating the multifaceted interplay, are required to avoid toxicity and to achieve better therapeutic effectiveness. The current review summarizes existing (pre-)clinical evidence to provide a rationale supporting the use of combined cetuximab and immunotherapy approaches in patients with different types of cancer.
Collapse
Affiliation(s)
- Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Schaper-Gerhardt K, Hansel A, Walter A, Grimmelmann I, Gutzmer R. Sirolimus diminishes the expression of GRO-α (CXCL-1) /CXCR2 axis in human keratinocytes and cutaneous squamous cell carcinoma cells. J Dermatol Sci 2021; 104:30-38. [PMID: 34479772 DOI: 10.1016/j.jdermsci.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Organ transplant recipients show a high incidence for the formation of cutaneous squamous cell carcinoma (cSCC), while sirolimus appears to reduce the risk. GRO-α is a chemokine, which is overexpressed in many tumor entities and associated with malignant transformation. However, little is known about the expression and function of GRO-α in human cSCC. OBJECTIVE Our aim was to investigate the relevance of the GRO-α (CXCL-1)/ CXCR2 axis in human cSCC and the potential impact of sirolimus. METHODS We analyzed the GRO-α expression in human keratinocytes, different cSCC cell lines as well as cSCC tissue and investigated its effect on cell proliferation and migration. Additionally, we incubated cells with sirolimus and measured the expression of GRO-α and its receptor CXCR2. RESULTS We showed that both constitutive as well as induced GRO-α expression is higher in in cSCC cell lines compared to keratinocytes and that GRO-α protein is detectable in human cSCC tissue. By GRO-α exposure and shRNA knock down, we identified GRO-α as a driving factor in proliferation and migration. Moreover, in a dermis equivalent GRO-α knocked down cSCC cell lines displayed a reduced capacity in tumor nest formation. Incubation with sirolimus significantly inhibited GRO-α expression in keratinocytes as well as tumor cell lines. Moreover, sirolimus decreased the expression of the corresponding receptor CXCR2. CONCLUSION Taken together, our results suggest that the GRO-α/CXCR2 axis plays a role in human keratinocyte carcinogenesis and might represent a molecular mechanism for the preventive effect of mTOR inhibitors in cSCC development.
Collapse
Affiliation(s)
- Katrin Schaper-Gerhardt
- Skin Cancer Center Hannover, Departement of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; Department of Dermatology, Ruhr University Bochum, Campus Minden, Minden, Germany.
| | - Annika Hansel
- Skin Cancer Center Hannover, Departement of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Antje Walter
- Skin Cancer Center Hannover, Departement of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Imke Grimmelmann
- Skin Cancer Center Hannover, Departement of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Ralf Gutzmer
- Skin Cancer Center Hannover, Departement of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; Department of Dermatology, Ruhr University Bochum, Campus Minden, Minden, Germany
| |
Collapse
|
8
|
Jing F, Wang J, Zhou L, Ning Y, Xu S, Zhu Y. Bioinformatics analysis of the role of CXC ligands in the microenvironment of head and neck tumor. Aging (Albany NY) 2021; 13:17789-17817. [PMID: 34247149 PMCID: PMC8312447 DOI: 10.18632/aging.203269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022]
Abstract
Chemokines play a significant role in cancer. CXC-motif chemokine ligands (CXCLs) are associated with the tumorigenesis and progression of head and neck squamous cell carcinoma (HNSC); however, their specific functions in the tumor microenvironment remain unclear. Here, we analyzed the molecular networks and transcriptional data of HNSC patients from the Oncomine, GEPIA, String, cBioPortal, Metascape, TISCH, and TIMER databases. To verify immune functions of CXCLs, their expression was analyzed in different immune cell types. To our knowledge, this is the first report on the correlation between CXCL9-12 and 14 expression and advanced tumor stage. CXCL2, 3, 8, 10, 13, and 16 were remarkably related to tumor immunity. Kaplan-Meier and TIMER survival analyses revealed that high expression of CXCL1, 2, 4, and 6-8 is correlated with low survival in HNSC patients, whereas high expression of CXCL9, 10, 13, 14, and 17 predicts high survival. Only CXCL13 and 14 were associated with overall survival in human papilloma virus (HPV)-negative patients. Single-cell datasets confirmed that CXCLs are associated with HNSC-related immune cells. Thus, CXCL1-6, 8-10, 12-14, and 17 could be prognostic targets for HNSC, and CXCL13 and 14 could be novel biomarkers of HPV-negative HNSC.
Collapse
Affiliation(s)
- Fengyang Jing
- Department of Dental Implant Center, Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Jianxiong Wang
- Chief Physician, Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Liming Zhou
- Department of Dental Implant Center, Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yujie Ning
- Department of Dental Implant Center, Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Shengqian Xu
- Chief Physician, Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Youming Zhu
- Department of Dental Implant Center, Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
| |
Collapse
|
9
|
Newton HS, Chimote AA, Arnold MJ, Wise-Draper TM, Conforti L. Targeted knockdown of the adenosine A 2A receptor by lipid NPs rescues the chemotaxis of head and neck cancer memory T cells. Mol Ther Methods Clin Dev 2021; 21:133-143. [PMID: 33816646 PMCID: PMC8005736 DOI: 10.1016/j.omtm.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
In solid malignancies, including head and neck squamous cell carcinoma (HNSCC), the immunosuppressive molecule adenosine, which accumulates in the tumor, suppresses cytotoxic CD8+ T cell functions including chemotaxis and tumor infiltration. Adenosine functions through binding to the adenosine A2A receptor (A2AR) present on T cells. In order to increase T cell migration into the tumor, the negative effect of adenosine must be abrogated. Systemic drug treatments targeting A2AR are available; however, they could lead to negative toxicities due to the broad expression of this receptor. Herein, we developed a lipid nanoparticle (NP)-based targeted delivery approach to knock down A2AR in T cells in order to increase their chemotaxis in the presence of adenosine. By using flow cytometry, immunofluorescence, qRT-PCR, and 3D-chemotaxis, we demonstrated that CD45RO-labeled nanoparticles delivering ADORA2A gene-silencing-RNAs decreased ADORA2A mRNA expression and rescued the chemotaxis of HNSCC CD8+ memory T cells. Overall, the data indicate that targeting the adenosine signaling pathway with lipid NPs is successful at suppressing the inhibitory effect of adenosine on the chemotaxis of HNSCC memory T cells, which could ultimately help increase T cell infiltration into the tumor.
Collapse
Affiliation(s)
- Hannah S. Newton
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ameet A. Chimote
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael J. Arnold
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Trisha M. Wise-Draper
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Laura Conforti
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
10
|
Hayashi R, Nagato T, Kumai T, Ohara K, Ohara M, Ohkuri T, Hirata-Nozaki Y, Harabuchi S, Kosaka A, Nagata M, Yajima Y, Yasuda S, Oikawa K, Kono M, Kishibe K, Takahara M, Katada A, Hayashi T, Celis E, Harabuchi Y, Kobayashi H. Expression of placenta-specific 1 and its potential for eliciting anti-tumor helper T-cell responses in head and neck squamous cell carcinoma. Oncoimmunology 2020; 10:1856545. [PMID: 33457076 PMCID: PMC7781841 DOI: 10.1080/2162402x.2020.1856545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Placenta-specific 1 (PLAC1) is expressed primarily in placental trophoblasts but not in normal tissues and is a targetable candidate for cancer immunotherapy because it is a cancer testis antigen known to be up-regulated in various tumors. Although peptide epitopes capable of stimulating CD8 T cells have been previously described, there have been no reports of PLAC1 CD4 helper T lymphocyte (HTL) epitopes and the expression of this antigen in head and neck squamous cell carcinoma (HNSCC). Here, we show that PLAC1 is highly expressed in 74.5% of oropharyngeal and 51.9% of oral cavity tumors from HNSCC patients and in several HNSCC established cell lines. We also identified an HTL peptide epitope (PLAC131-50) capable of eliciting effective antigen-specific and tumor-reactive T cell responses. Notably, this peptide behaves as a promiscuous epitope capable of stimulating T cells in the context of more than one human leukocyte antigen (HLA)-DR allele and induces PLAC1-specific CD4 T cells that kill PLAC1-positive HNSCC cell lines in an HLA-DR-restricted manner. Furthermore, T-cells reactive to PLAC131-50 peptide were detected in the peripheral blood of HNSCC patients. These findings suggest that PLAC1 represents a potential target antigen for HTL based immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Ryusuke Hayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Research for Diagnosis and Treatment of Head and Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Mizuho Ohara
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yui Hirata-Nozaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Shohei Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yuki Yajima
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Syunsuke Yasuda
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Research for Diagnosis and Treatment of Head and Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, GA, USA
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
11
|
Korbecki J, Grochans S, Gutowska I, Barczak K, Baranowska-Bosiacka I. CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. Int J Mol Sci 2020; 21:ijms21207619. [PMID: 33076281 PMCID: PMC7590012 DOI: 10.3390/ijms21207619] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
CC chemokines (or β-chemokines) are 28 chemotactic cytokines with an N-terminal CC domain that play an important role in immune system cells, such as CD4+ and CD8+ lymphocytes, dendritic cells, eosinophils, macrophages, monocytes, and NK cells, as well in neoplasia. In this review, we discuss human CC motif chemokine ligands: CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 (CC motif chemokine receptor CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands). We present their functioning in human physiology and in neoplasia, including their role in the proliferation, apoptosis resistance, drug resistance, migration, and invasion of cancer cells. We discuss the significance of chemokine receptors in organ-specific metastasis, as well as the influence of each chemokine on the recruitment of various cells to the tumor niche, such as cancer-associated fibroblasts (CAF), Kupffer cells, myeloid-derived suppressor cells (MDSC), osteoclasts, tumor-associated macrophages (TAM), tumor-infiltrating lymphocytes (TIL), and regulatory T cells (Treg). Finally, we show how the effect of the chemokines on vascular endothelial cells and lymphatic endothelial cells leads to angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
| | - Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (S.G.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
12
|
Aqrawi LA, Chen X, Hynne H, Amdal C, Reppe S, Aass HCD, Rykke M, Hove LH, Young A, Herlofson BB, Westgaard KL, Utheim TP, Galtung HK, Jensen JL. Cytokines Explored in Saliva and Tears from Radiated Cancer Patients Correlate with Clinical Manifestations, Influencing Important Immunoregulatory Cellular Pathways. Cells 2020; 9:cells9092050. [PMID: 32911805 PMCID: PMC7565699 DOI: 10.3390/cells9092050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Although radiotherapy is a common form of treatment for head and neck cancer, it may lead to tissue damage in the salivary and lacrimal glands, possibly affecting cytokine expression in the gland fluid of treated individuals. Cytokine profiles in saliva and tear fluid of 29 radiated head and neck cancer patients and 20 controls were screened using a multiplex assay. Correlations between cytokine expression and clinical oral and ocular manifestations were examined, and cellular pathways influenced by these cytokines were assessed using the Functional Enrichment Analysis Tool. Significantly elevated cytokines identified in patient saliva were CCL21, IL-4, CX3CL1, CCL2, CXCL1 and CCL15. Many of these cytokines correlated positively with objective signs of oral dryness, and reduced saliva production in the patients. Although CCL21 and IL-4 levels were significantly lower in patient tear fluid, they correlated with subjective ocular symptoms. These increased salivary cytokines affected pro-inflammatory and apoptotic cellular pathways, including T cell signalling, several interleukin signalling pathways, TNF and TGF-β receptor signalling, and the apoptotic p53 pathway. In conclusion, the upregulated salivary cytokines identified suggest an interplay between innate and adaptive immunity, affecting immunoregulatory cellular pathways. Whether this is due to late effects of radiotherapy or tissue repair remains to be investigated.
Collapse
Affiliation(s)
- Lara A. Aqrawi
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (L.A.A.); (X.C.); (H.H.); (B.B.H.); (K.L.W.); (J.L.J.)
- Department of Health Sciences, Kristiania University College, 0153 Oslo, Norway
| | - Xiangjun Chen
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (L.A.A.); (X.C.); (H.H.); (B.B.H.); (K.L.W.); (J.L.J.)
| | - Håvard Hynne
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (L.A.A.); (X.C.); (H.H.); (B.B.H.); (K.L.W.); (J.L.J.)
| | - Cecilie Amdal
- Section for Head and Neck Oncology, Oslo University Hospital, 0379 Oslo, Norway;
| | - Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway; (S.R.); (H.C.D.A.); (T.P.U.)
| | - Hans Christian D. Aass
- Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway; (S.R.); (H.C.D.A.); (T.P.U.)
| | - Morten Rykke
- Department of Cariology and Gerodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway; (M.R.); (L.H.H.); (A.Y.)
| | - Lene Hystad Hove
- Department of Cariology and Gerodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway; (M.R.); (L.H.H.); (A.Y.)
| | - Alix Young
- Department of Cariology and Gerodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway; (M.R.); (L.H.H.); (A.Y.)
| | - Bente Brokstad Herlofson
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (L.A.A.); (X.C.); (H.H.); (B.B.H.); (K.L.W.); (J.L.J.)
- Department of Otorhinolaryngology-Head and Neck Surgery Division for Head, Neck and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway
| | - Kristine Løken Westgaard
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (L.A.A.); (X.C.); (H.H.); (B.B.H.); (K.L.W.); (J.L.J.)
- Department of Otorhinolaryngology-Head and Neck Surgery Division for Head, Neck and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway; (S.R.); (H.C.D.A.); (T.P.U.)
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
- The Norwegian Dry Eye Clinic, 0366 Oslo, Norway
| | - Hilde Kanli Galtung
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
- Correspondence: ; Tel.: +47-2284-0338
| | - Janicke Liaaen Jensen
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; (L.A.A.); (X.C.); (H.H.); (B.B.H.); (K.L.W.); (J.L.J.)
| |
Collapse
|
13
|
Singh S, Kumaravel S, Dhole S, Roy S, Pavan V, Chakraborty S. Neuropeptide Substance P Enhances Inflammation-Mediated Tumor Signaling Pathways and Migration and Proliferation of Head and Neck Cancers. Indian J Surg Oncol 2020; 12:93-102. [PMID: 33994734 DOI: 10.1007/s13193-020-01210-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 12/27/2022] Open
Abstract
Head and neck cancers (HNC) are extremely aggressive, highly recurrent, and the sixth most common cancer worldwide. Neuropeptide substance P, along with its primary receptor, neurokinin-1 (NK-1R), is overexpressed in HNC and is a central player in inflammation and growth and metastasis of several cancers. However, the precise SP-mediated signaling that promotes HNC progression remains ill defined. Using a panel of HNC lines, in this study, we investigated the effects of SP on proliferation and migration of HNC. Tumor cells were also treated with SP and alterations in inflammatory cytokines and chemokines, and their cognate receptors were analyzed by real-time PCR. Furthermore, we investigated the role of SP in inducing epithelial-mesenchymal transition (EMT), and matrix metalloproteases that promote tumor invasion. Our results showed that SP significantly increased tumor cell proliferation and migration and induced the expression of several genes that promote tumor growth, invasion, and metastasis which was suppressed by a specific NK1R antagonist L-703606. SP also activated NFκB that was suppressed on inhibiting NK1R. Collectively, our data shows that SP-NK1R-mediated inflammatory signaling comprises an important signaling axis in promoting HNC and may prove to be effective clinical target against HNC cells that are resistant to traditional therapy.
Collapse
Affiliation(s)
- Sumeet Singh
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807 USA
| | - Subhashree Kumaravel
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807 USA
| | - Saurabh Dhole
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807 USA
| | - Sukanya Roy
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807 USA
| | - Vani Pavan
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807 USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807 USA
| |
Collapse
|
14
|
Zeng H, Song X, Ji J, Chen L, Liao Q, Ma X. HPV infection related immune infiltration gene associated therapeutic strategy and clinical outcome in HNSCC. BMC Cancer 2020; 20:796. [PMID: 32831060 PMCID: PMC7444264 DOI: 10.1186/s12885-020-07298-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is the sixth most common tumor in human. Research has shown that HPV status HNSCC is a unique prognosis factor, which may due to its immune infiltration landscape. But the underlying mechanism is unclear. Methods In this study, we used a combination of several bioinformatics tools, including WCGNA, ssGSEA, CIBERSORT, TIDE,etc., to explore significant genes both related to HPV infection status and immune cell infiltration in HNSCC patients. Results Combined with several bioinformatics algorithms, eight hub genes were identified, including LTB, CD19, CD3D, SKAP1, KLRB1, CCL19, TBC1D10C and ARHGAP4. In HNSCC population, the hub genes had a stable co-expression, which was related to immune cell infiltration, especially CD8+ T cells, and the infiltrative immune cells were in a dysfunctional status. Samples with high hub genes expression presented with better response to immune check point block (ICB) therapy and sensitivity to bleomycin and methotrexate. Conclusions The eight hub genes we found presented with a stable co-expression in immune cell infiltration of HPV + ve HNSCC population. The co-expression of hub genes related to an immune microenvironment featuring an increase in immune cells but high degree of immune dysfunction status. Patients with high hub gene expression had a better response to ICB treatment, bleomycin and methotrexate. The co-expression of hub genes may be related to immune infiltration status in patients. The concrete molecular mechanism of hub genes function demands further exploration.
Collapse
Affiliation(s)
- Hao Zeng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Alley, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xindi Song
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Alley, Chengdu, 610041, People's Republic of China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jianrui Ji
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Alley, Chengdu, 610041, People's Republic of China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Linyan Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Alley, Chengdu, 610041, People's Republic of China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qimeng Liao
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Alley, Chengdu, 610041, People's Republic of China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Alley, Chengdu, 610041, People's Republic of China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
15
|
Toyoma S, Suzuki S, Kawasaki Y, Yamada T. SDF-1/CXCR4 induces cell invasion through CD147 in squamous cell carcinoma of the hypopharynx. Oncol Lett 2020; 20:1817-1823. [PMID: 32724425 PMCID: PMC7377101 DOI: 10.3892/ol.2020.11744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/08/2020] [Indexed: 12/01/2022] Open
Abstract
Hypopharyngeal squamous cell carcinoma (SCC) has a poor prognosis due to local invasion and metastasis. The chemokine receptor CXC chemokine receptor type 4 (CXCR4) and its ligand, stromal cell-derived factor 1 (SDF-1), play roles in tumor progression through unclear mechanisms. For the present study, we used a hypopharyngeal SCC cell line, FaDu, expressing CXCR4. We found that SDF-1 promotes migration and invasion of the FaDu cells. In addition, AMD3100, a specific antagonist of CXCR4, inhibited the binding of SDF-1 to CXCR4, resulting in a significant decrease in the FaDu cell migration induced by SDF-1. Stimulation of CXCR4 with SDF-1 induced an increase in the expression of CD147, a cell membrane protein; and this CD147 upregulation was abrogated by AMD3100. CD147 function-blocking antibodies also abolished the SDF-1-induced FaDu invasiveness. Our results suggested that SDF-1/CXCR4 mediate hypopharyngeal SCC cell migration and that CD147 is involved in the SDF-1/CXCR4-related tumor progression.
Collapse
Affiliation(s)
- Satoshi Toyoma
- Department of Otorhinolaryngology and Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Shinsuke Suzuki
- Department of Otorhinolaryngology and Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yohei Kawasaki
- Department of Otorhinolaryngology and Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology and Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
16
|
Lagunas AM, Francis M, Maniar NB, Nikolova G, Wu J, Crowe DL. Paracrine Interaction of Cancer Stem Cell Populations Is Regulated by the Senescence-Associated Secretory Phenotype (SASP). Mol Cancer Res 2019; 17:1480-1492. [PMID: 31043491 DOI: 10.1158/1541-7786.mcr-18-1356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/25/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
Dyskeratosis congenita is a telomere DNA damage syndrome characterized by defective telomere maintenance, bone marrow failure, and increased head and neck cancer risk. The Pot1b-/-;Terc+/- mouse exhibits some features of dyskeratosis congenita, but head and neck cancer was not reported in this model. To model the head and neck cancer phenotype, we created unique Pot1b- and p53-null-mutant models which allow genetic lineage tracing of two distinct stem cell populations. Loss of Pot1b expression depleted stem cells via ATR/Chk1/p53 signaling. Tumorigenesis was inhibited in Pot1b-/-;p53+/+ mice due to cellular senescence. Pot1b-/-;p53-/- tumors also exhibited senescence, but proliferated and metastasized with expansion of Lgr6+ stem cells indicative of senescence-associated secretory phenotype. Selective depletion of the small K15+ stem cell fraction resulted in reduction of Lgr6+ cells and inhibition of tumorigenesis via senescence. Gene expression studies revealed that K15+ cancer stem cells regulate Lgr6+ cancer stem cell expansion via chemokine signaling. Genetic ablation of the chemokine receptor Cxcr2 inhibited cancer stem cell expansion and tumorigenesis via senescence. The effects of chemokines were primarily mediated by PI3K signaling, which is a therapeutic target in head and neck cancer. IMPLICATIONS: Paracrine interactions of cancer stem cell populations impact therapeutic options and patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Jianchun Wu
- University of Illinois Cancer Center, Chicago, Illinois
| | - David L Crowe
- University of Illinois Cancer Center, Chicago, Illinois.
| |
Collapse
|
17
|
Wei LY, Lee JJ, Yeh CY, Yang CJ, Kok SH, Ko JY, Tsai FC, Chia JS. Reciprocal activation of cancer-associated fibroblasts and oral squamous carcinoma cells through CXCL1. Oral Oncol 2019; 88:115-123. [DOI: 10.1016/j.oraloncology.2018.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/30/2018] [Accepted: 11/03/2018] [Indexed: 01/29/2023]
|
18
|
Boven L, Holmes SP, Latimer B, McMartin K, Ma X, Moore-Medlin T, Khandelwal AR, McLarty J, Nathan CAO. Curcumin gum formulation for prevention of oral cavity head and neck squamous cell carcinoma. Laryngoscope 2018; 129:1597-1603. [PMID: 30421467 DOI: 10.1002/lary.27542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES/HYPOTHESIS Head and neck squamous cell carcinoma represents the sixth most common cancer. As a result of field cancerization, second primaries and recurrences are high. Hence, research has focused on chemoprevention. Curcumin, a polyphenol compound with anticarcinogenic properties, is one such promising nutraceutical. As poor bioavailability limits curcumin's use, a novel gum formulation was tested allowing for direct mucosal absorption into the bloodstream. This preliminary study validates curcumin gum efficacy by assessing release and transmucosal absorption, along with measuring its effects on serum cytokine levels. STUDY DESIGN Clinical trial. METHODS Protocols consisting of initial chew (chewing gum for 30 minutes) and revised chew (alternating chewing and parking gum against buccal mucosa for 30 minutes) were tested in healthy volunteers. High-performance liquid chromatography measured remnant curcumin in chewed gum, serum, and saliva. Serum levels were assayed for 15 proinflammatory cytokines via multiplex analysis. RESULTS Revised chew samples demonstrated significantly higher curcumin release and absorption (P = .0078). Curcumin serum levels were significantly higher at 4 hours in samples > 2.0 g of curcumin release (P = .01). As saliva levels decreased, a concurrent increase in serum levels was observed, with no significance in the inverse relationship (P = .1423). When evaluating differences between gender, race, and age, the Asian population showed significantly lower curcumin release and serum levels (P = .009). CXCL1 (GRO-α) and TNF-α were significantly decreased in serum after chewing the gum (P = .036, P < .001, respectively). CONCLUSIONS Enhanced mucosal contact appears critical in improving curcumin release and absorption. CXCL1 and TNF-α both represent potential biomarkers for the future study of curcumin chemoprevention. LEVEL OF EVIDENCE 2b Laryngoscope, 129:1597-1603, 2019.
Collapse
Affiliation(s)
- Lindsay Boven
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University- Health Sciences Center, Shreveport, Louisiana, U.S.A
| | - Sean P Holmes
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University- Health Sciences Center, Shreveport, Louisiana, U.S.A
| | - Brian Latimer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University- Health Sciences Center, Shreveport, Louisiana, U.S.A
| | - Kenneth McMartin
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University- Health Sciences Center, Shreveport, Louisiana, U.S.A
| | - Xiaohui Ma
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University- Health Sciences Center, Shreveport, Louisiana, U.S.A
| | - Tara Moore-Medlin
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University- Health Sciences Center, Shreveport, Louisiana, U.S.A.,Feist-Weiller Cancer Center, Louisiana State University- Health Sciences Center, Shreveport, Louisiana, U.S.A
| | - Alok R Khandelwal
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University- Health Sciences Center, Shreveport, Louisiana, U.S.A.,Feist-Weiller Cancer Center, Louisiana State University- Health Sciences Center, Shreveport, Louisiana, U.S.A
| | - Jerry McLarty
- Feist-Weiller Cancer Center, Louisiana State University- Health Sciences Center, Shreveport, Louisiana, U.S.A
| | - Cherie-Ann O Nathan
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University- Health Sciences Center, Shreveport, Louisiana, U.S.A.,Feist-Weiller Cancer Center, Louisiana State University- Health Sciences Center, Shreveport, Louisiana, U.S.A
| |
Collapse
|
19
|
McDermott SC, Rodriguez-Ramirez C, McDermott SP, Wicha MS, Nör JE. FGFR signaling regulates resistance of head and neck cancer stem cells to cisplatin. Oncotarget 2018; 9:25148-25165. [PMID: 29861860 PMCID: PMC5982758 DOI: 10.18632/oncotarget.25358] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/25/2018] [Indexed: 02/03/2023] Open
Abstract
Patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) have poor prognosis with less than 1-year median survival. Platinum-based chemotherapy remains the first-line treatment for HNSCC. The cancer stem cell (CSC) hypothesis postulates that tumors are maintained by a self-renewing CSC population that is also capable of differentiating into non-self renewing cell populations that constitute the bulk of the tumor. A small population of CSC exists within HNSCC that are relatively resistant to chemotherapy and clinically predicted to contribute to tumor recurrence. These head and neck CSCs (HNCSC) are identified by high cell-surface expression of CD44 and high intracellular activity of aldehyde dehydrogenase (ALDH) and termed ALDHhighCD44high. Here, we performed microarray analysis in two HNSCC cell lines (UM-SCC-1, UM-SCC-22B) to investigate molecular pathways active in untreated and cisplatin-resistant ALDHhighCD44high cells. Gene set enrichment analysis and iPathway analysis identified signaling pathways with major implications to the pathobiology of cancer (e.g. TNFα, IFN, IL6/STAT, NF-κB) that are enriched in cisplatin-resistant ALDHhighCD44high cells, when compared to control cells. FGF2 was also enriched in cisplatin-resistant ALDHhighCD44high, which was confirmed by ELISA analysis. Inhibition of FGF signaling using BGJ398, a pan-FGF receptor (FGFR) small-molecule inhibitor, decreased ALDHhighCD44high alone in UM-SCC-1 and preferentially targeted cisplatin-resistant ALDHhighCD44high cells in UM-SCC-22B. These findings suggest that FGFR signaling might play an important role in the resistance of head and neck CSC to cisplatin. Collectively, this work suggests that some head and neck cancer patients might benefit from the combination of cisplatin and a FGFR inhibitor.
Collapse
Affiliation(s)
- Sarah C. McDermott
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Christie Rodriguez-Ramirez
- Department of Cariology, Restorative Science & Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Sean P. McDermott
- Department of Internal Medicine–Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Max S. Wicha
- Department of Internal Medicine–Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jacques E. Nör
- Department of Cariology, Restorative Science & Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
- Department of Otolaryngology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Diegeler S, Hellweg CE. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities. Front Immunol 2017. [PMID: 28638385 PMCID: PMC5461334 DOI: 10.3389/fimmu.2017.00664] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.
Collapse
Affiliation(s)
- Sebastian Diegeler
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| | - Christine E Hellweg
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| |
Collapse
|
21
|
da Silva JM, Moreira Dos Santos TP, Sobral LM, Queiroz-Junior CM, Rachid MA, Proudfoot AEI, Garlet GP, Batista AC, Teixeira MM, Leopoldino AM, Russo RC, Silva TA. Relevance of CCL3/CCR5 axis in oral carcinogenesis. Oncotarget 2017; 8:51024-51036. [PMID: 28881626 PMCID: PMC5584227 DOI: 10.18632/oncotarget.16882] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/20/2017] [Indexed: 01/24/2023] Open
Abstract
The chemokine CCL3 is a chemotactic cytokine crucial for inflammatory cell recruitment in homeostatic and pathological conditions. CCL3 might stimulate cancer progression by promoting leukocyte accumulation, angiogenesis and tumour growth. The expression of CCL3 and its receptors CCR1 and CCR5 was demonstrated in oral squamous cell carcinoma (OSCC), but their role was not defined. Here, the functions of CCL3 were assessed using a model of chemically induced tongue carcinogenesis with 4-nitroquinoline-1-oxide (4NQO). Lineages of OSCC were used to analyse the effects of CCL3 in vitro. The 4NQO-induced lesions exhibited increased expression of CCL3, CCR1 and CCR5. CCL3-/- and CCR5-/- mice presented reduced incidence of tongue tumours compared to wild-type (WT) and CCR1-/- mice. Consistently, attenuated cytomorphological atypia and reduced cell proliferation were observed in lesions of CCL3-/- and CCR5-/- mice. OSCC from CCL3-/- mice exhibited lower infiltration of eosinophils and reduced expression of Egf, Fgf1, Tgf-β1, Vegfa, Vegfb, Itga-4, Vtn, Mmp-1a, Mmp-2 and Mmp-9 than WT mice. In vitro, CCL3 induced invasion and production of CCL5, IL-6, MMP -2, -8, -9. Blockage of CCL3 in vitro using α-CCL3 or Evasin-1 (a CCL3-binding protein) impaired tumour cell invasion. In conclusion, CCL3/CCR5 axis has pro-tumourigenic effects in oral carcinogenesis. The induction of inflammatory and angiogenic pathways and eosinophils recruitment appear to be the underlying mechanism explaining these effects. These data reveal potential protective effects of CCL3 blockade in oral cancer.
Collapse
Affiliation(s)
- Janine Mayra da Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tálita Pollyanna Moreira Dos Santos
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Bauru, Brazil
| | - Lays Martin Sobral
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Bauru, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Milene Alvarenga Rachid
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, School of Dentistry, Universidade de São Paulo, SE3;o Paulo, Bauru, Brazil
| | - Aline Carvalho Batista
- Department of Stomatology, School of Dentistry, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Bauru, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
22
|
Circulating CD105 shows significant impact in patients of oral cancer and promotes malignancy of cancer cells via CCL20. Tumour Biol 2015; 37:1995-2005. [PMID: 26334621 DOI: 10.1007/s13277-015-3991-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022] Open
Abstract
CD105 is rich in endothelium cells and is involved in angiogenesis. Higher microvascular density of tumor is also related to the prognosis in a variety of cancers. In this present study, patients with positive N classification, advanced T classification, advanced TNM stage, extracapsular spread of lymph nodes (ECS), and perineural invasion had significantly higher levels of peripheral vein (pCD105) and venous return from tumor (tCD105) in 71 patients with OSCC compared to 13 healthy volunteers. Those with higher pCD105 or tCD105 levels had significantly poorer 5-year disease-specific survival rate (DDS) and overall survival rate (OS). The tCD105 and pCD105 levels and ECS were the independent prognostic factors by the multivariate analysis according to the Cox regression model in 5-year DDS and OS rate. SAS and SCC4 cells treated with CD105 showed the increase in migration, invasion, and proliferation in vitro and in vivo. Furthermore, CCL20 expression participated in CD105-elicited cell motility in oral cancer cells. In conclusion, higher level of circulating CD105 is related to adverse pathological features among patients with OSCC. It is also a useful marker for evaluating the prognosis and targeting therapeutics of OSCC.
Collapse
|
23
|
Keglowich LF, Borger P. The Three A's in Asthma - Airway Smooth Muscle, Airway Remodeling & Angiogenesis. Open Respir Med J 2015; 9:70-80. [PMID: 26106455 PMCID: PMC4475688 DOI: 10.2174/1874306401509010070] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/04/2022] Open
Abstract
Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis.
Collapse
Affiliation(s)
- L F Keglowich
- Department of Biomedicine, University Hospital Basel, Switzerland
| | - P Borger
- Department of Biomedicine, University Hospital Basel, Switzerland
| |
Collapse
|
24
|
Fu ZC, Wang FM, Cai JM. Gene expression changes in residual advanced cervical cancer after radiotherapy: indicators of poor prognosis and radioresistance? Med Sci Monit 2015; 21:1276-87. [PMID: 25940978 PMCID: PMC4432617 DOI: 10.12659/msm.893689] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Different sensitivity of advanced cervical cancer to irradiation can decrease effectiveness of radiotherapy in some cases. We attempted to identify the differentially expressed genes in residual cervical cancer after radiotherapy that might be associated with poor prognosis and radioresistance. Material/Methods Differential genes expression was identified by an oligonucleotide microarray in cervical cancer tissues before radiation and after a 50-Gy dose of radiation. The microarray results were validated by quantitative real-time PCR. CXCL12 was validated by immunohistochemistry in paraffin-embedded cervical cancer tissues before radiotherapy. The relationship between the differentiated gene and prognosis was validated by survival analysis. Results Hierarchic cluster analysis identified 238 differentiated genes that exhibited ≥3.0-fold change and p<0.05. We found 111 genes that were in persistent up-regulation and 127 in persistent down-regulation after a 50-Gy dose of radiation when compared with the control group. These genes were involved in processes such as cell growth and death, cell-apoptosis, cell cycle regulation, cell signaling, DNA synthesis and repair, and cell adhesion. High differential expression of CXCL12, CD74, FGF7, COL14A1, PRC1, and RAD54L genes was validated by quantitative PCR before and after radiotherapy. Survival analysis results showed that the high expression of CXCL12 was closely related to poor prognosis. Conclusions The higher expression of CXCL12 might be informative regarding poor prognosis in patients undergoing radical radiotherapy. The differentially expressed genes identified in our study might provide a new method for diagnosis and treatment of radioresistance in cervical cancer.
Collapse
Affiliation(s)
- Zhi-chao Fu
- Department of Radiotherapy, Fu Zhou General Hospital, Fuzhou, Fujian, China (mainland)
| | - Feng-mei Wang
- Department of Obstetrics and Gynecology, Fu Zhou General Hospital, Fuzhou, Fujian, China (mainland)
| | - Jian-ming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|
25
|
Pirilä E, Väyrynen O, Sundquist E, Päkkilä K, Nyberg P, Nurmenniemi S, Pääkkönen V, Pesonen P, Dayan D, Vered M, Uhlin-Hansen L, Salo T. Macrophages modulate migration and invasion of human tongue squamous cell carcinoma. PLoS One 2015; 10:e0120895. [PMID: 25811194 PMCID: PMC4374792 DOI: 10.1371/journal.pone.0120895] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 01/27/2015] [Indexed: 12/29/2022] Open
Abstract
Oral tongue squamous cell carcinoma (OTSCC) has a high mortality rate and the incidence is rising worldwide. Despite advances in treatment, the disease lacks specific prognostic markers and treatment modality. The spreading of OTSCC is dependent on the tumor microenvironment and involves tumor-associated macrophages (TAMs). Although the presence of TAMs is associated with poor prognosis in OTSCC, the specific mechanisms underlying this are still unknown. The aim here was to investigate the effect of macrophages (Mfs) on HSC-3 tongue carcinoma cells and NF-kappaB activity. We polarized THP-1 cells to M1 (inflammatory), M2 (TAM-like) and R848 (imidazoquinoline-treated) type Mfs. We then investigated the effect of Mfs on HSC-3 cell migration and NF-kappaB activity, cytokine production and invasion using several different in vitro migration models, a human 3D tissue invasion model, antibody arrays, confocal microscopy, immunohistochemistry and a mouse invasion model. We found that in co-culture studies all types of Mfs fused with HSC-3 cells, a process which was partially due to efferocytosis. HSC-3 cells induced expression of epidermal growth factor and transforming growth factor-beta in co-cultures with M2 Mfs. Direct cell-cell contact between M2 Mfs and HSC-3 cells induced migration and invasion of HSC-3 cells while M1 Mfs reduced HSC-3 cell invasion. M2 Mfs had an excess of NF-kappaB p50 subunit and a lack of p65 subunits both in the presence and absence of HSC-3 cells, indicating dysregulation and pro-tumorigenic NF-kappaB activation. TAM-like cells were abundantly present in close vicinity to carcinoma cells in OTSCC patient samples. We conclude that M2 Mfs/TAMs have an important role in OTSCC regulating adhesion, migration, invasion and cytokine production of carcinoma cells favouring tumor growth. These results demonstrate that OTSCC patients could benefit from therapies targeting TAMs, polarizing TAM-like M2 Mfs to inflammatory macrophages and modulating NF-kappaB activity.
Collapse
Affiliation(s)
- Emma Pirilä
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- * E-mail:
| | - Otto Väyrynen
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Elias Sundquist
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Kaisa Päkkilä
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Pia Nyberg
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Sini Nurmenniemi
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Virve Pääkkönen
- Department of Pedodontics, Cariology and Endodontology, University of Oulu, Oulu, Finland
| | - Paula Pesonen
- Department of Community Dentistry, Institute of Dentistry, University of Oulu, Oulu, Finland
| | - Dan Dayan
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marilena Vered
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Lars Uhlin-Hansen
- Institute of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Pathology, University Hospital of Northern Norway, Tromsø, Tromsø, Norway
| | - Tuula Salo
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Oulu University Hospital, Oulu, Finland
| |
Collapse
|
26
|
Sligh J, Janda J, Jandova J. Mutations in BALB mitochondrial DNA induce CCL20 up-regulation promoting tumorigenic phenotypes. Mutat Res 2014; 769:49-58. [PMID: 25177208 PMCID: PMC4144272 DOI: 10.1016/j.mrfmmm.2014.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
mtDNA mutations are common in human cancers and are thought to contribute to the process of neoplasia. We examined the role of mtDNA mutations in skin cancer by generating fibroblast cybrids harboring a mutation in the gene encoding the mitochondrial tRNA for arginine. This somatic mutation (9821insA) was previously reported in UV-induced hyperkeratotic skin tumors in hairless mice and confers specific tumorigenic phenotypes to mutant cybrids. Microarray analysis revealed and RT-PCR along with Western blot analysis confirmed the up-regulation of CCL20 and its receptor CCR6 in mtBALB haplotype containing the mt-Tr 9821insA allele compared to wild type mtB6 haplotype. Based on reported role of CCL20 in cancer progression we examined whether the hyper-proliferation and enhanced motility of mtBALB haplotype would be associated with CCL20 levels. Treatment of both genotypes with recombinant CCL20 (rmCCL20) resulted in enhanced growth and motility of mtB6 cybrids. Furthermore, the acquired somatic alteration increased the in vivo tumor growth of mtBALB cybrids through the up-regulation of CCL20 since neutralizing antibody significantly decreased in vivo tumor growth of these cells; and tumors from anti-CCL20 treated mice injected with mtBALB cybrids showed significantly decreased CCL20 levels. When rmCCL20 or mtBALB cybrids were used as chemotactic stimuli, mtB6 cybrids showed increased motility while anti-CCL20 antibody decreased the migration and in vivo tumor growth of mtBALB cybrids. Moreover, the inhibitors of MAPK signaling and NF-κB activation inhibited CCL20 expression in mtBALB cybrids and decreased their migratory capabilities. Thus, acquired mtDNA mutations may promote tumorigenic phenotypes through up-regulation of chemokine CCL20.
Collapse
Affiliation(s)
- James Sligh
- Department of Medicine – Dermatology Division, University of Arizona, Tucson, AZ, 857 24, USA
- University of Arizona Cancer Center, Tucson, AZ, 85724, USA
| | - Jaroslav Janda
- University of Arizona Cancer Center, Tucson, AZ, 85724, USA
| | - Jana Jandova
- Department of Medicine – Dermatology Division, University of Arizona, Tucson, AZ, 857 24, USA
- University of Arizona Cancer Center, Tucson, AZ, 85724, USA
| |
Collapse
|
27
|
Li MJ, Cui FM, Cheng Y, Sun D, Zhou PK, Min R. Changes in the adhesion and migration ability of peripheral blood cells: potential biomarkers indicating exposure dose. HEALTH PHYSICS 2014; 107:242-247. [PMID: 25068961 DOI: 10.1097/hp.0000000000000085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The expression of adhesion molecules and their related functions of adhesion and migration were investigated in peripheral blood mononuclear cells (PBMCs) to identify radiation-related changes and dose-dependency. The authors screened new biomarkers as radiation exposure dose indicators. Heparinized human peripheral blood was irradiated in vitro with different doses of γ-rays. The expression levels of the CD11a, CD11b, CD18, CD29, CD49d, and CD54 molecules on the surface of PBMC cells were determined by flow cytometry at different time points post-irradiation. The adhesion ability of human PBMCs was determined using an enzyme-linked immunoassay kit, and the migration ability of rat PBMCs was evaluated using a transwell chamber assay. Compared with the unirradiated control group, a significant increase (p < 0.05) in human CD11b/CD13 double-positive cells was detected 6 h post 6 Gy irradiation in vitro. These results indicated that the decrease in human CD29/CD13 double-positive cells in the 6 Gy exposure group at 6, 12, and 24 h post-irradiation was significant (p < 0.01). The adhesion ability of irradiated human PBMCs to IgG substrate increased significantly (p < 0.05) at 6 h after irradiation of 2, 4, or 6 Gy compared with non-irradiated controls. The migration ability of the rat PBMCs toward the MIP-1α chemokine significantly decreased (p < 0.05) with increasing irradiation doses. These results suggest that the protein expression of cell surface molecules and their associated cellular functions might be potential biomarkers for identifying radiation exposure doses in an emergency radiation accident.
Collapse
Affiliation(s)
- Ming-juan Li
- *JiaXing University College of Medicine, Medicine Experimental Center, 118# Jia Hang Road, Jiaxing 314001, PR China; †Division of Radiation Medicine, Department of Naval Medicine, Second Military Medical University, 800# Xiang Yin Road, Shanghai 200433, PR China; ‡Radiation Medicine Insititute, Academy of Military Medical Science, Beijing, 27# Tai Ping Road, Beijing 100850, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Liu T, Du X, Sheng X. Genetic alterations following ionizing radiation in human ovarian cancer-derived endothelial cells. Mol Med Rep 2014; 9:2257-64. [PMID: 24691555 DOI: 10.3892/mmr.2014.2096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 03/06/2014] [Indexed: 11/06/2022] Open
Abstract
Recent studies have focused on the role of endothelial cells during tumor radiotherapy, and the majority of studies have found that the rate of endothelial cell apoptosis determines the response of the tumor to ionizing radiation treatment. However, gene expression changes in human ovarian cancer-derived endothelial cells in response to X-ray radiation remains poorly understood. The present study was conducted to investigate the radiation-induced gene alterations in human ovarian cancer-derived endothelial cells and to provide novel potential targets for combined anti-angiogenesis and radiation therapy for the treatment of human ovarian cancer. Ovarian cancer-derived endothelial cells, which were harvested from six human ovarian epithelial carcinomas prior to and 4 h after 400 cGy X-ray irradiation, were analyzed using cDNA microarray technology. Significant genes were selected to corroborate the microarray experiments using a quantitative polymerase chain reaction (qPCR). A total of 28 genes common to all the cDNA microarray results were identified, of which 22 genes were found to be consistently upregulated or downregulated. Thirteen genes were upregulated persistently and nine genes downregulated persistently following irradiation with 400 cGy X-ray in comparison with the matched group. The majority of the significantly altered genes (≥2-fold change in expression) were found to have a role in vasculogenesis, cell cycle regulation, inflammation and the immune response, cell growth and apoptosis, nicotinamide metabolism, cell signaling, chemokines and cell adhesion. Eight randomly selected genes were corroborated using qPCR technology. Radiation-induced gene alterations in ovarian cancer-derived endothelial cells and gene-related pathways were associated with vasculogenesis and the radiosensitivity of human ovarian cancer, and may provide promising biomarkers for radiation and anti-angiogenesis treatments against ovarian carcinoma.
Collapse
Affiliation(s)
- Ting Liu
- Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| | - Xuelian Du
- Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| | - Xiugui Sheng
- Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
29
|
Ji WT, Chen HR, Lin CH, Lee JW, Lee CC. Monocyte chemotactic protein 1 (MCP-1) modulates pro-survival signaling to promote progression of head and neck squamous cell carcinoma. PLoS One 2014; 9:e88952. [PMID: 24586454 PMCID: PMC3929549 DOI: 10.1371/journal.pone.0088952] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 01/16/2014] [Indexed: 12/04/2022] Open
Abstract
Background Monocyte chemotactic protein-1 (MCP-1) recruits monocytes and macrophages to inflammation sites, and inflammatory infiltration correlates with the progression of head and neck squamous cell carcinoma (HNSCC). This study aims to determine whether MCP-1 expression is related to HNSCC malignancy and patient survival. We also investigated the relationship between MCP-1 expression and the phosphorylation state of the pro-survival pathway factors Akt, ERK, and STAT3. Methods Expression of MCP-1 and related proteins in HNSCC cell lines was investigated using western blotting. HNSCC patients (34) without distant metastasis at diagnosis were recruited for tissue specimen evaluation of MCP-1 expression and clinical outcomes. The relationship between MCP-1 expression and survival was evaluated using the Cox proportional hazard model with stepwise selection. Results High-grade HNSCC cell lines were found to have higher levels of active Akt, ERK, and/or STAT3 than did lower grade cell lines under serum-free condition. OCSL, the most malignant cell line, had the highest level of endogenous MCP-1. Administration of exogenous recombinant MCP-1 increased phosphorylation of Akt, ERK, and STAT3 in a dose- and time-dependent manner and increased cellular resistance to serum starvation. Inhibition of Akt, ERK, or STAT3 reduced cell growth and caused cell death. Long-term survival of HNSCC patients was negatively associated with the histological intensity of MCP-1, implicating MCP-1 as a potential prognostic marker for HNSCC. Conclusions These results suggest that overexpressed MCP-1 in cancer cells may promote HNSCC progression through upregulating pro-survival signaling pathways. High cellular MCP-1 expression is related to poor overall survival rate in HNSCC patients.
Collapse
Affiliation(s)
- Wen-Tsai Ji
- Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, College of Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Hau-Ren Chen
- Department of Life Science, Institute of Molecular Biology and Institute of Biomedical Science, College of Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Chun-Hsuan Lin
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
| | - Jeng-Woei Lee
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
- * E-mail: (C-CL); (J-WL)
| | - Ching-Chih Lee
- Department of Otolaryngology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan
- School of Medicine, Tzu Chi University, Hualian, Taiwan
- * E-mail: (C-CL); (J-WL)
| |
Collapse
|
30
|
Rentoft M, Coates PJ, Loljung L, Wilms T, Laurell G, Nylander K. Expression of CXCL10 is associated with response to radiotherapy and overall survival in squamous cell carcinoma of the tongue. Tumour Biol 2014; 35:4191-8. [PMID: 24395654 PMCID: PMC4009142 DOI: 10.1007/s13277-013-1549-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/12/2013] [Indexed: 12/23/2022] Open
Abstract
Five-year survival for patients with oral cancer has been disappointingly stable during the last decades, creating a demand for new biomarkers and treatment targets. Lately, much focus has been set on immunomodulation as a possible treatment or an adjuvant increasing sensitivity to conventional treatments. The objective of this study was to evaluate the prognostic importance of response to radiotherapy in tongue carcinoma patients as well as the expression of the CXC-chemokines in correlation to radiation response in the same group of tumours. Thirty-eight patients with tongue carcinoma that had received radiotherapy followed by surgery were included. The prognostic impact of pathological response to radiotherapy, N-status, T-stage, age and gender was evaluated using Cox's regression models, Kaplan-Meier survival curves and chi-square test. The expression of 23 CXC-chemokine ligands and their receptors were evaluated in all patients using microarray and qPCR and correlated with response to treatment using logistic regression. Pathological response to radiotherapy was independently associated to overall survival with a 2-year survival probability of 81% for patients showing a complete pathological response, while patients with a non-complete response only had a probability of 42% to survive for 2 years (p = 0.016). The expression of one CXC-chemokine, CXCL10, was significantly associated with response to radiotherapy and the group of patients with the highest CXCL10 expression responded, especially poorly (p = 0.01). CXCL10 is a potential marker for response to radiotherapy and overall survival in patients with squamous cell carcinoma of the tongue.
Collapse
Affiliation(s)
- Matilda Rentoft
- Department of Chemistry, Umeå University, 901 85, Umeå, Sweden,
| | | | | | | | | | | |
Collapse
|
31
|
Liu T, Du X, Sheng X. Gene expression changes after ionizing radiation in endothelial cells derived from human endometrial cancer-preliminary outcomes. Arch Gynecol Obstet 2014; 289:1315-23. [PMID: 24385285 DOI: 10.1007/s00404-013-3136-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 12/16/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Accumulating evidence has demonstrated that death of microvascular endothelial cells plays a decisive role in the tumor response against radiotherapy. Nevertheless, radiation-induced gene alterations on cancer-associated endothelial cells of human endometrial carcinoma remain poorly understood. The purpose of this study was to elucidate the gene expression changes after X-ray radiation in human endometrial carcinoma vascular endothelial cells and to provide new targets for combined treatment of radiation and anti-angiogenesis in human endometrial carcinoma. MATERIALS AND METHODS Endometrial cancer-derived endothelial cells, which obtained before and 4 h after 400 cGy X-ray radiation from four endometrial carcinomas, were analyzed by gene expression profile. The selected meaningful genes from gene microarray experiments were validated by real-time quantitative PCR. RESULTS Microarray analyses showed 49 significantly changed genes which were common to all the microarray experiments. There into, 14 genes were found to be in persistent up-regulation and 14 in persistent down-regulation 4 h after X-ray radiation when compared with the control group. These genes were involved in cell cycle and growth regulation, cell-apoptosis, chemokine, cell signaling, cellular stress response, angiogenesis, DNA synthesis and repair and cell adhesion. Eight randomly selected genes were validated by real-time PCR. DISCUSSION The genes of cancer-derived endothelial cells regulated by X-ray radiation as well as their related signal pathways, which obtained from gene expression profiling data, were relevant to radiosensitivity of endometrial cancer. This study shows that the identified genes and their related signaling pathways are candidated biomarkers for radiation and anti-angiogenesis of human endometrial carcinoma.
Collapse
Affiliation(s)
- Ting Liu
- Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan, 250117, Shandong, People's Republic of China
| | | | | |
Collapse
|
32
|
Conditioned media from adipose-tissue-derived mesenchymal stem cells downregulate degradative mediators induced by interleukin-1β in osteoarthritic chondrocytes. Mediators Inflamm 2013; 2013:357014. [PMID: 24363499 PMCID: PMC3864089 DOI: 10.1155/2013/357014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/05/2013] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is the most frequent joint disorder and an important cause of disability. Recent studies have shown the potential of adipose-tissue-derived mesenchymal stem cells (AD-MSC) for cartilage repair. We have investigated whether conditioned medium from AD-MSC (CM) may regulate in OA chondrocytes a number of key mediators involved in cartilage degeneration. CM enhanced type II collagen expression in OA chondrocytes while decreasing matrix metalloproteinase (MMP) activity in cell supernatants as well as the levels of MMP-3 and MMP-13 proteins and mRNA in OA chondrocytes stimulated with interleukin- (IL-) 1β. In addition, CM increased IL-10 levels and counteracted the stimulating effects of IL-1β on the production of tumor necrosis factor-α, IL-6, prostaglandin E2, and NO measured as nitrite and the mRNA expression of these cytokines, CCL-2, CCL-3, CCL-4, CCL-5, CCL-8, CCL-19, CCL-20, CXCL-1, CXCL-2, CXCL-3, CXCL-5, CXCL-8, cyclooxygenase-2, microsomal prostaglandin E synthase-1, and inducible NO synthase. These effects may be dependent on the inhibition of nuclear factor-κB activation by CM. Our data demonstrate the chondroprotective actions of CM and provide support for further studies of this approach in joint disease.
Collapse
|
33
|
Serum CXCL9 levels are associated with tumor progression and treatment outcome in patients with nasopharyngeal carcinoma. PLoS One 2013; 8:e80052. [PMID: 24278236 PMCID: PMC3836991 DOI: 10.1371/journal.pone.0080052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/29/2013] [Indexed: 01/11/2023] Open
Abstract
Objectives The aim of this cohort study was to examine the role of the chemokine (C-X-C motif) ligand 9 (CXCL9) on nasopharyngeal carcinoma (NPC). Materials & Methods Sera from 205 NPC patients and 231 healthy individuals, and 86 NPC tumor samples were enrolled. CXCL9 expression in tissue samples was analyzed by quantitative real-time PCR and immunohistochemistry. CXCL9 serum concentrations were measured by enzyme-linked immunosorbent assay. Results CXCL9 expression was significantly higher in tumors than in normal epithelium. CXCL9 serum concentrations were also significantly higher in NPC patients compared to those in healthy individuals (516.8±617.6 vs. 170.7±375.0 pg/mL, P<0.0001). Serum CXCL9 levels were significantly higher in NPC patients with higher tumor stages, nodal stages, and overall stages (P<0.001, P = 0.001, and P<0.001, respectively). We found a statistically significant correlation between the concentrations of CXCL9 and EBV DNA load in the NPC patients (Spearman’s correlation analysis; r = 0.473, P<0.001; 95% confidence interval, 0.346–0.582). Moreover, NPC patients with higher CXCL9 levels (>290 pg/mL, median) before treatment had worse prognoses for overall survival and disease-free survival (P = 0.045 and P = 0.008, respectively). Multivariate logistic regression analyses also indicated that higher CXCL9 serum levels were an independent prognostic factor for disease-free survival (P = 0.015). Conclusion Our study demonstrated that CXCL9 is associated with tumor burden and aggressiveness of NPC tumors and the serum level of this ligand may be useful as a prognostic indicator.
Collapse
|
34
|
Zeng L, Wang X, Zhou L, Guo C, Cai C, Wu J. Clinicopathological significance of chemotactic factor IL-8, MCP-1 and MIP-1α expressions in gallbladder carcinoma. THE CHINESE-GERMAN JOURNAL OF CLINICAL ONCOLOGY 2013; 12:481-486. [DOI: 10.1007/s10330-013-1213-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Sprung CN, Ivashkevich A, Forrester HB, Redon CE, Georgakilas A, Martin OA. Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects. Cancer Lett 2013; 356:72-81. [PMID: 24041866 DOI: 10.1016/j.canlet.2013.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 12/25/2022]
Abstract
A spectrum of radiation-induced non-targeted effects has been reported during the last two decades since Nagasawa and Little first described a phenomenon in cultured cells that was later called the "bystander effect". These non-targeted effects include radiotherapy-related abscopal effects, where changes in organs or tissues occur distant from the irradiated region. The spectrum of non-targeted effects continue to broaden over time and now embrace many types of exogenous and endogenous stressors that induce a systemic genotoxic response including a widely studied tumor microenvironment. Here we discuss processes and factors leading to DNA damage induction in non-targeted cells and tissues and highlight similarities in the regulation of systemic effects caused by different stressors.
Collapse
Affiliation(s)
- Carl N Sprung
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | - Alesia Ivashkevich
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Helen B Forrester
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Christophe E Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alexandros Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - Olga A Martin
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre and the University of Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Chang KP, Wu CC, Fang KH, Tsai CY, Chang YL, Liu SC, Kao HK. Serum levels of chemokine (C-X-C motif) ligand 9 (CXCL9) are associated with tumor progression and treatment outcome in patients with oral cavity squamous cell carcinoma. Oral Oncol 2013; 49:802-7. [PMID: 23769451 DOI: 10.1016/j.oraloncology.2013.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The aim of this cohort study was to examine the role of chemokine (C-X-C motif) ligand 9 (CXCL9) on oral cavity squamous cell carcinoma (OSCC). METHODS Sera from 181 OSCC patients, 231 healthy individuals, and 50 OSCC tumor samples were enrolled. CXCL9 expression in tissue samples was analyzed by quantitative real-time PCR and immunohistochemistry. CXCL9 serum concentrations were measured by enzyme-linked immunosorbent assay. Effects of CXCL9 on OSCC cell function were investigated by cell proliferation assays, trans-well migration/invasion assays, and RNA interference. RESULTS CXCL9 expression was significantly higher than for normal epithelium in the tissue samples. CXCL9 serum concentrations were also significantly higher in OSCC patients compared to those in healthy individuals. Serum CXCL9 levels were significantly higher in OSCC patients with higher pT status, pathological overall stages, tumor depths, and positive bone invasion (P = 0.033, 0.004, 0.041, and 0.002, respectively). Moreover, OSCC patients with higher CXCL9 levels (> 209 pg/mL, median level) before treatment had worse prognoses for overall survival and disease-specific survival (P = 0.0006 and 0.0009, respectively). Multivariate logistic regression analyses also indicated that higher CXCL9 serum levels were an independent prognostic factor for overall survival and disease-free survival (P = 0.003 and 0.004, respectively). The in vitro suppression of CXCL9 expression in SCC25 cells using specific interfering RNAs attenuated cell proliferation, migration and invasiveness. CONCLUSIONS Our study demonstrated that CXCL9 is associated with tumor burden and aggressiveness of OSCC tumors and serum level of this ligand may be useful as a prognostic indicator.
Collapse
Affiliation(s)
- Kai-Ping Chang
- Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Wang L, Qin H, Li L, Zhang Y, Tu Y, Feng F, Ji P, Zhang J, Li G, Zhao Z, Gao G. Overexpression of CCL20 and its receptor CCR6 predicts poor clinical prognosis in human gliomas. Med Oncol 2012; 29:3491-7. [PMID: 22926920 DOI: 10.1007/s12032-012-0314-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 07/16/2012] [Indexed: 12/16/2022]
Abstract
Recent studies have demonstrated that the chemokine CCL20 and its receptor CCR6 may be involved in tumorigenesis, tumor progression and metastatic spread of various human malignancies. The aim of this study was to investigate the clinicopathological significance and prognostic value of CCL20 and CCR6 expression in human malignant glioma. CCL20 and CCR6 expression in human gliomas and nonneoplastic brain tissues was measured by immunohistochemistry. The association of CCL20 and CCR6 expression with clinicopathological factors or prognosis in glioma patients was statistically analyzed. The expression levels of CCL20 and CCR6 proteins were both up-regulated in glioma tissues. There was a significantly positive correlation between the expression of the two markers (r = 0.88; P < 0.001). In addition, the overexpressions of CCL20 and CCR6 were both detected in high-grade glioma tissues compared with those in low-grade tissues and increased with ascending tumor World Health Organization (WHO) grades (P = 0.006 and 0.008, respectively). The increased expressions of CCL20 and CCR6 proteins were also significantly correlated with low Karnofsky performance score (both P = 0.01). Moreover, univariate analysis found that CCL20 expression (P = 0.002), CCR6 expression (P = 0.002) and CCL20/CCR6 co-expression (P < 0.001) were all significantly associated with poor prognosis. In particular, glioma patients with CCL20/CCR6 co-expression have the shortest overall survival. Multivariate analysis further identified the expression levels of CCL20 and CCR6 to be independent prognostic factors. Our data suggest for the first time that CCL20 and CCR6 might play an important role in the regulation of aggressiveness in human gliomas. The up-regulation of CCL20 and CCR6 might be closely associated with poor clinical outcome of patients with gliomas.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurosurgery, Tangdu Hospital, No. 569, Xinsi Road, Baqiao District, Xi'an City, 710038, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Chemokines and their receptors have a multifaceted role in tumor biology and are implicated in nearly all aspects of cancer growth, survival and dissemination. Modulation of the interaction between chemokines and their cell surface receptor is, therefore, a promising area for the development of new cancer medicines. In this review, we look at the compelling evidence that is emerging to support targeting CXC chemokines, also known as family α chemokines, as novel therapeutic strategies in the treatment of cancer.
Collapse
|
39
|
Niyazi M, Maihoefer C, Krause M, Rödel C, Budach W, Belka C. Radiotherapy and "new" drugs-new side effects? Radiat Oncol 2011; 6:177. [PMID: 22188921 PMCID: PMC3266653 DOI: 10.1186/1748-717x-6-177] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 12/21/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Targeted drugs have augmented the cancer treatment armamentarium. Based on the molecular specificity, it was initially believed that these drugs had significantly less side effects. However, currently it is accepted that all of these agents have their specific side effects. Based on the given multimodal approach, special emphasis has to be placed on putative interactions of conventional cytostatic drugs, targeted agents and other modalities. The interaction of targeted drugs with radiation harbours special risks, since the awareness for interactions and even synergistic toxicities is lacking. At present, only limited is data available regarding combinations of targeted drugs and radiotherapy. This review gives an overview on the current knowledge on such combined treatments. MATERIALS AND METHODS Using the following MESH headings and combinations of these terms pubmed database was searched: Radiotherapy AND cetuximab/trastuzumab/panitumumab/nimotuzumab, bevacizumab, sunitinib/sorafenib/lapatinib/gefitinib/erlotinib/sirolimus, thalidomide/lenalidomide as well as erythropoietin. For citation crosscheck the ISI web of science database was used employing the same search terms. RESULTS Several classes of targeted substances may be distinguished: Small molecules including kinase inhibitors and specific inhibitors, antibodies, and anti-angiogenic agents. Combination of these agents with radiotherapy may lead to specific toxicities or negatively influence the efficacy of RT. Though there is only little information on the interaction of molecular targeted radiation and radiotherapy in clinical settings, several critical incidents are reported. CONCLUSIONS The addition of molecular targeted drugs to conventional radiotherapy outside of approved regimens or clinical trials warrants a careful consideration especially when used in conjunction in hypo-fractionated regimens. Clinical trials are urgently needed in order to address the open question in regard to efficacy, early and late toxicity.
Collapse
Affiliation(s)
- Maximilian Niyazi
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 München, Germany
| | - Cornelius Maihoefer
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 München, Germany
| | - Mechthild Krause
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Claus Rödel
- Klinik für Strahlentherapie und Onkologie, Johann Wolfgang Goethe Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Wilfried Budach
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Heinrich Heine Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Claus Belka
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 München, Germany
| |
Collapse
|