1
|
Nitiss KC, Bandak A, Berger JM, Nitiss JL. Genome Instability Induced by Topoisomerase Misfunction. Int J Mol Sci 2024; 25:10247. [PMID: 39408578 PMCID: PMC11477040 DOI: 10.3390/ijms251910247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Topoisomerases alter DNA topology by making transient DNA strand breaks (DSBs) in DNA. The DNA cleavage reaction mechanism includes the formation of a reversible protein/DNA complex that allows rapid resealing of the transient break. This mechanism allows changes in DNA topology with minimal risks of persistent DNA damage. Nonetheless, small molecules, alternate DNA structures, or mutations in topoisomerase proteins can impede the resealing of the transient breaks, leading to genome instability and potentially cell death. The consequences of high levels of enzyme/DNA adducts differ for type I and type II topoisomerases. Top1 action on DNA containing ribonucleotides leads to 2-5 nucleotide deletions in repeated sequences, while mutant Top1 enzymes can generate large deletions. By contrast, small molecules that target Top2, or mutant Top2 enzymes with elevated levels of cleavage lead to small de novo duplications. Both Top1 and Top2 have the potential to generate large rearrangements and translocations. Thus, genome instability due to topoisomerase mis-function is a potential pathogenic mechanism especially leading to oncogenic progression. Recent studies support the potential roles of topoisomerases in genetic changes in cancer cells, highlighting the need to understand how cells limit genome instability induced by topoisomerases. This review highlights recent studies that bear on these questions.
Collapse
Affiliation(s)
- Karin C. Nitiss
- Pharmaceutical Sciences Department, University of Illinois Chicago, Rockford, IL 61107, USA;
| | - Afif Bandak
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 20215, USA; (A.B.); (J.M.B.)
| | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 20215, USA; (A.B.); (J.M.B.)
| | - John L. Nitiss
- Pharmaceutical Sciences Department, University of Illinois Chicago, Rockford, IL 61107, USA;
| |
Collapse
|
2
|
Teng Z, Yang L, Zhang Q, Chen Y, Wang X, Zheng Y, Tian A, Tian D, Lin Z, Deng WM, Liu H. Topoisomerase I is an evolutionarily conserved key regulator for satellite DNA transcription. Nat Commun 2024; 15:5151. [PMID: 38886382 PMCID: PMC11183047 DOI: 10.1038/s41467-024-49567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
RNA Polymerase (RNAP) II transcription on non-coding repetitive satellite DNAs plays an important role in chromosome segregation, but a little is known about the regulation of satellite transcription. We here show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite DNAs on human centromeres. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation. Interestingly, in response to DNA double-stranded breaks (DSBs), α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner, and these DSB-induced α-satellite RNAs form into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.
Collapse
Affiliation(s)
- Zhen Teng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Lu Yang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Qian Zhang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Yujue Chen
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Xianfeng Wang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Yiran Zheng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Aiguo Tian
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Di Tian
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Zhen Lin
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Hong Liu
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
3
|
Salem MG, Alqahtani AM, Mali SN, Alshwyeh HA, Jawarkar RD, Altamimi AS, Alshawwa SZ, Al-Olayan E, Saied EM, Youssef MF. Synthesis and antiproliferative evaluation of novel 3,5,8-trisubstituted coumarins against breast cancer. Future Med Chem 2024; 16:1053-1073. [PMID: 38708686 PMCID: PMC11216633 DOI: 10.4155/fmc-2023-0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/13/2024] [Indexed: 05/07/2024] Open
Abstract
Aim: This study focused on designing and synthesizing novel derivatives of 3,5,8-trisubstituted coumarin. Results: The synthesized compounds, particularly compound 5, exhibited significant cytotoxic effects on MCF-7 cells, surpassing staurosporine, and reduced toxicity toward MCF-10A cells, highlighting potential pharmacological advantages. Further, compound 5 altered the cell cycle and significantly increased apoptosis in MCF-7 cells, involving both early (41.7-fold) and late stages (33-fold), while moderately affecting necrotic signaling. The antitumor activity was linked to a notable reduction (4.78-fold) in topoisomerase IIβ expression. Molecular modeling indicated compound 5's strong affinity for EGFR, human EGF2 and topoisomerase II proteins. Conclusion: These findings highlight compound 5 as a multifaceted antitumor agent for breast cancer.
Collapse
Affiliation(s)
- Manar G Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Alaa M Alqahtani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Suraj N Mali
- School of Pharmacy, DY Patil Deemed to be University Sector 7, Nerul, Navi Mumbai, 400706, India
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, PO Box 1982, Dammam, 31441, Saudi Arabia
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry & Drug Discovery, Dr. Rajendra Gode Institute of Pharmacy, University Mardi Road, Amravati, 444603, India
| | - Abdulmalik S Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Alkharj, 11942, Saudi Arabia
| | - Samar Z Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Essa M Saied
- Chemistry Department (Biochemistry Division), Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, Berlin, 12489, Germany
| | - Mohamed F Youssef
- Chemistry Department (Organic Chemistry Division), Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
4
|
Teng Z, Yang L, Zhang Q, Chen Y, Wang X, Zheng Y, Tian A, Tian D, Lin Z, Deng WM, Liu H. Topoisomerase I is an Evolutionarily Conserved Key Regulator for Satellite DNA Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592391. [PMID: 38746280 PMCID: PMC11092777 DOI: 10.1101/2024.05.03.592391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Repetitive satellite DNAs, divergent in nucleic-acid sequence and size across eukaryotes, provide a physical site for centromere assembly to orchestrate chromosome segregation during the cell cycle. These non-coding DNAs are transcribed by RNA polymerase (RNAP) II and the transcription has been shown to play a role in chromosome segregation, but a little is known about the regulation of centromeric transcription, especially in higher organisms with tandemly-repeated-DNA-sequence centromeres. Using RNA interference knockdown, chemical inhibition and AID/IAA degradation, we show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite on centromeres in human cells. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation on centromeres. Interestingly, in response to DNA double-stranded breaks (DSBs) induced by chemotherapy drugs or CRSPR/Cas9, α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner. These DSB-induced α-satellite RNAs were predominantly derived from the α-satellite high-order repeats of human centromeres and forms into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.
Collapse
Affiliation(s)
- Zhen Teng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Lu Yang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Qian Zhang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Yujue Chen
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Xianfeng Wang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Yiran Zheng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Aiguo Tian
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Di Tian
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Zhen Lin
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Hong Liu
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
5
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
6
|
Liang HT, Yan JY, Yao HJ, Zhang XN, Xing ZM, Liu L, Chen YQ, Li GR, Huang J, He YD, Zheng KW. G-quadruplexes on chromosomal DNA negatively regulates topoisomerase 1 activity. Nucleic Acids Res 2024; 52:2142-2156. [PMID: 38340342 PMCID: PMC10954455 DOI: 10.1093/nar/gkae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Human DNA topoisomerase 1 (Top1) is a crucial enzyme responsible for alleviating torsional stress on DNA during transcription and replication, thereby maintaining genome stability. Previous researches had found that non-working Top1 interacted extensively with chromosomal DNA in human cells. However, the reason for its retention on chromosomal DNA remained unclear. In this study, we discovered a close association between Top1 and chromosomal DNA, specifically linked to the presence of G-quadruplex (G4) structures. G4 structures, formed during transcription, trap Top1 and hinder its ability to relax neighboring DNAs. Disruption of the Top1-G4 interaction using G4 ligand relieved the inhibitory effect of G4 on Top1 activity, resulting in a further reduction of R-loop levels in cells. Additionally, the activation of Top1 through the use of a G4 ligand enhanced the toxicity of Top1 inhibitors towards cancer cells. Our study uncovers a negative regulation mechanism of human Top1 and highlights a novel pathway for activating Top1.
Collapse
Affiliation(s)
- Hui-ting Liang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jiang-yu Yan
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Hao-jun Yao
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Xue-nan Zhang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Zhi-ming Xing
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Lin Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yao-qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guo-rui Li
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Jing Huang
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Yi-de He
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Ke-wei Zheng
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Dar A, Godara P, Prusty D, Bashir M. Plasmodium falciparum topoisomerases: Emerging targets for anti-malarial therapy. Eur J Med Chem 2024; 265:116056. [PMID: 38171145 DOI: 10.1016/j.ejmech.2023.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Different metabolic pathways like DNA replication, transcription, and recombination generate topological constrains in the genome. These topological constraints are resolved by essential molecular machines known as topoisomerases. To bring changes in DNA topology, the topoisomerases create a single or double-stranded nick in the template DNA, hold the nicked ends to let the tangled DNA pass through, and finally re-ligate the breaks. The DNA nicking and re-ligation activities as well as ATPase activities (when present) in topoisomerases are subjected to inhibition by several anticancer and antibacterial drugs, thus establishing these enzymes as successful targets in anticancer and antibacterial therapies. The anti-topoisomerase drugs interfere with the functioning of these enzymes and result in the accumulation of DNA tangles or lethal genomic breaks, thereby promoting host cell (or organism) death. The potential of topoisomerases in the human malarial parasite, Plasmodium falciparum in antimalarial drug development has received little attention so far. Interestingly, the parasite genome encodes orthologs of topoisomerases found in eukaryotes, prokaryotes, and archaea, thus, providing an enormous opportunity for investigating these enzymes for antimalarial therapeutics. This review focuses on the features of Plasmodium falciparum topoisomerases (PfTopos) with respect to their closer counterparts in other organisms. We will discuss overall advances and basic challenges with topoisomerase research in Plasmodium falciparum and our attempts to understand the interaction of PfTopos with classical and new-generation topoisomerase inhibitors using in silico molecular docking approach. The recent episodes of parasite resistance against artemisinin, the only effective antimalarial drug at present, further highlight the significance of investigating new drug targets including topoisomerases in antimalarial therapeutics.
Collapse
Affiliation(s)
- Ashraf Dar
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India.
| | - Priya Godara
- Central University of Rajasthan, Ajmer, Rajasthan, India
| | | | - Masarat Bashir
- COTS, Sheri-Kashmir University of Agricultural Sciences and Technology, Mirgund, Srinagar, India
| |
Collapse
|
8
|
Kour P, Saha P, Sharma DK, Singh K. DNA topoisomerases as a drug target in Leishmaniasis: Structural and mechanistic insights. Int J Biol Macromol 2024; 256:128401. [PMID: 38007027 DOI: 10.1016/j.ijbiomac.2023.128401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Leishmaniasis, caused by a protozoan parasite, is among humanity's costliest banes, owing to the high mortality and morbidity ratio in poverty-stricken areas. To date, no vaccine is available for the complete cure of the disease. Current chemotherapy is expensive, has undesirable side effects, and faces drug resistance limitations and toxicity concerns. The substantial differences in homology between leishmanial DNA topoisomerase IB compared with the human counterparts provided a new lead in the study of the structural determinants that can be targeted. Several research groups explored this molecular target, trying to fill the therapeutic gap, and came forward with various anti-leishmanial scaffolds. This article is a comprehensive review of knowledge about topoisomerases as an anti-leishmanial drug target and their inhibitors collected over the years. In addition to information on molecular targets and reported scaffolds, the review details the structure-activity relationship of described compounds with leishmanial Topoisomerase IB. Moreover, the work also includes information about the structure of the inhibitors, showing common interacting residues with leishmanial topoisomerases that drive their mode of action towards them. Finally, in search of topoisomerase inhibitors at the stage of clinical trials, we have listed all the drugs that have been in clinical trials against leishmaniasis.
Collapse
Affiliation(s)
- Parampreet Kour
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Pallavi Saha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology Banaras Hindu University, Varanasi 221005, India
| | - Deepak K Sharma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology Banaras Hindu University, Varanasi 221005, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Frese-Schaper M, Voll RE, Frese S. Increased binding of anti-dsDNA antibodies to short oligonucleotides modified with topoisomerase I reveals a potential new enzyme function independent from DNA relaxation. BMC Res Notes 2023; 16:298. [PMID: 37898816 PMCID: PMC10612351 DOI: 10.1186/s13104-023-06592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
OBJECTIVE Topoisomerase I (topo I) is a highly conserved enzyme which is known to reduce torsional stress at double-stranded (ds) DNA. Torsional stress induced by supercoiling of dsDNA requires either very long dsDNA existing in genomic DNA or circulation as presented in plasmid DNA. To enable DNA relaxation, topo I induce a transient single-strand break followed by stress-relieving rotation of the released DNA strand. Our group found by serendipity that the topo I inhibitor irinotecan is able to suppress murine systemic lupus erythematosus (SLE), an autoimmune disease which is characterized by the existence of pathogenic anti-dsDNA antibodies (abs). As a possible mechanism we demonstrated in the absence of immunosuppression an increased binding of anti-dsDNA abs to long genomic or circulated plasmid dsDNA modified with topo I. RESULTS Here we show that this effect requires active site tyrosine of topo I which is known to facilitate DNA relaxation activity. Moreover, topo I enhanced anti-dsDNA abs binding to short linear oligonucleotides down to a size of 42 bp. Since oligonucleotides of such length are devoid of torsional stress and relaxation respectively, our results suggest a new and unknown function for the enzyme topo I.
Collapse
Affiliation(s)
- Manuela Frese-Schaper
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Steffen Frese
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany.
- Department of Thoracic Surgery, AMEOS Klinikum Schönebeck, Köthener Str. 13, D-39218, Schönebeck, Germany.
| |
Collapse
|
10
|
Juul-Kristensen T, Keller JG, Borg KN, Hansen NY, Foldager A, Ladegaard R, Ho YP, Loeschcke V, Knudsen BR. Topoisomerase 1 Activity Is Reduced in Response to Thermal Stress in Fruit Flies and in Human HeLa Cells. BIOSENSORS 2023; 13:950. [PMID: 37998125 PMCID: PMC10669382 DOI: 10.3390/bios13110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
In the modern world with climate changes and increasing pollution, different types of stress are becoming an increasing challenge. Hence, the identification of reliable biomarkers of stress and accessible sensors to measure such biomarkers are attracting increasing attention. In the current study, we demonstrate that the activity, but not the expression, of the ubiquitous enzyme topoisomerase 1 (TOP1), as measured in crude cell extracts by the REEAD sensor system, is markedly reduced in response to thermal stress in both fruit flies (Drosophila melanogaster) and cultivated human cells. This effect was observed in response to both mild-to-moderate long-term heat stress and more severe short-term heat stress in D. melanogaster. In cultivated HeLa cells a reduced TOP1 activity was observed in response to both cold and heat stress. The reduced TOP1 activity appeared dependent on one or more cellular pathways since the activity of purified TOP1 was unaffected by the utilized stress temperatures. We demonstrate successful quantitative measurement of TOP1 activity using an easily accessible chemiluminescence readout for REEAD pointing towards a sensor system suitable for point-of-care assessment of stress responses based on TOP1 as a biomarker.
Collapse
Affiliation(s)
- Trine Juul-Kristensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (T.J.-K.); (J.G.K.); (K.N.B.); (N.Y.H.); (A.F.); (R.L.)
| | - Josephine Geertsen Keller
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (T.J.-K.); (J.G.K.); (K.N.B.); (N.Y.H.); (A.F.); (R.L.)
| | - Kathrine Nygaard Borg
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (T.J.-K.); (J.G.K.); (K.N.B.); (N.Y.H.); (A.F.); (R.L.)
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Noriko Y. Hansen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (T.J.-K.); (J.G.K.); (K.N.B.); (N.Y.H.); (A.F.); (R.L.)
| | - Amalie Foldager
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (T.J.-K.); (J.G.K.); (K.N.B.); (N.Y.H.); (A.F.); (R.L.)
| | - Rasmus Ladegaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (T.J.-K.); (J.G.K.); (K.N.B.); (N.Y.H.); (A.F.); (R.L.)
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China;
- Centre for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | | | - Birgitta R. Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (T.J.-K.); (J.G.K.); (K.N.B.); (N.Y.H.); (A.F.); (R.L.)
| |
Collapse
|
11
|
Dai Y, Zhang Y, Ye T, Chen Y. Synthesis and Antitumor Evaluation of Biotin-SN38-Valproic Acid Conjugates. Molecules 2023; 28:molecules28093936. [PMID: 37175346 PMCID: PMC10179906 DOI: 10.3390/molecules28093936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the strong anticancer activity of SN38 (7-ethyl-10-hydroxy-camptothecin), the severe side effects and loss of anticancer activity caused by the lack of selectivity to cancer cells and hydrolysis of ring E prevent its clinical application. To address the issue, herein a multifunctional SN38 derivative (compound 9) containing biotin (tumor-targeting group) and valproic acid (histone deacetylase inhibitor, HDACi) was synthesized via click chemistry and evaluated using MTT assay. The in vitro cytotoxicity study showed that compound 9 exhibited superior cytotoxicity than irinotecan against human cervical cancer HeLa cells, albeit it was inferior to SN38. More significantly, compound 9 significantly reduced toxicity in mouse embryonic fibroblast NIH3T3 cells, indicating that compound 9 had the capacity to enhance tumor targeting due to its cell selectivity. Further studies demonstrated that, compared with irinotecan, compound 9 induced similar apoptosis of cancer cells. Consequently, compound 9 can not only improve its tumor-targeting ability mediated by biotin but also exert potent anticancer activity through the effect of SN38 and valproic acid, indicating that the design concept is an effective strategy for the structural modification of SN38.
Collapse
Affiliation(s)
- Yi Dai
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| | - Yang Zhang
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230031, China
| | - Tianxiang Ye
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| | - Yue Chen
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| |
Collapse
|
12
|
Kobayashi M, Wakaguri H, Shimizu M, Higasa K, Matsuda F, Honjo T. Ago2 and a miRNA reduce Topoisomerase 1 for enhancing DNA cleavage in antibody diversification by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2023; 120:e2216918120. [PMID: 37094168 PMCID: PMC10161001 DOI: 10.1073/pnas.2216918120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is the essential enzyme for imprinting immunological memory through class switch recombination (CSR) and somatic hypermutation (SHM) of the immunoglobulin (Ig) gene. AID-dependent reduction of Topoisomerase 1 (Top1) promotes DNA cleavage that occurs upon Ig gene diversification, whereas the mechanism behind AID-induced Top1 reduction remains unclear. Here, we clarified the contribution of the microRNA-Ago2 complex in AID-dependent Top1 decrease. Ago2 binds to Top1 3'UTR with two regions of AID-dependent Ago2-binding sites (5'- and 3'dABs). Top1 3'UTR knockout (3'UTRKO) in B lymphoma cells leads to decreases in DNA break efficiency in the IgH gene accompanied by a reduction in CSR and SHM frequencies. Furthermore, AID-dependent Top1 protein reduction and Ago2-binding to Top1 mRNA are down-regulated in 3'UTRKO cells. Top1 mRNA in the highly translated fractions of the sucrose gradient is decreased in an AID-dependent and Top1 3'UTR-mediated manner, resulting in a decrease in Top1 protein synthesis. Both AID and Ago2 localize in the mRNA-binding protein fractions and they interact with each other. Furthermore, we found some candidate miRNAs which possibly bind to 5'- and 3'dAB in Top1 mRNA. Among them, miR-92a-3p knockdown induces the phenotypes of 3'UTRKO cells to wild-type cells whereas it does not impact on 3'UTRKO cells. Taken together, the Ago2-miR-92a-3p complex will be recruited to Top1 3'UTR in an AID-dependent manner and posttranscriptionally reduces Top1 protein synthesis. These consequences cause the increase in a non-B-DNA structure, enhance DNA cleavage by Top1 in the Ig gene and contribute to immunological memory formation.
Collapse
Affiliation(s)
- Maki Kobayashi
- Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Hiroyuki Wakaguri
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Masakazu Shimizu
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Koichiro Higasa
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Tasuku Honjo
- Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| |
Collapse
|
13
|
Keller JG, Petersen KV, Mizielinski K, Thiesen C, Bjergbæk L, Reguera RM, Pérez-Pertejo Y, Balaña-Fouce R, Trejo A, Masdeu C, Alonso C, Knudsen BR, Tesauro C. Gel-Free Tools for Quick and Simple Screening of Anti-Topoisomerase 1 Compounds. Pharmaceuticals (Basel) 2023; 16:ph16050657. [PMID: 37242440 DOI: 10.3390/ph16050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
With the increasing need for effective compounds against cancer or pathogen-borne diseases, the development of new tools to investigate the enzymatic activity of biomarkers is necessary. Among these biomarkers are DNA topoisomerases, which are key enzymes that modify DNA and regulate DNA topology during cellular processes. Over the years, libraries of natural and synthetic small-molecule compounds have been extensively investigated as potential anti-cancer, anti-bacterial, or anti-parasitic drugs targeting topoisomerases. However, the current tools for measuring the potential inhibition of topoisomerase activity are time consuming and not easily adaptable outside specialized laboratories. Here, we present rolling circle amplification-based methods that provide fast and easy readouts for screening of compounds against type 1 topoisomerases. Specific assays for the investigation of the potential inhibition of eukaryotic, viral, or bacterial type 1 topoisomerase activity were developed, using human topoisomerase 1, Leishmania donovani topoisomerase 1, monkeypox virus topoisomerase 1, and Mycobacterium smegmatis topoisomerase 1 as model enzymes. The presented tools proved to be sensitive and directly quantitative, paving the way for new diagnostic and drug screening protocols in research and clinical settings.
Collapse
Affiliation(s)
| | | | | | - Celine Thiesen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lotte Bjergbæk
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Rosa M Reguera
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Angela Trejo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Carme Masdeu
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Concepcion Alonso
- Department of Organic Chemistry, Faculty of Pharmacy, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Birgitta R Knudsen
- VPCIR Biosciences ApS, 8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
14
|
Okoro CO, Fatoki TH. A Mini Review of Novel Topoisomerase II Inhibitors as Future Anticancer Agents. Int J Mol Sci 2023; 24:ijms24032532. [PMID: 36768852 PMCID: PMC9916523 DOI: 10.3390/ijms24032532] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Several reviews of inhibitors of topoisomerase II have been published, covering research before 2018. Therefore, this review is focused primarily on more recent publications with relevant points from the earlier literature. Topoisomerase II is an established target for anticancer drugs, which are further subdivided into poisons and catalytic inhibitors. While most of the topoisomerase II-based drugs in clinical use are mostly topoisomerase II poisons, their mechanism of action has posed severe concern due to DNA damaging potential, including the development of multi-drug resistance. As a result, we are beginning to see a gradual paradigm shift towards non-DNA damaging agents, such as the lesser studied topoisomerase II catalytic inhibitors. In addition, this review describes some novel selective catalytic topoisomerase II inhibitors. The ultimate goal is to bring researchers up to speed by curating and delineating new scaffolds as the leads for the optimization and development of new potent, safe, and selective agents for the treatment of cancer.
Collapse
|
15
|
TDP1-independent pathways in the process and repair of TOP1-induced DNA damage. Nat Commun 2022; 13:4240. [PMID: 35869071 PMCID: PMC9307636 DOI: 10.1038/s41467-022-31801-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/29/2022] [Indexed: 11/15/2022] Open
Abstract
Anticancer drugs, such as camptothecin (CPT), trap topoisomerase I (TOP1) on DNA and form TOP1 cleavage complexes (TOP1cc). Alternative repair pathways have been suggested in the repair of TOP1cc. However, how these pathways work with TDP1, a key repair enzyme that specifically hydrolyze the covalent bond between TOP1 catalytic tyrosine and the 3’-end of DNA and contribute to the repair of TOP1cc is poorly understood. Here, using unbiased whole-genome CRISPR screens and generation of co-deficient cells with TDP1 and other genes, we demonstrate that MUS81 is an important factor that mediates the generation of excess double-strand breaks (DSBs) in TDP1 KO cells. APEX1/2 are synthetic lethal with TDP1. However, deficiency of APEX1/2 does not reduce DSB formation in TDP1 KO cells. Together, our data suggest that TOP1cc can be either resolved directly by TDP1 or be converted into DSBs and repaired further by the Homologous Recombination (HR) pathway. Here the authors find that MUS81 mediates excess DNA double strand break (DSB) generation in TDP1 KO cells after camptothecin treatment. They show that TOP1 cleavage complexes can be either resolved directly by TDP1 or be converted into DSBs and repaired further by the Homologous Recombination pathway.
Collapse
|
16
|
Transcriptomics and Proteomics Characterizing the Anticancer Mechanisms of Natural Rebeccamycin Analog Loonamycin in Breast Cancer Cells. Molecules 2022; 27:molecules27206958. [PMID: 36296549 PMCID: PMC9611194 DOI: 10.3390/molecules27206958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
The present study is to explore the anticancer effect of loonamycin (LM) in vitro and in vivo, and investigate the underlying mechanism with combined multi-omics. LM exhibited anticancer activity in human triple negative breast cancer cells by promoting cell apoptosis. LM administration inhibited the growth of MDA-MB-468 tumors in a murine xenograft model of breast cancer. Mechanistic studies suggested that LM could inhibit the topoisomerase I in a dose-dependent manner in vitro experiments. Combined with the transcriptomics and proteomic analysis, LM has a significant effect on O-glycan, p53-related signal pathway and EGFR/PI3K/AKT/mTOR signal pathway in enrichment of the KEGG pathway. The GSEA data also suggests that the TNBC cells treated with LM may be regulated by p53, O-glycan and EGFR/PI3K/AKT/mTOR signaling pathway. Taken together, our findings predicted that LM may target p53 and EGFR/PI3K/AKT/mTOR signaling pathway, inhibiting topoisomerase to exhibit its anticancer effect.
Collapse
|
17
|
A comprehensive review on acridone based derivatives as future anti-cancer agents and their structure activity relationships. Eur J Med Chem 2022; 239:114527. [PMID: 35717872 DOI: 10.1016/j.ejmech.2022.114527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
Abstract
The development of drug resistance and severe side-effects has reduced the clinical efficacy of the existing anti-cancer drugs available in the market. Thus, there is always a constant need to develop newer anti-cancer drugs with minimal adverse effects. Researchers all over the world have been focusing on various alternative strategies to discover novel, potent, and target specific molecules for cancer therapy. In this direction, several heterocyclic compounds are being explored but amongst them one promising heterocycle is acridone which has attracted the attention of medicinal chemists and gained huge biological importance as acridones are found to act on different therapeutically proven molecular targets, overcome ABC transporters mediated drug resistance and DNA intercalation in cancer cells. Some of these acridone derivatives have reached clinical studies as these heterocycles have shown huge potential in cancer therapeutics and imaging. Here, the authors have attempted to compile and make some recommendations of acridone based derivatives concerning their cancer biological targets and in vitro-cytotoxicity based on drug design and novelty to increase their therapeutic potential. This review also provides some important insights on the design, receptor targeting and future directions for the development of acridones as possible clinically effective anti-cancer agents.
Collapse
|
18
|
Keller JG, Hymøller KM, Thorsager ME, Hansen NY, Erlandsen JU, Tesauro C, Simonsen AKW, Andersen AB, VandsøPetersen K, Holm LL, Stougaard M, Andresen BS, Kristensen P, Frøhlich R, Knudsen BR. Topoisomerase 1 inhibits MYC promoter activity by inducing G-quadruplex formation. Nucleic Acids Res 2022; 50:6332-6342. [PMID: 35687110 PMCID: PMC9226537 DOI: 10.1093/nar/gkac482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
We have investigated the function of human topoisomerase 1 (TOP1) in regulation of G-quadruplex (G4) formation in the Pu27 region of the MYC P1 promoter. Pu27 is among the best characterized G4 forming sequences in the human genome and it is well known that promoter activity is inhibited upon G4 formation in this region. We found that TOP1 downregulation stimulated transcription from a promoter with wildtype Pu27 but not if the G4 motif in Pu27 was interrupted by mutation(s). The effect was not specific to the MYC promoter and similar results were obtained for the G4 forming promoter element WT21. The other major DNA topoisomerases with relaxation activity, topoisomerases 2α and β, on the other hand, did not affect G4 dependent promoter activity. The cellular studies were supported by in vitro investigations demonstrating a high affinity of TOP1 for wildtype Pu27 but not for mutant sequences unable to form G4. Moreover, TOP1 was able to induce G4 formation in Pu27 inserted in double stranded plasmid DNA in vitro. This is the first time TOP1 has been demonstrated capable of inducing G4 formation in double stranded DNA and of influencing G4 formation in cells.
Collapse
Affiliation(s)
- Josephine Geertsen Keller
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.,Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | - Noriko Y Hansen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Jens Uldum Erlandsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Cinzia Tesauro
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Anne Bech Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Lise Lolle Holm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.,Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Magnus Stougaard
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark.,Department of Pathology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.,Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Peter Kristensen
- Faculty of Engineering and Science, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Rikke Frøhlich
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Birgitta R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
19
|
Chen J, Huang Y, Zhang K. The DEAD-Box Protein Rok1 Coordinates Ribosomal RNA Processing in Association with Rrp5 in Drosophila. Int J Mol Sci 2022; 23:ijms23105685. [PMID: 35628496 PMCID: PMC9146779 DOI: 10.3390/ijms23105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Ribosome biogenesis and processing involve the coordinated action of many components. The DEAD-box RNA helicase (Rok1) is essential for cell viability, and the depletion of Rok1 inhibits pre-rRNA processing. Previous research on Rok1 and its cofactor Rrp5 has been performed primarily in yeast. Few functional studies have been performed in complex multicellular eukaryotes. Here, we used a combination of genetics and developmental experiments to show that Rok1 and Rrp5, which localize to the nucleolus, play key roles in the pre-rRNA processing and ribosome assembly in D. melanogaster. The accumulation of pre-rRNAs caused by Rok1 depletion can result in developmental defects. The loss of Rok1 enlarged the nucleolus and led to stalled ribosome assembly and pre-rRNA processing in the nucleolus, thereby blocking rRNA maturation and exacerbating the inhibition of mitosis in the brain. We also discovered that rrp54-2/4-2 displayed significantly increased ITS1 signaling by fluorescence in situ hybridization, and a reduction in ITS2. Rrp5 signal was highly enriched in the core of the nucleolus in the rok1167/167 mutant, suggesting that Rok1 is required for the accurate cellular localization of Rrp5 in the nucleolus. We have thus uncovered functions of Rok1 that reveal important implications for ribosome processing in eukaryotes.
Collapse
Affiliation(s)
- Jie Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- Correspondence: (J.C.); (Y.H.); Tel.: +86-20-87597440 (J.C.)
| | - Yuantai Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- Correspondence: (J.C.); (Y.H.); Tel.: +86-20-87597440 (J.C.)
| | - Kang Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
20
|
Abstract
Topoisomerases are enzymes that play essential roles in DNA replication, transcription, chromosome segregation, and recombination. All cells have two major forms of DNA topoisomerases: type I enzymes, which make single-stranded cuts in DNA, and type II enzymes, which cut and decatenate double-stranded DNA. DNA topoisomerases are important targets of approved and experimental anti-cancer agents. Provided in this article are protocols to assess activities of topoisomerases and their inhibitors. Included are an assay for topoisomerase I activity based on relaxation of supercoiled DNA; an assay for topoisomerase II based on the decatenation of double-stranded DNA; and approaches for enriching and quantifying DNA-protein covalent complexes formed as obligatory intermediates in the reactions of type I and II topoisomerases with DNA; and assays for measuring DNA cleavage in vitro. Topoisomerases are not the only proteins that form covalent adducts with DNA in living cells, and the approaches described here are likely to find use in characterizing other protein-DNA adducts and exploring their utility as targets for therapy. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Assay of topoisomerase I activity Basic Protocol 2: Assay of topoisomerase II activity Basic Protocol 3: In vivo determination of topoisomerase covalent complexes using the in vivo complex of enzyme (ICE) assay Support Protocol 1: Preparation of mouse tissue for determination of topoisomerase covalent complexes using the ICE assay Support Protocol 2: Using recombinant topoisomerase standard for absolute quantification of cellular TOP2CC Basic Protocol 4: Quantification of topoisomerase-DNA covalent complexes by RADAR/ELISA: The rapid approach to DNA adduct recovery (RADAR) combined with the enzyme-linked immunosorbent assay (ELISA) Basic Protocol 5: Analysis of protein-DNA covalent complexes by RADAR/Western Support Protocol 3: Adduct-Seq to characterize adducted DNA Support Protocol 4: Nuclear fractionation and RNase treatment to reduce sample complexity Basic Protocol 6: Determination of DNA cleavage by purified topoisomerase I Basic Protocol 7: Determination of inhibitor effects on DNA cleavage by topoisomerase II using a plasmid linearization assay Alternate Protocol: Gel electrophoresis determination of topoisomerase II cleavage.
Collapse
Affiliation(s)
- John L Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, Illinois
| | - Kostantin Kiianitsa
- Departments of Immunology and Biochemistry, University of Washington, Seattle, Washington
| | - Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Karin C Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, Illinois.,Biomedical Sciences Department, University of Illinois College of Medicine, Rockford, Illinois
| | - Nancy Maizels
- Departments of Immunology and Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
21
|
Soren BC, Babu Dasari J, Ottaviani A, Messina B, Andreotti G, Romeo A, Iacovelli F, Falconi M, Desideri A, Fiorani P. In Vitro and In Silico Characterization of an Antimalarial Compound with Antitumor Activity Targeting Human DNA Topoisomerase IB. Int J Mol Sci 2021; 22:7455. [PMID: 34299074 PMCID: PMC8306514 DOI: 10.3390/ijms22147455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Human DNA topoisomerase IB controls the topological state of supercoiled DNA through a complex catalytic cycle that consists of cleavage and religation reactions, allowing the progression of fundamental DNA metabolism. The catalytic steps of human DNA topoisomerase IB were analyzed in the presence of a drug, obtained by the open-access drug bank Medicines for Malaria Venture. The experiments indicate that the compound strongly and irreversibly inhibits the cleavage step of the enzyme reaction and reduces the cell viability of three different cancer cell lines. Molecular docking and molecular dynamics simulations suggest that the drug binds to the human DNA topoisomerase IB-DNA complex sitting inside the catalytic site of the enzyme, providing a molecular explanation for the cleavage-inhibition effect. For all these reasons, the aforementioned drug could be a possible lead compound for the development of an efficient anti-tumor molecule targeting human DNA topoisomerase IB.
Collapse
Affiliation(s)
- Bini Chhetri Soren
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (B.C.S.); (J.B.D.); (B.M.); (G.A.); (A.R.); (F.I.); (M.F.); (A.D.); (P.F.)
| | - Jagadish Babu Dasari
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (B.C.S.); (J.B.D.); (B.M.); (G.A.); (A.R.); (F.I.); (M.F.); (A.D.); (P.F.)
| | - Alessio Ottaviani
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (B.C.S.); (J.B.D.); (B.M.); (G.A.); (A.R.); (F.I.); (M.F.); (A.D.); (P.F.)
| | - Beatrice Messina
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (B.C.S.); (J.B.D.); (B.M.); (G.A.); (A.R.); (F.I.); (M.F.); (A.D.); (P.F.)
| | - Giada Andreotti
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (B.C.S.); (J.B.D.); (B.M.); (G.A.); (A.R.); (F.I.); (M.F.); (A.D.); (P.F.)
| | - Alice Romeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (B.C.S.); (J.B.D.); (B.M.); (G.A.); (A.R.); (F.I.); (M.F.); (A.D.); (P.F.)
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (B.C.S.); (J.B.D.); (B.M.); (G.A.); (A.R.); (F.I.); (M.F.); (A.D.); (P.F.)
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (B.C.S.); (J.B.D.); (B.M.); (G.A.); (A.R.); (F.I.); (M.F.); (A.D.); (P.F.)
| | - Alessandro Desideri
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (B.C.S.); (J.B.D.); (B.M.); (G.A.); (A.R.); (F.I.); (M.F.); (A.D.); (P.F.)
| | - Paola Fiorani
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (B.C.S.); (J.B.D.); (B.M.); (G.A.); (A.R.); (F.I.); (M.F.); (A.D.); (P.F.)
- Institute of Translational Pharmacology, National Research Council, CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
22
|
Selas A, Martin-Encinas E, Fuertes M, Masdeu C, Rubiales G, Palacios F, Alonso C. A patent review of topoisomerase I inhibitors (2016-present). Expert Opin Ther Pat 2021; 31:473-508. [PMID: 33475439 DOI: 10.1080/13543776.2021.1879051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Topoisomerases are important targets for therapeutic improvement in the treatment of some diseases, including cancer. Inhibitors and poisons of topoisomerase I can limit the activity of this enzyme in its enzymatic cycle. This fact implies an anticancer effect of these drugs, since most cancer cells are characterized by both a higher activity of topoisomerase I and a higher replication rate compared to non-cancerous cells. Clinically approved inhibitors include camptothecin (CPT) and its derivatives. However, their limitations have encouraged different research groups to prepare new compounds, proof of which are the numerous research works and patents, some of them in the last five years. AREAS COVERED This review covers patent literature on topoisomerase I inhibitors and their application published between 2016-present. EXPERT OPINION The highest contribution toward patent development has been obtained from academics or small biotechnology companies. The most important fields of innovation include the preparation of prodrugs or inhibitors combined with other agents, as biocompatible polymers or antibodies. A promising development of topoisomerase I inhibitors is expected in the next years, directed to the treatment of diverse diseases, specifically toward different types of cancer and infectious diseases, among others.
Collapse
Affiliation(s)
- Asier Selas
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Endika Martin-Encinas
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maria Fuertes
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Carme Masdeu
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Gloria Rubiales
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Concepción Alonso
- Departamento De Química Orgánica I, Facultad De Farmacia. Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
23
|
Lan T, Xue X, Dunmall LC, Miao J, Wang Y. Patient-derived xenograft: a developing tool for screening biomarkers and potential therapeutic targets for human esophageal cancers. Aging (Albany NY) 2021; 13:12273-12293. [PMID: 33903283 PMCID: PMC8109069 DOI: 10.18632/aging.202934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/23/2021] [Indexed: 04/15/2023]
Abstract
Esophageal cancer (EC) represents a human malignancy, diagnosed often at the advanced stage of cancer and resulting in high morbidity and mortality. The development of precision medicine allows for the identification of more personalized therapeutic strategies to improve cancer treatment. By implanting primary cancer tissues into immunodeficient mice for expansion, patient-derived xenograft (PDX) models largely maintain similar histological and genetic representations naturally found in patients' tumor cells. PDX models of EC (EC-PDX) provide fine platforms to investigate the tumor microenvironment, tumor genomic heterogeneity, and tumor response to chemoradiotherapy, which are necessary for new drug discovery to combat EC in addition to optimization of current therapeutic strategies for EC. In this review, we summarize the methods used for establishing EC-PDX models and investigate the utilities of EC-PDX in screening predictive biomarkers and potential therapeutic targets. The challenge of this promising research tool is also discussed.
Collapse
Affiliation(s)
- Tianfeng Lan
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xia Xue
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- The Academy of Medical Science, Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, P.R. China
| | - Louisa Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeuitcs, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jinxin Miao
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan, P.R. China
| | - Yaohe Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Centre for Cancer Biomarkers and Biotherapeuitcs, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
24
|
Ottaviani A, Iacovelli F, Fiorani P, Desideri A. Natural Compounds as Therapeutic Agents: The Case of Human Topoisomerase IB. Int J Mol Sci 2021; 22:4138. [PMID: 33923641 PMCID: PMC8073192 DOI: 10.3390/ijms22084138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
Natural products are widely used as source for drugs development. An interesting example is represented by natural drugs developed against human topoisomerase IB, a ubiquitous enzyme involved in many cellular processes where several topological problems occur due the formation of supercoiled DNA. Human topoisomerase IB, involved in the solution of such problems relaxing the DNA cleaving and religating a single DNA strand, represents an important target in anticancer therapy. Several natural compounds inhibiting or poisoning this enzyme are under investigation as possible new drugs. This review summarizes the natural products that target human topoisomerase IB that may be used as the lead compounds to develop new anticancer drugs. Moreover, the natural compounds and their derivatives that are in clinical trial are also commented on.
Collapse
Affiliation(s)
- Alessio Ottaviani
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy; (F.I.); (P.F.); (A.D.)
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy; (F.I.); (P.F.); (A.D.)
| | - Paola Fiorani
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy; (F.I.); (P.F.); (A.D.)
- Institute of Translational Pharmacology, National Research Council, CNR, Via Del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Alessandro Desideri
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133 Rome, Italy; (F.I.); (P.F.); (A.D.)
| |
Collapse
|
25
|
Trapped topoisomerase II initiates formation of de novo duplications via the nonhomologous end-joining pathway in yeast. Proc Natl Acad Sci U S A 2020; 117:26876-26884. [PMID: 33046655 DOI: 10.1073/pnas.2008721117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Topoisomerase II (Top2) is an essential enzyme that resolves catenanes between sister chromatids as well as supercoils associated with the over- or under-winding of duplex DNA. Top2 alters DNA topology by making a double-strand break (DSB) in DNA and passing an intact duplex through the break. Each component monomer of the Top2 homodimer nicks one of the DNA strands and forms a covalent phosphotyrosyl bond with the 5' end. Stabilization of this intermediate by chemotherapeutic drugs such as etoposide leads to persistent and potentially toxic DSBs. We describe the isolation of a yeast top2 mutant (top2-F1025Y,R1128G) the product of which generates a stabilized cleavage intermediate in vitro. In yeast cells, overexpression of the top2-F1025Y,R1128G allele is associated with a mutation signature that is characterized by de novo duplications of DNA sequence that depend on the nonhomologous end-joining pathway of DSB repair. Top2-associated duplications are promoted by the clean removal of the enzyme from DNA ends and are suppressed when the protein is removed as part of an oligonucleotide. TOP2 cells treated with etoposide exhibit the same mutation signature, as do cells that overexpress the wild-type protein. These results have implications for genome evolution and are relevant to the clinical use of chemotherapeutic drugs that target Top2.
Collapse
|
26
|
Xiao LX, Qi L, Zhang XL, Zhou YQ, Yue HL, Yu ED, Li QY. Liver injury in septic mice were suppressed by a camptothecin-bile acid conjugate via inhibiting NF-κB signaling pathway. Life Sci 2020; 257:118130. [DOI: 10.1016/j.lfs.2020.118130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/19/2022]
|
27
|
Radaeva M, Dong X, Cherkasov A. The Use of Methods of Computer-Aided Drug Discovery in the Development of Topoisomerase II Inhibitors: Applications and Future Directions. J Chem Inf Model 2020; 60:3703-3721. [DOI: 10.1021/acs.jcim.0c00325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mariia Radaeva
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| |
Collapse
|
28
|
Kitdumrongthum S, Reabroi S, Suksen K, Tuchinda P, Munyoo B, Mahalapbutr P, Rungrotmongkol T, Ounjai P, Chairoungdua A. Inhibition of topoisomerase IIα and induction of DNA damage in cholangiocarcinoma cells by altholactone and its halogenated benzoate derivatives. Biomed Pharmacother 2020; 127:110149. [PMID: 32344256 DOI: 10.1016/j.biopha.2020.110149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 01/02/2023] Open
Abstract
Topoisomerase IIα enzyme (Topo IIα) plays a critical function in DNA replication process and is considered to be a promising target of anti-cancer drugs. In the present study, we reported that the altholactone derivatives modified by adding a halogenated benzoate group showed greater inhibitory activity on Topo IIα enzyme in cell-free system concomitant with cytotoxicity against the CCA cell lines (KKU-M055 and KKU-M213) than those of the parent altholactone. However, the cytotoxic activities of four halogenated benzoate altholactone derivatives including iodo-, fluoro-, chloro-, and bromobenzoate derivatives (compound 1, 2, 3, and 4, respectively) were of equal potency. The fluorobenzoate derivative (compound 2) was chosen for investigating the underlying mechanism in CCA cells. Compound 2 arrested CCA cell cycle at sub G1 phase and induced apoptotic cell death. It markedly inhibited Topo IIα protein expression in both KKU-M055 and KKU-M213 cells, which was accompanied by DNA double-strand breaks demonstrated by an increase in phosphorylated H2A.X protein. Interestingly, KKU-M055 cells, which express higher Topo IIα mRNA compared to KKU-M213 cells, showed greater sensitivity to the compound, indicating the selectivity of the compound to Topo IIα enzyme. By computational docking analysis, the binding affinity of altholactone (-52.5 kcal/mol) and compound 2 (-56.7 kcal/mol) were similar to that of the Topo II poison salvicine (-53.7 kcal/mol). The aromatic moiety of both altholactones embedded in a hydrophobic pocket of Topo II ATPase domain. In addition, compound 2 induced the formation of linear DNA in Topo II-mediated cleavage assay. Collectively, our results demonstrate that the addition of fluorobenzoyl group to altholactone enhances potency and selectivity to inhibit type IIα topoisomerases. Atholactone and fluorobenzoate derivative act as Topo II cleavage complexes stabilizing compounds or Topo II poisons preferentially through binding at ATPase domain of Topo IIα, leading to DNA double-strand breaks and apoptosis induction. Such activity of 3-fluorobenzoate derivative of altholactone should be further explored for the development of an anti-cancer drug for CCA.
Collapse
Affiliation(s)
- Sarunya Kitdumrongthum
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Somrudee Reabroi
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Patoomratana Tuchinda
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Bamroong Munyoo
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panupong Mahalapbutr
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
29
|
Liu J, Geng G, Liang G, Wang L, Luo K, Yuan J, Zhao S. A novel topoisomerase I inhibitor DIA-001 induces DNA damage mediated cell cycle arrest and apoptosis in cancer cell. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:89. [PMID: 32175382 DOI: 10.21037/atm.2019.12.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background DNA topoisomerase enzyme plays an essential role in controlling the DNA topology structure by binding to DNA and cutting the phosphate backbone of either one or both of the DNA strands. Here, we have identified a small molecule inhibitor, DIA-001, that directly binds to Topoisomerase 1 (Topo I) and promotes the Topo I-DNA adducts. Methods In this study, we investigated the antitumor effects of DIA-001 using MTS assay and colony formation. We examined cell cycle of tumor cells with DIA-001 treatment in vitro by flow cytometry. And we investigated DNA damage and cell cycle marker protein after treatment with DIA-001 at different concentration and time point by western blot. Immunofluorescence was performance to detect the nuclear foci. The effects of DIA-001 on Topo I and Topo II activities were examined by DNA relaxation assays. Results We demonstrate that DIA-001 inhibit DNA replication and arrest cell cycle progression at the G2/M phase by directly binds to Topo I and promotes the Topo I-DNA adducts. In addition, DIA-001 can activate the DNA damage response signaling cascade, resulting in apoptosis in treated cells. Conclusions Our findings show a novel compound for treatment of cancer cells with the potential as a chemotherapy candidate that is less toxic to normal cells.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Guohe Geng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ling Wang
- Department of Pharmacy, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou 350001, China
| | - Kuntian Luo
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
30
|
Tesauro C, Simonsen AK, Andersen MB, Petersen KW, Kristoffersen EL, Algreen L, Hansen NY, Andersen AB, Jakobsen AK, Stougaard M, Gromov P, Knudsen BR, Gromova I. Topoisomerase I activity and sensitivity to camptothecin in breast cancer-derived cells: a comparative study. BMC Cancer 2019; 19:1158. [PMID: 31783818 PMCID: PMC6884793 DOI: 10.1186/s12885-019-6371-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
Background Camptothecin (CPT) and its derivatives are currently used as second- or third-line treatment for patients with endocrine-resistant breast cancer (BC). These drugs convert nuclear enzyme DNA topoisomerase I (TOP1) to a cell poison with the potential to damage DNA by increasing the half-life of TOP1-DNA cleavage complexes (TOP1cc), ultimately resulting in cell death. In small and non-randomized trials for BC, researchers have observed extensive variation in CPT response rates, ranging from 14 to 64%. This variability may be due to the absence of reliable selective parameters for patient stratification. BC cell lines may serve as feasible models for generation of functional criteria that may be used to predict drug sensitivity for patient stratification and, thus, lead to more appropriate applications of CPT in clinical trials. However, no study published to date has included a comparison of multiple relevant parameters and CPT response across cell lines corresponding to specific BC subtypes. Method We evaluated the levels and possible associations of seven parameters including the status of the TOP1 gene (i.e. amplification), TOP1 protein expression level, TOP1 activity and CPT susceptibility, activity of the tyrosyl-DNA phosphodiesterase 1 (TDP1), the cellular CPT response and the cellular growth rate across a representative panel of BC cell lines, which exemplifies three major BC subtypes: Luminal, HER2 and TNBC. Results In all BC cell lines analyzed (without regard to subtype classification), we observed a significant overall correlation between growth rate and CPT response. In cell lines derived from Luminal and HER2 subtypes, we observed a correlation between TOP1 gene copy number, TOP1 activity, and CPT response, although the data were too limited for statistical analyses. In cell lines representing Luminal and TNBC subtypes, we observed a direct correlation between TOP1 protein abundancy and levels of enzymatic activity. In all three subtypes (Luminal, HER2, and TNBC), TOP1 exhibits approximately the same susceptibility to CPT. Of the three subtypes examined, the TNBC-like cell lines exhibited the highest CPT sensitivity and were characterized by the fastest growth rate. This indicates that breast tumors belonging to the TNBC subtype, may benefit from treatment with CPT derivatives. Conclusion TOP1 activity is not a marker for CPT sensitivity in breast cancer.
Collapse
Affiliation(s)
- Cinzia Tesauro
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anne Katrine Simonsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Present Address: Department of Biology, Copenhagen University, Copenhagen, Denmark
| | - Marie Bech Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Emil Laust Kristoffersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Present Address: MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Line Algreen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Anne Bech Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Magnus Stougaard
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Pavel Gromov
- Genome Integrity Unit, Breast Cancer Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Birgitta R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Irina Gromova
- Genome Integrity Unit, Breast Cancer Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
31
|
Reguera RM, Elmahallawy EK, García-Estrada C, Carbajo-Andrés R, Balaña-Fouce R. DNA Topoisomerases of Leishmania Parasites; Druggable Targets for Drug Discovery. Curr Med Chem 2019; 26:5900-5923. [DOI: 10.2174/0929867325666180518074959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
DNA topoisomerases (Top) are a group of isomerase enzymes responsible for controlling the topological problems caused by DNA double helix in the cell during the processes of replication, transcription and recombination. Interestingly, these enzymes have been known since long to be key molecular machines in several cellular processes through overwinding or underwinding of DNA in all living organisms. Leishmania, a trypanosomatid parasite responsible for causing fatal diseases mostly in impoverished populations of low-income countries, has a set of six classes of Top enzymes. These are placed in the nucleus and the single mitochondrion and can be deadly targets of suitable drugs. Given the fact that there are clear differences in structure and expression between parasite and host enzymes, numerous studies have reported the therapeutic potential of Top inhibitors as antileishmanial drugs. In this regard, numerous compounds have been described as Top type IB and Top type II inhibitors in Leishmania parasites, such as camptothecin derivatives, indenoisoquinolines, indeno-1,5- naphthyridines, fluoroquinolones, anthracyclines and podophyllotoxins. The aim of this review is to highlight several facts about Top and Top inhibitors as potential antileishmanial drugs, which may represent a promising strategy for the control of this disease of public health importance.
Collapse
Affiliation(s)
- Rosa M. Reguera
- Department of Biomedical Sciences, University of Leon (ULE), Leon, Spain
| | | | | | | | | |
Collapse
|
32
|
Enzymatic activity in single cells. Methods Enzymol 2019. [PMID: 31668235 DOI: 10.1016/bs.mie.2019.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
With the increasing recognition of the importance in addressing cell-to-cell variations for the understanding of complex biological systems, single cell analyses are becoming increasingly important. Presented in this chapter is a highly sensitive approach capable of measuring human topoisomerase 1 (TOP1) activity in single CD133 positive DLD-1 cells. The method termed On-Slide "Rolling circle Enhanced Enzyme Activity Detection (REEAD)" relies on the specific capture and lysis of CD133 positive cells on glass slides dual functionalized with anti-CD133 antibodies and a specific DNA primer. The On-Slide REEAD was demonstrated to be directly quantitative. Furthermore, the method allowed for the highly sensitive detection of TOP1 activity in single CD133 positive DLD-1 cells. The described protocol is expected to open for new possibilities in the single cell research, particularly for the investigations of chemoresistance of the cancer stem cells.
Collapse
|
33
|
Splicing regulator SRSF1-3 that controls somatic hypermutation of IgV genes interacts with topoisomerase 1 and AID. Mol Immunol 2019; 116:63-72. [PMID: 31622795 DOI: 10.1016/j.molimm.2019.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 01/27/2023]
Abstract
Somatic hypermutation (SHM) of Ig genes is initiated by activation-induced cytidine deaminase (AID) and requires target gene transcription. A splice isoform of SRSF1, SRSF1-3, is necessary for AID-dependent SHM of IgV genes. Nevertheless, its exact molecular mechanism of action in SHM remains unknown. Our in silico studies show that, unlike SRSF1, SRSF1-3 lacks a strong nuclear localization domain. We show that the absence of RS domain in SRSF1-3 affects its nuclear localization, as compared to SRSF1. Consequently, SRSF1-3 is predominantly present in the cytoplasm. Remarkably, co-immunoprecipitation studies showed that SRSF1-3 interacts with Topoisomerase 1 (TOP1), a crucial regulator of SHM that assists in generating ssDNA for AID activity. Moreover, the immunofluorescence studies confirmed that SRSF1-3 and TOP1 are co-localized in the nucleus. Furthermore, Proximity Ligation Assay corroborated the direct interaction between SRSF1-3 and TOP1. An interaction between SRSF1-3 and TOP1 suggests that SRSF1-3 likely influences the TOP1 activity and consequently can aid in SHM. Accordingly, SRSF1-3 probably acts as a link between TOP1 and SHM, by spatially regulating TOP1 activity at the Ig locus. We also confirmed the interaction between SRSF1-3 and AID in chicken B-cells. Thus, SRSF1-3 shows dual-regulation of SHM, via interacting with AID as well as TOP1.
Collapse
|
34
|
Li Y, Huang T, Fu Y, Wang T, Zhao T, Guo S, Sun Y, Yang Y, Li C. Antitumor activity of a novel dual functional podophyllotoxin derivative involved PI3K/AKT/mTOR pathway. PLoS One 2019; 14:e0215886. [PMID: 31557166 PMCID: PMC6763125 DOI: 10.1371/journal.pone.0215886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
The progression of cancer through local expansion and metastasis is well recognized, but preventing these characteristic cancer processes is challenging. To this end, a new strategy is required. In this study, we presented a novel dual functional podophyllotoxin derivative, 2-pyridinealdehyde hydrazone dithiocarbamate S-propionate podophyllotoxin ester (PtoxPdp), which inhibited both matrix metalloproteinases and Topoisomerase II. This new podophyllotoxin derivative exhibited significant anti-proliferative, anti-metastatic that correlated with the downregulation of matrix metalloproteinase. In a xenograft animal local expansion model, PtoxPdp was superior to etoposide in tumor repression. A preliminary mechanistic study revealed that PtoxPdp induced apoptosis and autophagy via the PI3K/AKT/mTOR pathway. Furthermore, PtoxPdp could also inhibit epithelial-mesenchymal transition, which was achieved by downregulating both PI3K/AKT/mTOR and NF-κB/Snail pathways. Taken together, our results reveal that PtoxPdp is a promising antitumor drug candidate.
Collapse
Affiliation(s)
- Yongli Li
- College of Basic Medical Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, P. R. China
- * E-mail: (CL); (YL)
| | - Tengfei Huang
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Yun Fu
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Tingting Wang
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Tiesuo Zhao
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Sheng Guo
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Yanjie Sun
- Experimental Teaching Center of Biology and Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Yun Yang
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Changzheng Li
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
- Experimental Teaching Center of Biology and Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, P. R. China
- * E-mail: (CL); (YL)
| |
Collapse
|
35
|
Nitiss KC, Nitiss JL, Hanakahi LA. DNA Damage by an essential enzyme: A delicate balance act on the tightrope. DNA Repair (Amst) 2019; 82:102639. [PMID: 31437813 DOI: 10.1016/j.dnarep.2019.102639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 01/07/2023]
Abstract
DNA topoisomerases are essential for DNA metabolic processes such as replication and transcription. Since DNA is double stranded, the unwinding needed for these processes results in DNA supercoiling and catenation of replicated molecules. Changing the topology of DNA molecules to relieve supercoiling or resolve catenanes requires that DNA be transiently cut. While topoisomerases carry out these processes in ways that minimize the likelihood of genome instability, there are several ways that topoisomerases may fail. Topoisomerases can be induced to fail by therapeutic small molecules such as by fluoroquinolones that target bacterial topoisomerases, or a variety of anti-cancer agents that target the eukaryotic enzymes. Increasingly, there have been a large number of agents and processes, including natural products and their metabolites, DNA damage, and the intrinsic properties of the enzymes that can lead to long-lasting DNA breaks that subsequently lead to genome instability, cancer, and other diseases. Understanding the processes that can interfere with topoisomerases and how cells respond when topoisomerases fail will be important in minimizing the consequences when enzymes need to transiently interfere with DNA integrity.
Collapse
Affiliation(s)
- Karin C Nitiss
- University of Illinois College of Medicine, Department of Biomedical Sciences, Rockford, IL, 61107, United States; University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States
| | - John L Nitiss
- University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States.
| | - Leslyn A Hanakahi
- University of Illinois College of Pharmacy, Biopharmaceutical Sciences Department, Rockford IL, 61107, United States.
| |
Collapse
|
36
|
Girstun A, Ishikawa T, Staron K. Effects of SRSF1 on subnuclear localization of topoisomerase I. J Cell Biochem 2019; 120:11794-11808. [PMID: 30775805 DOI: 10.1002/jcb.28459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Subnuclear localization of topoisomerase I (top I) is determined by its DNA relaxation activity and a net of its interactions with in majority unidentified nucleolar and nucleoplasmic elements. Here, we recognized SR protein SRSF1 (Serine/arginine-rich splicing factor 1, previously known as SF2/ASF) as a new element of the net. In HeLa cells, overexpression of SRSF1 recruited top I to the nucleoplasm whereas its silencing concentrated it in the nucleolus. Effect of SRSF1 was independent of top I relaxation activity and was the best pronounced for the mutant inactive in relaxation reaction. In HCT116 cells where top I was not released from the nucleolus upon halting relaxation activity, it was also not relocated by elevated level of SRSF1. Out of remaining SR proteins, SRSF5, SRSF7, and SRSF9 did not influence the localization of top I in HeLa cells whereas overexpression of SRSF2, SRSF3, SRSF6, and partly SRSF4 concentrated top I in the nucleolus, most possibly due to the reduction of the SRSF1 accessibility. Specific effect of SRSF1 was exerted because of its distinct RS domain. Silencing of SRSF1 compensated the deletion of the top I N-terminal region, individually responsible for nucleoplasmic localization of the mutant, and restored the wild-type phenotype of deletion mutant localization. SRSF1 was essential for the camptothecin-induced clearance from the nucleolus. These results suggest a possible role of SRSF1 in establishing partition of top I between the nucleolus and the nucleoplasm in some cell types with distinct combinations of SR proteins levels.
Collapse
Affiliation(s)
- Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Krzysztof Staron
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
37
|
Potapova TA, Gerton JL. Ribosomal DNA and the nucleolus in the context of genome organization. Chromosome Res 2019; 27:109-127. [PMID: 30656516 DOI: 10.1007/s10577-018-9600-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
The nucleolus constitutes a prominent nuclear compartment, a membraneless organelle that was first documented in the 1830s. The fact that specific chromosomal regions were present in the nucleolus was recognized by Barbara McClintock in the 1930s, and these regions were termed nucleolar organizing regions, or NORs. The primary function of ribosomal DNA (rDNA) is to produce RNA components of ribosomes. Yet, ribosomal DNA also plays a pivotal role in nuclear organization by assembling the nucleolus. This review is focused on the rDNA and associated proteins in the context of genome organization. Recent advances in understanding chromatin organization suggest that chromosomes are organized into topological domains by a DNA loop extrusion process. We discuss the perspective that rDNA may also be organized in topological domains constrained by structural maintenance of chromosome protein complexes such as cohesin and condensin. Moreover, biophysical studies indicate that the nucleolar compartment may be formed by active processes as well as phase separation, a perspective that lends further insight into nucleolar organization. The application of the latest perspectives and technologies to this organelle help further elucidate its role in nuclear structure and function.
Collapse
Affiliation(s)
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
38
|
A RADAR-Based Assay to Isolate Covalent DNA Complexes in Bacteria. Antibiotics (Basel) 2019; 8:antibiotics8010017. [PMID: 30818799 PMCID: PMC6466838 DOI: 10.3390/antibiotics8010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 01/03/2023] Open
Abstract
Quinolone antibacterials target the type II topoisomerases gyrase and topoisomerase IV and kill bacterial cells by converting these essential enzymes into cellular poisons. Although much is known regarding the interactions between these drugs and enzymes in purified systems, much less is known regarding their interactions in the cellular context due to the lack of a widely accessible assay that does not require expensive, specialized equipment. Thus, we developed an assay, based on the “rapid approach to DNA adduct recovery,” or RADAR, assay that is used with cultured human cells, to measure cleavage complex levels induced by treating bacterial cultures with the quinolone ciprofloxacin. Many chemical and mechanical lysis conditions and DNA precipitation conditions were tested, and the method involving sonication in denaturing conditions followed by precipitation of DNA via addition of a half volume of ethanol provided the most consistent results. This assay can be used to complement results obtained with purified enzymes to expand our understanding of quinolone mechanism of action and to test the activity of newly developed topoisomerase-targeted compounds. In addition, the bacterial RADAR assay can be used in other contexts, as any proteins covalently complexed to DNA should be trapped on and isolated with the DNA, allowing them to then be quantified.
Collapse
|
39
|
Sassa A, Yasui M, Honma M. Current perspectives on mechanisms of ribonucleotide incorporation and processing in mammalian DNA. Genes Environ 2019; 41:3. [PMID: 30700998 PMCID: PMC6346524 DOI: 10.1186/s41021-019-0118-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Ribonucleotides, which are RNA precursors, are often incorporated into DNA during replication. Although embedded ribonucleotides in the genome are efficiently removed by canonical ribonucleotide excision repair (RER), inactivation of RER causes genomic ribonucleotide accumulation, leading to various abnormalities in cells. Mutation of genes encoding factors involved in RER is associated with the neuroinflammatory autoimmune disorder Aicardi–Goutières syndrome. Over the last decade, the biological impact of ribonucleotides in the genome has attracted much attention. In the present review, we particularly focus on recent studies that have elucidated possible mechanisms of ribonucleotide incorporation and repair and their significance in mammals.
Collapse
Affiliation(s)
- Akira Sassa
- 1Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522 Japan
| | - Manabu Yasui
- 2Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501 Japan
| | - Masamitsu Honma
- 2Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501 Japan
| |
Collapse
|
40
|
Castelli S, Gonçalves MB, Katkar P, Stuchi GC, Couto RAA, Petrilli HM, da Costa Ferreira AM. Comparative studies of oxindolimine-metal complexes as inhibitors of human DNA topoisomerase IB. J Inorg Biochem 2018; 186:85-94. [PMID: 29860208 DOI: 10.1016/j.jinorgbio.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Silvia Castelli
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | - Marcos Brown Gonçalves
- Departamento de Física, Universidade Tecnológica Federal do Paraná, 80230-901 Curitiba, PR, Brazil
| | - Prafulla Katkar
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | - Gabriela Cristina Stuchi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Ricardo Alexandre Alves Couto
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Helena Maria Petrilli
- Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
41
|
Yang Z, Jiang T, Zhong H, Kang Y. Bulge oligonucleotide as an inhibitory agent of bacterial topoisomerase I. J Enzyme Inhib Med Chem 2018; 33:319-323. [PMID: 29281935 PMCID: PMC6009931 DOI: 10.1080/14756366.2017.1419218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacterial topoisomerase I (Btopo I) was defined as potential target for discovery of new antibacterial compounds. Various oligonucleotides containing bulge structure were designed and synthesised as inhibitors to Btopo I in this investigation. The results of this study demonstrated that the designed oligonucleotides display high inhibitory efficiency on the activity of Btopo I and the inhibitory effect could be modulated by the amount of bulge DNA bases. The most efficient one among them showed an IC50 value of 63.1 nM in its inhibition on the activity of Btopo I. In addition, our studies confirmed that the designed oligonucleotide would induce irreversible damages to Btopo I and without any effects occur to eukaryotic topoisomerase I. It is our hope that the results provided in these studies could provide a novel way to inhibit Btopo I.
Collapse
Affiliation(s)
- Zhaoqi Yang
- a School of Pharmaceutical Sciences , Jiangnan University , Jiangsu , People's Republic of China.,b Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University , Jiangsu , People's Republic of China
| | - Tuoyu Jiang
- b Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University , Jiangsu , People's Republic of China
| | - Hanshi Zhong
- b Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University , Jiangsu , People's Republic of China
| | - Yu Kang
- b Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University , Jiangsu , People's Republic of China
| |
Collapse
|
42
|
PRC1 Prevents Replication Stress during Chondrogenic Transit Amplification. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Takarada JE, Guedes APM, Correa RS, Silveira-Lacerda EDP, Castelli S, Iacovelli F, Deflon VM, Batista AA, Desideri A. Ru/Fe bimetallic complexes: Synthesis, characterization, cytotoxicity and study of their interactions with DNA/HSA and human topoisomerase IB. Arch Biochem Biophys 2017; 636:28-41. [PMID: 29107586 DOI: 10.1016/j.abb.2017.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/16/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Three ruthenium/iron-based compounds, 1: [Ru(MIm)(bipy)(dppf)]PF6 (MIm = 2-mercapto-1-methylimidazole anion), 2: [RuCl(Im)(bipy)(dppf)]PF6 (Im = imidazole), and 3: [Ru(tzdt)(bipy)(dppf)]PF6 (tzdt = 1,3-thiazolidine-2-thione anion) (dppf = 1,1'-bis(diphenylphosphine)ferrocene and bipy = 2,2'-bipyridine), were synthesized, and characterized by elemental analyses, conductivity, UV/Vis, IR, 1H, 13C and 31P{1H} NMR spectroscopies, and by electrochemical technique. The complex 3 was also characterized by single-crystal X-ray. The three ruthenium(II) complexes show cytotoxicity against DU-145 (prostate carcinoma cells) and A549 (lung carcinoma cells) tumor cells. The free ligands do not exhibit any cytotoxic activity, such as evident by the IC50 values higher than 200 μM. UV/Vis and viscosity experiments showed that the complexes interact weakly with the DNA molecule, via electrostatic forces. The interaction of the complexes 1-3 with the HSA is moderate, with Kb values in range of 105-107 M-1, presenting a static mechanism of interaction stabilized by hydrophobic. Complexes 2 and 3 showed high affinity for the FA7 HSA site as evidenced by fluorescence spectroscopy and molecular docking. Complexes 1-3 were tested as potential human Topoisomerase IB inhibitors by analysing the different steps of the enzyme catalytic cycle. The results indicate that all compounds efficiently inhibit the DNA relaxation and the cleavage reaction, in which the effect increases upon pre-incubation. Complexes 1 and 2 are also able to slow down the religation reaction.
Collapse
Affiliation(s)
- Jessica E Takarada
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Adriana P M Guedes
- Department of Chemistry, University Federal of São Carlos, CP 676, CEP 13565-905, São Carlos, São Paulo, Brazil
| | - Rodrigo S Correa
- Department of Chemistry, University Federal of São Carlos, CP 676, CEP 13565-905, São Carlos, São Paulo, Brazil
| | - Elisângela de P Silveira-Lacerda
- Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, University Federal of Goiás-UFG, Goiânia, Goiás, Brazil
| | - Silvia Castelli
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Victor Marcelo Deflon
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, São Paulo, Brazil
| | - Alzir Azevedo Batista
- Department of Chemistry, University Federal of São Carlos, CP 676, CEP 13565-905, São Carlos, São Paulo, Brazil.
| | | |
Collapse
|
44
|
Tsekrekou M, Stratigi K, Chatzinikolaou G. The Nucleolus: In Genome Maintenance and Repair. Int J Mol Sci 2017; 18:ijms18071411. [PMID: 28671574 PMCID: PMC5535903 DOI: 10.3390/ijms18071411] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022] Open
Abstract
The nucleolus is the subnuclear membrane-less organelle where rRNA is transcribed and processed and ribosomal assembly occurs. During the last 20 years, however, the nucleolus has emerged as a multifunctional organelle, regulating processes that go well beyond its traditional role. Moreover, the unique organization of rDNA in tandem arrays and its unusually high transcription rates make it prone to unscheduled DNA recombination events and frequent RNA:DNA hybrids leading to DNA double strand breaks (DSBs). If not properly repaired, rDNA damage may contribute to premature disease onset and aging. Deregulation of ribosomal synthesis at any level from transcription and processing to ribosomal subunit assembly elicits a stress response and is also associated with disease onset. Here, we discuss how genome integrity is maintained within nucleoli and how such structures are functionally linked to nuclear DNA damage response and repair giving an emphasis on the newly emerging roles of the nucleolus in mammalian physiology and disease.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece.
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece.
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
45
|
Reed B, Yakovleva L, Shuman S, Ghose R. Characterization of DNA Binding by the Isolated N-Terminal Domain of Vaccinia Virus DNA Topoisomerase IB. Biochemistry 2017; 56:3307-3317. [PMID: 28570045 DOI: 10.1021/acs.biochem.7b00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vaccinia TopIB (vTopIB), a 314-amino acid eukaryal-type IB topoisomerase, recognizes and transesterifies at the DNA sequence 5'-(T/C)CCTT↓, leading to the formation of a covalent DNA-(3'-phosphotyrosyl274)-enzyme intermediate in the supercoil relaxation reaction. The C-terminal segment of vTopIB (amino acids 81-314), which engages the DNA minor groove at the scissile phosphodiester, comprises an autonomous catalytic domain that retains cleavage specificity, albeit with a cleavage site affinity lower than that of the full-length enzyme. The N-terminal domain (amino acids 1-80) engages the major groove on the DNA face opposite the scissile phosphodiester. Whereas DNA contacts of the N-terminal domain have been implicated in the DNA site affinity of vTopIB, it was not known whether the N-terminal domain per se could bind DNA. Here, using isothermal titration calorimetry, we demonstrate the ability of the isolated N-terminal domain to bind a CCCTT-containing 24-mer duplex with an apparent affinity that is ∼2.2-fold higher than that for an otherwise identical duplex in which the pentapyrimidine sequence is changed to ACGTG. Analyses of the interactions of the isolated N-terminal domain with duplex DNA via solution nuclear magnetic resonance methods are consistent with its DNA contacts observed in DNA-bound crystal structures of full-length vTopIB. The chemical shift perturbations and changes in hydrodynamic properties triggered by CCCTT DNA versus non-CCCTT DNA suggest differences in DNA binding dynamics. The importance of key N-terminal domain contacts in the context of full-length vTopIB is underscored by assessing the effects of double-alanine mutations on DNA transesterification and its sensitivity to ionic strength.
Collapse
Affiliation(s)
- Benjamin Reed
- Department of Chemistry and Biochemistry, The City College of New York , New York, New York 10031, United States
| | - Lyudmila Yakovleva
- Molecular Biology Program, Sloan-Kettering Institute , New York, New York 10021, United States
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute , New York, New York 10021, United States
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York , New York, New York 10031, United States
| |
Collapse
|
46
|
Bečka M, Vilková M, Salem O, Kašpárková J, Brabec V, Kožurková M. 3-[(E)-(acridin-9'-ylmethylidene)amino]-1-substituted thioureas and their biological activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 180:234-241. [PMID: 28315620 DOI: 10.1016/j.saa.2017.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/08/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
This paper describes the synthesis of a novel series of acridine thiosemicarbazones through a two-step reaction between various isothiocyanates and hydrazine followed by treatment with acridin-9-carbaldehyde. The properties of this series of seven new derivatives are studied using NMR and biochemical techniques, and the DNA-binding properties of the compounds are determined using spectrophotometric studies (UV-vis absorption, fluorescence, and circular/linear dichroism) and viscometry. The binding constants K are estimated as being in the range of 2.2 to 7.8×104M-1 and the percentage of hypochromism was found to be 22.11-49.75% (from UV-vis spectral titration). Electrophoretic experiments prove that the novel compounds demonstrate moderate inhibitory effects against Topo I activity at a concentration of 60×10-6M.
Collapse
Affiliation(s)
- Michal Bečka
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, P.J.Šafárik University, Moyzesova 11, Košice, Slovak Republic
| | - Mária Vilková
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, P.J.Šafárik University, Moyzesova 11, Košice, Slovak Republic
| | - Othman Salem
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P.J.Šafárik University, Moyzesova 11, Košice, Slovak Republic
| | - Jana Kašpárková
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Viktor Brabec
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Mária Kožurková
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P.J.Šafárik University, Moyzesova 11, Košice, Slovak Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolovska 581, Hradec Kralove, Czech Republic.
| |
Collapse
|
47
|
Ranjan N, Story S, Fulcrand G, Leng F, Ahmad M, King A, Sur S, Wang W, Tse-Dinh YC, Arya DP. Selective Inhibition of Escherichia coli RNA and DNA Topoisomerase I by Hoechst 33258 Derived Mono- and Bisbenzimidazoles. J Med Chem 2017; 60:4904-4922. [DOI: 10.1021/acs.jmedchem.7b00191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nihar Ranjan
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Sandra Story
- NUBAD LLC, 900B West Faris
Road, Greenville, South Carolina 29605, United States
| | - Geraldine Fulcrand
- Department
of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Department
of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Muzammil Ahmad
- Genome
Instability and Chromatin Remodeling Section, Lab of Genetics, National
Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, United States
| | - Ada King
- NUBAD LLC, 900B West Faris
Road, Greenville, South Carolina 29605, United States
| | - Souvik Sur
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Weidong Wang
- Genome
Instability and Chromatin Remodeling Section, Lab of Genetics, National
Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, United States
| | - Yuk-Ching Tse-Dinh
- Department
of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Dev P. Arya
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- NUBAD LLC, 900B West Faris
Road, Greenville, South Carolina 29605, United States
| |
Collapse
|
48
|
Cuya SM, Bjornsti MA, van Waardenburg RCAM. DNA topoisomerase-targeting chemotherapeutics: what's new? Cancer Chemother Pharmacol 2017; 80:1-14. [PMID: 28528358 DOI: 10.1007/s00280-017-3334-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/03/2017] [Indexed: 02/05/2023]
Abstract
To resolve the topological problems that threaten the function and structural integrity of nuclear and mitochondrial genomes and RNA molecules, human cells encode six different DNA topoisomerases including type IB enzymes (TOP1 and TOP1mt), type IIA enzymes (TOP2α and TOP2β) and type IA enzymes (TOP3α and TOP3β). DNA entanglements and the supercoiling of DNA molecules are regulated by topoisomerases through the introduction of transient enzyme-linked DNA breaks. The covalent topoisomerase-DNA complexes are the cellular targets of a diverse group of cancer chemotherapeutics, which reversibly stabilize these reaction intermediates. Here we review the structure-function and catalytic mechanisms of each family of eukaryotic DNA topoisomerases and the topoisomerase-targeting agents currently approved for patient therapy or in clinical trials, and highlight novel developments and challenges in the clinical development of these agents.
Collapse
Affiliation(s)
- Selma M Cuya
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave. S., Birmingham, AL, 35294-0019, USA
| | - Mary-Ann Bjornsti
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave. S., Birmingham, AL, 35294-0019, USA
| | - Robert C A M van Waardenburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, 155 Volker Hall, 1720 2nd Ave. S., Birmingham, AL, 35294-0019, USA.
| |
Collapse
|
49
|
de Camargo MS, da Silva MM, Correa RS, Vieira SD, Castelli S, D'Anessa I, De Grandis R, Varanda E, Deflon VM, Desideri A, Batista AA. Inhibition of human DNA topoisomerase IB by nonmutagenic ruthenium(II)-based compounds with antitumoral activity. Metallomics 2016; 8:179-92. [PMID: 26758075 DOI: 10.1039/c5mt00227c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein we synthesized two new ruthenium(II) compounds [Ru(pySH)(bipy)(dppb)]PF6 (1) and [Ru(HSpym)(bipy)(dppb)]PF6 (2) that are analogs to an antitumor agent recently described, [Ru(SpymMe2)(bipy)(dppb)]PF6 (3), where [(Spy) = 2-mercaptopyridine anion; (Spym) = 2-mercaptopyrimidine anion and (SpymMe2) = 4,6-dimethyl-2-mercaptopyrimidine anion]. In vitro cell culture experiments revealed significant anti-proliferative activity for 1-3 against HepG2 and MDA-MB-231 tumor cells, higher than the standard anti-cancer drugs doxorubicin and cisplatin. No mutagenicity is detected when compounds are evaluated by cytokinesis-blocked micronucleus cytome and Ames test in the presence and absence of S9 metabolic activation from rat liver. Interaction studies show that compounds 1-3 can bind to DNA through electrostatic interactions and to albumin through hydrophobic interactions. The three compounds are able to inhibit the DNA supercoiled relaxation mediated by human topoisomerase IB (Top1). Compound 3 is the most efficient Top1 inhibitor and the inhibitory effect is enhanced upon pre-incubation with the enzyme. Analysis of different steps of Top1 catalytic cycle indicates that 3 inhibits the cleavage reaction impeding the binding of the enzyme to DNA and slows down the religation reaction. Molecular docking shows that 3 preferentially binds closer to the residues of the active site when Top1 is free and lies on the DNA groove downstream of the cleavage site in the Top1-DNA complex. Thus, 3 can be considered in further studies for a possible use as an anticancer agent.
Collapse
Affiliation(s)
- Mariana S de Camargo
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905, São Carlos, SP, Brazil.
| | - Monize M da Silva
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905, São Carlos, SP, Brazil.
| | - Rodrigo S Correa
- Departamento de Química, ICEB, Universidade Federal de Ouro Preto, CEP 35400-000, Ouro Preto, MG, Brazil
| | - Sara D Vieira
- Dipartimento di Biologia, Università Tor Vergata di Roma, 00133 Rome, Italy
| | - Silvia Castelli
- Dipartimento di Biologia, Università Tor Vergata di Roma, 00133 Rome, Italy
| | - Ilda D'Anessa
- Dipartimento di Biologia, Università Tor Vergata di Roma, 00133 Rome, Italy
| | - Rone De Grandis
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, UNESP, CEP 14800-900, Araraquara, SP, Brazil
| | - Eliana Varanda
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, UNESP, CEP 14800-900, Araraquara, SP, Brazil
| | - Victor M Deflon
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | | | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
50
|
Abstract
Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo.
Collapse
|