1
|
Lu S, Hou Y, Zhang XE, Gao Y. Live cell imaging of DNA and RNA with fluorescent signal amplification and background reduction techniques. Front Cell Dev Biol 2023; 11:1216232. [PMID: 37342234 PMCID: PMC10277805 DOI: 10.3389/fcell.2023.1216232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Illuminating DNA and RNA dynamics in live cell can elucidate their life cycle and related biochemical activities. Various protocols have been developed for labeling the regions of interest in DNA and RNA molecules with different types of fluorescent probes. For example, CRISPR-based techniques have been extensively used for imaging genomic loci. However, some DNA and RNA molecules can still be difficult to tag and observe dynamically, such as genomic loci in non-repetitive regions. In this review, we will discuss the toolbox of techniques and methodologies that have been developed for imaging DNA and RNA. We will also introduce optimized systems that provide enhanced signal intensity or low background fluorescence for those difficult-to-tag molecules. These strategies can provide new insights for researchers when designing and using techniques to visualize DNA or RNA molecules.
Collapse
Affiliation(s)
- Song Lu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Yu Hou
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| |
Collapse
|
2
|
Meschichi A, Rosa S. Visualizing and Measuring Single Locus Dynamics in Arabidopsis thaliana. Methods Mol Biol 2021; 2200:213-224. [PMID: 33175380 DOI: 10.1007/978-1-0716-0880-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In eukaryotes, DNA is packed into an incredibly complex structure called chromatin. Although chromatin was often considered as a static entity, it is now clear that chromatin proteins and the chromatin fiber itself are in fact very dynamic. For instance, the packaging of the DNA into the nucleus requires an extraordinary degree of compaction but this should be achieved without compromising the accessibility to the transcription machinery and other nuclear processes. Approaches such as gene tagging have been established for living cells in order to detect, track, and analyze the mobility of single loci. In this chapter, we provide an experimental protocol for performing locus tracking in Arabidopsis thaliana roots and for characterizing locus mobility behavior via a Mean Square Displacement analysis.
Collapse
Affiliation(s)
- Anis Meschichi
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefanie Rosa
- Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
3
|
Tasan I, Su CJ, Enghiad B, Zhang M, Mishra S, Zhao H. Two-Color Imaging of Nonrepetitive Endogenous Loci in Human Cells. ACS Synth Biol 2020; 9:2502-2514. [PMID: 32822529 DOI: 10.1021/acssynbio.0c00295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tools for live cell imaging of multiple nonrepetitive genomic loci in mammalian cells are necessary to study chromatin dynamics. Here, we report a new system based on two chromosomally integrated orthogonal irregular repeat arrays and particularly a new general strategy to construct irregular repeat arrays. Briefly, we utilized a "bridge oligonucleotide-mediated ligation" protocol to assemble 8-mer repeats de novo which were then combined into a final 96-mer repeat array using Golden Gate cloning. This strategy was used for assembling a new mutant TetO irregular repeat array, which worked orthogonally to the wild type TetO repeat. Single copy integration of the new repeat array did not cause replication deficiencies at the tagged locus. Moreover, the mutant TetO irregular repeat could also be visualized by CRISPR imaging. Our new irregular repeat assembly method demonstrates a generally applicable strategy that can be used for assembling additional orthogonal repeat arrays for imaging genomic loci and irregular repeats to visualize RNA or proteins via signal amplification.
Collapse
Affiliation(s)
- Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Christina Jean Su
- Department of Molecular and Cellular Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Behnam Enghiad
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Meng Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shekhar Mishra
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Application and prospects of CRISPR/Cas9-based methods to trace defined genomic sequences in living and fixed plant cells. Chromosome Res 2019; 28:7-17. [PMID: 31792795 DOI: 10.1007/s10577-019-09622-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
The 3D organization of chromatin plays an important role in genome stability and many other pivotal biological programs. Therefore, the establishment of imaging methods, which enable us to study the dynamics of chromatin in living cells, is necessary. Although primary live cell imaging methods were a breakthrough, there is a need to develop more specific labeling techniques. With the discovery of programmable DNA binding proteins, such zinc finger proteins (ZFP), transcription activator-like effectors (TALE), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a major leap forward was made. Here, we review the applications and potential of fluorescent repressor-operator systems, programmable DNA binding proteins with an emphasis on CRISPR-based chromatin imaging in living and fixed cells, and their potential application in plant science.
Collapse
|
5
|
Robaszkiewicz E, Idziak-Helmcke D, Tkacz MA, Chrominski K, Hasterok R. The arrangement of Brachypodium distachyon chromosomes in interphase nuclei. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5571-5583. [PMID: 27588463 PMCID: PMC5049400 DOI: 10.1093/jxb/erw325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The spatial organization of chromatin within the interphase nucleus and the interactions between chromosome territories (CTs) are essential for various biological processes, such as DNA replication, transcription, and repair. However, detailed data about the CT arrangement in monocotyledonous plants are scarce. In this study, chromosome painting was used to analyse the distribution and associations of individual chromosomes in the 3-D preserved nuclei of Brachypodium distachyon root cells in order to determine the factors that may have an impact on the homologous CT arrangement. It was shown that the frequency of CT association is linked to the steric constraints imposed by the limited space within the nucleus and may depend on chromosome size and morphology as well as on the nuclear shape. Furthermore, in order to assess whether the distribution of interphase chromosomes is random or is subject to certain patterns, a comparison between the experimental data and the results of a computer simulation (ChroTeMo), which was based on a fully probabilistic distribution of the CTs, was performed. This comparison revealed that homologous chromosome arm CTs associate more often than if they were randomly arranged inside the interphase nucleus.
Collapse
Affiliation(s)
- Ewa Robaszkiewicz
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Dominika Idziak-Helmcke
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Magdalena A Tkacz
- Institute of Computer Science, Faculty of Material and Computer Science, University of Silesia in Katowice, Sosnowiec, Poland
| | - Kornel Chrominski
- Institute of Technology and Mechatronics, Faculty of Material and Computer Science, University of Silesia in Katowice, Sosnowiec, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
6
|
Watanabe K, Breier U, Hensel G, Kumlehn J, Schubert I, Reiss B. Stable gene replacement in barley by targeted double-strand break induction. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1433-45. [PMID: 26712824 PMCID: PMC4762383 DOI: 10.1093/jxb/erv537] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gene targeting is becoming an important tool for precision genome engineering in plants. During gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. We have analysed gene targeting in barley (Hordeum vulgare) using a model system based on double-strand break (DSB) induction by the meganuclease I-SceI and a transgenic, artificial target locus. In the plants we obtained, the donor construct was inserted at the target locus by homology-directed DNA integration in at least two transformants obtained in a single experiment and was stably inherited as a single Mendelian trait. Both events were produced by one-sided integration. Our data suggest that gene replacement can be achieved in barley with a frequency suitable for routine application. The use of a codon-optimized nuclease and co-transfer of the nuclease gene together with the donor construct are probably the components important for efficient gene targeting. Such an approach, employing the recently developed synthetic nucleases/nickases that allow DSB induction at almost any sequence of a genome of interest, sets the stage for precision genome engineering as a routine tool even for important crops such as barley.
Collapse
Affiliation(s)
- Koichi Watanabe
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Stadt Seeland, Germany
| | - Ulrike Breier
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829 Cologne, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Stadt Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Stadt Seeland, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Stadt Seeland, Germany Faculty of Science and Central European Institute of Technology, Masaryk University, 61137 Brno, Czech Republic
| | - Bernd Reiss
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829 Cologne, Germany
| |
Collapse
|
7
|
Schubert V, Ruban A, Houben A. Chromatin Ring Formation at Plant Centromeres. FRONTIERS IN PLANT SCIENCE 2016; 7:28. [PMID: 26913037 PMCID: PMC4753331 DOI: 10.3389/fpls.2016.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/10/2016] [Indexed: 05/11/2023]
Abstract
We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
- *Correspondence: Veit Schubert
| | - Alevtina Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
- Department of Genetics, Biotechnology, Plant Breeding and Seed Science, Russian State Agrarian University - Moscow Timiryazev Agricultural AcademyMoscow, Russia
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt Seeland, Germany
| |
Collapse
|
8
|
Hirakawa T, Matsunaga S. Three-Dimensional, Live-Cell Imaging of Chromatin Dynamics in Plant Nuclei Using Chromatin Tagging Systems. Methods Mol Biol 2016; 1469:189-195. [PMID: 27557696 DOI: 10.1007/978-1-4939-4931-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In plants, chromatin dynamics spatiotemporally change in response to various environmental stimuli. However, little is known about chromatin dynamics in the nuclei of plants. Here, we introduce a three-dimensional, live-cell imaging method that can monitor chromatin dynamics in nuclei via a chromatin tagging system that can visualize specific genomic loci in living plant cells. The chromatin tagging system is based on a bacterial operator/repressor system in which the repressor is fused to fluorescent proteins. A recent refinement of promoters for the system solved the problem of gene silencing and abnormal pairing frequencies between operators. Using this system, we can detect the spatiotemporal dynamics of two homologous loci as two fluorescent signals within a nucleus and monitor the distance between homologous loci. These live-cell imaging methods will provide new insights into genome organization, development processes, and subnuclear responses to environmental stimuli in plants.
Collapse
Affiliation(s)
- Takeshi Hirakawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
9
|
DNA double-strand breaks alter the spatial arrangement of homologous loci in plant cells. Sci Rep 2015; 5:11058. [PMID: 26046331 PMCID: PMC4457028 DOI: 10.1038/srep11058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
Chromatin dynamics and arrangement are involved in many biological processes in nuclei of eukaryotes including plants. Plants have to respond rapidly to various environmental stimuli to achieve growth and development because they cannot move. It is assumed that the alteration of chromatin dynamics and arrangement support the response to these stimuli; however, there is little information in plants. In this study, we investigated the chromatin dynamics and arrangement with DNA damage in Arabidopsis thaliana by live-cell imaging with the lacO/LacI-EGFP system and simulation analysis. It was revealed that homologous loci kept a constant distance in nuclei of A. thaliana roots in general growth. We also found that DNA double-strand breaks (DSBs) induce the approach of the homologous loci with γ-irradiation. Furthermore, AtRAD54, which performs an important role in the homologous recombination repair pathway, was involved in the pairing of homologous loci with γ-irradiation. These results suggest that homologous loci approach each other to repair DSBs, and AtRAD54 mediates these phenomena.
Collapse
|
10
|
Abstract
Engineered minimal chromosomes with sufficient mitotic and meiotic stability have an enormous potential as vectors for stacking multiple genes required for complex traits in plant biotechnology. Proof of principle for essential steps in chromosome engineering such as truncation of chromosomes by T-DNA-mediated telomere seeding and de novo formation of centromeres by cenH3 fusion protein tethering has been recently obtained. In order to generate robust protocols for application in plant biotechnology, these steps need to be combined and supplemented with additional methods such as site-specific recombination for the directed transfer of multiple genes of interest on the minichromosomes. At the same time, the development of these methods allows new insight into basic aspects of plant chromosome functions such as how centromeres assure proper distribution of chromosomes to daughter cells or how telomeres serve to cap the chromosome ends to prevent shortening of ends over DNA replication cycles and chromosome end fusion.
Collapse
Affiliation(s)
- Michael Florian Mette
- Research Group Chromosome Structure and Function, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Stadt Seeland OT Gatersleben, Germany,
| | | |
Collapse
|
11
|
Luo C, Dong J, Zhang Y, Lam E. Decoding the role of chromatin architecture in development: coming closer to the end of the tunnel. FRONTIERS IN PLANT SCIENCE 2014; 5:374. [PMID: 25191327 PMCID: PMC4140164 DOI: 10.3389/fpls.2014.00374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
Form and function in biology are intimately related aspects that are often difficult to untangle. While the structural aspects of chromatin organization were apparent from early cytological observations long before the molecular details of chromatin functions were deciphered, the extent to which genome architecture may impact its output remains unclear. A major roadblock to resolve this issue is the divergent scales, both temporal and spatial, of the experimental approaches for examining these facets of chromatin biology. Recent advances in high-throughput sequencing and informatics to model and monitor genome-wide chromatin contact sites provide the much-needed platform to close this gap. This mini-review will focus on discussing recent efforts applying new technologies to elucidate the roles of genome architecture in coordinating global gene expression output. Our discussion will emphasize the potential roles of differential genome 3-D structure as a driver for cell fate specification of multicellular organisms. An integrated approach that combines multiple new methodologies may finally have the necessary temporal and spatial resolution to provide clarity on the roles of chromatin architecture during development.
Collapse
Affiliation(s)
- Chongyuan Luo
- Department of Plant Biology and Pathology, Rutgers the State University of New JerseyNew Brunswick, NJ, USA
| | - Juan Dong
- Department of Plant Biology and Pathology, Rutgers the State University of New JerseyNew Brunswick, NJ, USA
- The Waksman Institute of Microbiology, Rutgers the State University of New JerseyPiscataway, NJ, USA
| | - Yi Zhang
- Department of Plant Biology and Pathology, Rutgers the State University of New JerseyNew Brunswick, NJ, USA
| | - Eric Lam
- Department of Plant Biology and Pathology, Rutgers the State University of New JerseyNew Brunswick, NJ, USA
| |
Collapse
|
12
|
Del Prete S, Arpón J, Sakai K, Andrey P, Gaudin V. Nuclear architecture and chromatin dynamics in interphase nuclei of Arabidopsis thaliana. Cytogenet Genome Res 2014; 143:28-50. [PMID: 24992956 DOI: 10.1159/000363724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The interphase cell nucleus is extraordinarily complex, ordered, and dynamic. In the last decade, remarkable progress has been made in deciphering the functional organisation of the cell nucleus, and intricate relationships between genome functions (transcription, DNA repair, or replication) and various nuclear compartments have been revealed. In this review, we describe the architecture of the Arabidopsis thaliana interphase cell nucleus and discuss the dynamic nature of its organisation. We underline the need for further developments in quantitative and modelling approaches to nuclear organization.
Collapse
Affiliation(s)
- Stefania Del Prete
- INRA, UMR1318-AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), INRA-Centre de Versailles-Grignon, Versailles, France
| | | | | | | | | |
Collapse
|
13
|
Leland BA, King MC. Using LacO arrays to monitor DNA double-strand break dynamics in live Schizosaccharomyces pombe cells. Methods Mol Biol 2014; 1176:127-41. [PMID: 25030924 DOI: 10.1007/978-1-4939-0992-6_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
LacO arrays, when combined with LacI-GFP, have been a valuable tool for studying nuclear architecture and chromatin dynamics. Here, we outline an experimental approach to employ the LacO/LacI-GFP system in S. pombe to assess DNA double-strand break (DSB) dynamics and the contribution of chromatin state to DSB repair. Previously, integration of long, highly repetitive LacO arrays in S. pombe has been a challenge. To address this problem, we have developed a novel approach, based on the principles used for homologous recombination-based genome engineering in higher eukaryotes, to integrate long, repetitive LacO arrays with targeting efficiencies as high as 70 %. Combining this facile LacO/LacI-GFP system with a site-specific, inducible DSB provides a means to monitor DSB dynamics at engineered sites within the genome.
Collapse
Affiliation(s)
- Bryan A Leland
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | | |
Collapse
|
14
|
Schubert V, Lermontova I, Schubert I. The Arabidopsis CAP-D proteins are required for correct chromatin organisation, growth and fertility. Chromosoma 2013; 122:517-33. [PMID: 23929493 DOI: 10.1007/s00412-013-0424-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 11/30/2022]
Abstract
In plants as in other eukaryotes, the structural maintenance of chromosome (SMC) protein complexes cohesin, condensin and SMC5/6 are essential for sister chromatid cohesion, chromosome condensation, DNA repair and recombination. The presence of paralogous genes for various components of the different SMC complexes suggests the diversification of their biological functions during the evolution of higher plants. In Arabidopsis thaliana, we identified two candidate genes (Cap-D2 and Cap-D3) which may express conserved proteins presumably associated with condensin. In silico analyses using public databases suggest that both genes are controlled by factors acting in a cell cycle-dependent manner. Cap-D2 is essential because homozygous T-DNA insertion mutants were not viable. The heterozygous mutant showed wild-type growth habit but reduced fertility. For Cap-D3, we selected two homozygous mutants expressing truncated transcripts which are obviously not fully functional. Both mutants show reduced pollen fertility and seed set (one of them also reduced plant vigour), a lower chromatin density and frequent (peri)centromere association in interphase nuclei. Sister chromatid cohesion was impaired compared to wild-type in the cap-D3 mutants but not in the heterozygous cap-D2 mutant. At superresolution (Structured Illumination Microscopy), we found no alteration of chromatin substructure for both cap-D mutants. Chromosome-associated polypeptide (CAP)-D3 and the cohesin subunit SMC3 form similar but positionally non-overlapping reticulate structures in 2C-16C nuclei, suggesting their importance for interphase chromatin architecture in differentiated nuclei. Thus, we presume that CAP-D proteins are required for fertility, growth, chromatin organisation, sister chromatid cohesion and in a process preventing the association of centromeric repeats.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany,
| | | | | |
Collapse
|
15
|
Mirkin EV, Chang FS, Kleckner N. Protein-mediated chromosome pairing of repetitive arrays. J Mol Biol 2013; 426:550-7. [PMID: 24211468 DOI: 10.1016/j.jmb.2013.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/28/2013] [Accepted: 11/02/2013] [Indexed: 10/26/2022]
Abstract
Chromosomally integrated arrays of lacO and tetO operator sites visualized by LacI and TetR repressor proteins fused with GFP (green fluorescent protein) (or other fluorescent proteins) are widely used to monitor the behavior of chromosomal loci in various systems. However, insertion of such arrays and expression of the corresponding proteins is known to perturb genomic architecture. In several cases, juxtaposition of such arrays located on different chromosomes has been inferred to reflect pairing of the corresponding loci. Here, we report that a version of TetR-GFP mutated to disrupt GFP dimerization (TetR-A206KGFP or "TetR-kGFP") abolishes pairing of tetO arrays in vivo and brings spatial proximity of chromosomal loci marked with those arrays back to the wild-type level. These data argue that pairing of arrays is caused by GFP dimerization and thus presents an example of protein-assisted interaction in chromosomes. Arrays marked with another protein, TetR-tdTomato, which has a propensity to form intramolecular dimers instead of intermolecular dimers, also display reduced level of pairing, supporting this idea. TetR-kGFP provides an improved system for studying chromosomal loci with a low pairing background.
Collapse
Affiliation(s)
- Ekaterina V Mirkin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Frederick S Chang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
16
|
De novo generation of plant centromeres at tandem repeats. Chromosoma 2013; 122:233-41. [PMID: 23525657 DOI: 10.1007/s00412-013-0406-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/03/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
Abstract
Artificial minichromosomes are highly desirable tools for basic research, breeding, and biotechnology purposes. We present an option to generate plant artificial minichromosomes via de novo engineering of plant centromeres in Arabidopsis thaliana by targeting kinetochore proteins to tandem repeat arrays at non-centromeric positions. We employed the bacterial lactose repressor/lactose operator system to guide derivatives of the centromeric histone H3 variant cenH3 to LacO operator sequences. Tethering of cenH3 to non-centromeric loci led to de novo assembly of kinetochore proteins and to dicentric carrier chromosomes which potentially form anaphase bridges. This approach will be further developed and may contribute to generating minichromosomes from preselected genomic regions, potentially even in a diploid background.
Collapse
|
17
|
Matsunaga S, Katagiri Y, Nagashima Y, Sugiyama T, Hasegawa J, Hayashi K, Sakamoto T. New insights into the dynamics of plant cell nuclei and chromosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:253-301. [PMID: 23890384 DOI: 10.1016/b978-0-12-407695-2.00006-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant lamin-like protein NMCP/AtLINC and orthologues of the SUN-KASH complex across the nuclear envelope (NE) show the universality of nuclear structure in eukaryotes. However, depletion of components in the connection complex of the NE in plants does not induce severe defects, unlike in animals. Appearance of the Rabl configuration is not dependent on genome size in plant species. Topoisomerase II and condensin II are not essential for plant chromosome condensation. Plant endoreduplication shares several common characteristics with animals, including involvement of cyclin-dependent kinases and E2F transcription factors. Recent finding regarding endomitosis regulator GIG1 shed light on the suppression mechanism of endomitosis in plants. The robustness of plants, compared with animals, is reflected in their genome redundancy. Spatiotemporal functional analyses using chromophore-assisted light inactivation, super-resolution microscopy, and 4D (3D plus time) imaging will reveal new insights into plant nuclear and chromosomal dynamics.
Collapse
Affiliation(s)
- Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Interphase chromatin organisation in Arabidopsis nuclei: constraints versus randomness. Chromosoma 2012; 121:369-87. [PMID: 22476443 DOI: 10.1007/s00412-012-0367-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/09/2012] [Accepted: 03/12/2012] [Indexed: 12/22/2022]
Abstract
The spatial chromatin organisation and molecular interactions within and between chromatin domains and chromosome territories (CTs) are essential for fundamental processes such as replication, transcription and DNA repair via homologous recombination. To analyse the distribution and interaction of whole CTs, centromeres, (sub)telomeres and ~100-kb interstitial chromatin segments in endopolyploid nuclei, specific FISH probes from Arabidopsis thaliana were applied to 2-64C differentiated leaf nuclei. Whereas CTs occupy a distinct and defined volume of the nucleus and do not obviously intermingle with each other in 2-64C nuclei, ~100-kb sister chromatin segments within these CTs become more non-cohesive with increasing endopolyploidy. Centromeres, preferentially located at the nuclear periphery, may show ring- or half-moon like shapes in 2C and 4C nuclei. Sister centromeres tend to associate up to the 8C level. From 16C nuclei on, they become progressively separated. The higher the polyploidy level gets, the more separate chromatids are present. Due to sister chromatid separation in highly endopolyploid nuclei, the centromeric histone variant CENH3, the 180-bp centromeric repeats and pericentromeric heterochromatin form distinct subdomains at adjacent but not intermingling positions. The (sub)telomeres are frequently associated with each other and with the nucleolus and less often with centromeres. The extent of chromatid separation and of chromatin decondensation at subtelomeric chromatin segments varies between chromosome arms. A mainly random distribution and similar shapes of CTs even at higher ploidy levels indicate that in general no substantial CT reorganisation occurs during endopolyploidisation. Non-cohesive sister chromatid regions at chromosome arms and at the (peri)centromere are accompanied by a less dense chromatin conformation in highly endopolyploid nuclei. We discuss the possible function of this conformation in comparison to transcriptionally active regions at insect polytene chromosomes.
Collapse
|
19
|
Pairing of lacO tandem repeats in Arabidopsis thaliana nuclei requires the presence of hypermethylated, large arrays at two chromosomal positions, but does not depend on H3-lysine-9-dimethylation. Chromosoma 2011; 120:609-19. [DOI: 10.1007/s00412-011-0335-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 07/12/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
20
|
Schubert I, Shaw P. Organization and dynamics of plant interphase chromosomes. TRENDS IN PLANT SCIENCE 2011; 16:273-81. [PMID: 21393049 DOI: 10.1016/j.tplants.2011.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/01/2011] [Accepted: 02/05/2011] [Indexed: 05/23/2023]
Abstract
Eukaryotic chromosomes occupy distinct territories within interphase nuclei. The arrangement of chromosome territories (CTs) is important for replication, transcription, repair and recombination processes. Our knowledge about interphase chromatin arrangement is mainly based on results from in situ labeling approaches. The phylogenetic affiliation of a species, cell cycle, differentiation status and environmental factors are all likely to influence interphase nuclear architecture. In this review we survey current data about relative positioning of CTs, somatic pairing of homologs, and sister chromatid alignment in meristematic and differentiated tissues, using data derived mainly from Arabidopsis thaliana, wheat (Triticum aestivum) and their relatives. We discuss morphological constraints and epigenetic impacts on nuclear architecture, the evolutionary stability of CT arrangements, and alterations of nuclear architecture during transcription and repair.
Collapse
Affiliation(s)
- Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D06466 Gatersleben, Germany.
| | | |
Collapse
|
21
|
Fransz P, de Jong H. From nucleosome to chromosome: a dynamic organization of genetic information. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:4-17. [PMID: 21443619 DOI: 10.1111/j.1365-313x.2011.04526.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Gene activity is controlled at different levels of chromatin organization, which involve genomic sequences, nucleosome structure, chromatin folding and chromosome arrangement. These levels are interconnected and influence each other. At the basic level nucleosomes generally occlude the DNA sequence from interacting with DNA-binding proteins. Evidently, nucleosome positioning is a major factor in gene control and chromatin organization. Understanding the biological rules that govern the deposition and removal of the nucleosomes to and from the chromatin fiber is the key to understanding gene regulation and chromatin organization. In this review we describe and discuss the relationship between the different levels of chromatin organization in plants and animals.
Collapse
Affiliation(s)
- Paul Fransz
- Nuclear Organization Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
22
|
Matzke AJM, Watanabe K, van der Winden J, Naumann U, Matzke M. High frequency, cell type-specific visualization of fluorescent-tagged genomic sites in interphase and mitotic cells of living Arabidopsis plants. PLANT METHODS 2010; 6:2. [PMID: 20148117 PMCID: PMC2820019 DOI: 10.1186/1746-4811-6-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 01/19/2010] [Indexed: 05/21/2023]
Abstract
BACKGROUND Interphase chromosome organization and dynamics can be studied in living cells using fluorescent tagging techniques that exploit bacterial operator/repressor systems and auto-fluorescent proteins. A nuclear-localized Repressor Protein-Fluorescent Protein (RP-FP) fusion protein binds to operator repeats integrated as transgene arrays at defined locations in the genome. Under a fluorescence microscope, the tagged sites appear as bright fluorescent dots in living cells. This technique has been used successfully in plants, but is often hampered by low expression of genes encoding RP-FP fusion proteins, perhaps owing to one or more gene silencing mechanisms that are prevalent in plant cells. RESULTS We used two approaches to overcome this problem. First, we tested mutations in four factors involved in different types of gene silencing and/or epigenetic modifications for their effects on nuclear fluorescence. Only mutations in DDM1, a chromatin remodelling ATPase involved in repeat-induced heterochromatin formation and DNA methylation, released silencing of the RP-FP fusion protein. This result suggested that the operator repeats can trigger silencing of the adjacent gene encoding the RP-FP fusion protein. In the second approach, we transformed the tagged lines with a second T-DNA encoding the RP-FP fusion protein but lacking operator repeats. This strategy avoided operator repeat-induced gene silencing and increased the number of interphase nuclei displaying fluorescent dots. In a further extension of the technique, we show that green fluorescent-tagged sites can be visualized on moving mitotic chromosomes stained with red fluorescent-labelled histone H2B. CONCLUSIONS The results illustrate the propensity of operator repeat arrays to form heterochromatin that can silence the neighbouring gene encoding the RP-FP fusion protein. Supplying the RP-FP fusion protein in trans from a second T-DNA largely alleviates this problem. Depending on the promoter used to drive expression of the RP-FP fusion protein gene, the fluorescent tagged sites can be visualized at high frequency in different cell types. The ability to observe fluorescent dots on both interphase and mitotic chromosomes allows tagged sites to be tracked throughout the cell cycle. These improvements enhance the versatility of the fluorescent tagging technique for future studies of chromosome arrangement and dynamics in living plants.
Collapse
Affiliation(s)
- Antonius JM Matzke
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | - Koichi Watanabe
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Correnstrasse 3, D-O6466 Gatersleben, Germany
| | - Johannes van der Winden
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | - Ulf Naumann
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | - Marjori Matzke
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| |
Collapse
|
23
|
Watanabe K, Pacher M, Dukowic S, Schubert V, Puchta H, Schubert I. The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. THE PLANT CELL 2009; 21:2688-99. [PMID: 19737979 PMCID: PMC2768936 DOI: 10.1105/tpc.108.060525] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/13/2009] [Accepted: 08/24/2009] [Indexed: 05/18/2023]
Abstract
Sister chromatids are often arranged as incompletely aligned entities in interphase nuclei of Arabidopsis thaliana. The STRUCTURAL MAINTENANCE OF CHROMOSOMES (SMC) 5/6 complex, together with cohesin, is involved in double-strand break (DSB) repair by sister chromatid recombination in yeasts and mammals. Here, we analyzed the function of genes in Arabidopsis. The wild-type allele of SMC5 is essential for seed development. Each of the two SMC6 homologs of Arabidopsis is required for efficient repair of DNA breakage via intermolecular homologous recombination in somatic cells. Alignment of sister chromatids is enhanced transiently after X-irradiation (and mitomycin C treatment) in wild-type nuclei. In the smc5/6 mutants, the x-ray-mediated increase in sister chromatid alignment is much lower and delayed. The reduced S phase-established cohesion caused by a knockout mutation in one of the alpha-kleisin genes, SYN1, also perturbed enhancement of sister chromatid alignment after irradiation, suggesting that the S phase-established cohesion is a prerequisite for correct DSB-dependent cohesion. The radiation-sensitive51 mutant, deficient in heteroduplex formation during DSB repair, showed wild-type frequencies of sister chromatid alignment after X-irradiation, implying that the irradiation-mediated increase in sister chromatid alignment is a prerequisite for, rather than a consequence of, DNA strand exchange between sister chromatids. Our results suggest that the SMC5/6 complex promotes sister chromatid cohesion after DNA breakage and facilitates homologous recombination between sister chromatids.
Collapse
Affiliation(s)
- Koichi Watanabe
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Michael Pacher
- Botanical Institute II, University Karlsruhe, 76128 Karlsruhe, Germany
| | - Stefanie Dukowic
- Botanical Institute II, University Karlsruhe, 76128 Karlsruhe, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Holger Puchta
- Botanical Institute II, University Karlsruhe, 76128 Karlsruhe, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
- Address correspondence to
| |
Collapse
|
24
|
Lam E, Luo C, Watanabe N. Charting functional and physical properties of chromatin in living cells. Curr Opin Genet Dev 2009; 19:135-41. [PMID: 19327981 DOI: 10.1016/j.gde.2009.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/10/2009] [Accepted: 02/16/2009] [Indexed: 01/13/2023]
Abstract
With the vast transcriptome database now available, global patterns of gene expression have been mapped in various species to reveal higher order structures in the genome. Location-dependent control of gene expression has also been studied in human cell cultures and in Arabidopsis plants using well-characterized insertion and transposition cell line collections. With the added genome-wide mapping of chromatin features at a high resolution, via advanced microarray and sequencing technologies, comprehensive analysis of structure-function relationships deduced from chromatin organization and gene expression data is now feasible. This has begun to reveal micro-heterogeneity in the genome with respect to structural and functional segmentations.
Collapse
Affiliation(s)
- Eric Lam
- Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, NJ 08901, USA.
| | | | | |
Collapse
|