1
|
Teng Z, Yang L, Zhang Q, Chen Y, Wang X, Zheng Y, Tian A, Tian D, Lin Z, Deng WM, Liu H. Topoisomerase I is an evolutionarily conserved key regulator for satellite DNA transcription. Nat Commun 2024; 15:5151. [PMID: 38886382 PMCID: PMC11183047 DOI: 10.1038/s41467-024-49567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
RNA Polymerase (RNAP) II transcription on non-coding repetitive satellite DNAs plays an important role in chromosome segregation, but a little is known about the regulation of satellite transcription. We here show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite DNAs on human centromeres. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation. Interestingly, in response to DNA double-stranded breaks (DSBs), α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner, and these DSB-induced α-satellite RNAs form into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.
Collapse
Affiliation(s)
- Zhen Teng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Lu Yang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Qian Zhang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Yujue Chen
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Xianfeng Wang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Yiran Zheng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Aiguo Tian
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Di Tian
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Zhen Lin
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Hong Liu
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Teng Z, Yang L, Zhang Q, Chen Y, Wang X, Zheng Y, Tian A, Tian D, Lin Z, Deng WM, Liu H. Topoisomerase I is an Evolutionarily Conserved Key Regulator for Satellite DNA Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592391. [PMID: 38746280 PMCID: PMC11092777 DOI: 10.1101/2024.05.03.592391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Repetitive satellite DNAs, divergent in nucleic-acid sequence and size across eukaryotes, provide a physical site for centromere assembly to orchestrate chromosome segregation during the cell cycle. These non-coding DNAs are transcribed by RNA polymerase (RNAP) II and the transcription has been shown to play a role in chromosome segregation, but a little is known about the regulation of centromeric transcription, especially in higher organisms with tandemly-repeated-DNA-sequence centromeres. Using RNA interference knockdown, chemical inhibition and AID/IAA degradation, we show that Topoisomerase I (TopI), not TopII, promotes the transcription of α-satellite DNAs, the main type of satellite on centromeres in human cells. Mechanistically, TopI localizes to centromeres, binds RNAP II and facilitates RNAP II elongation on centromeres. Interestingly, in response to DNA double-stranded breaks (DSBs) induced by chemotherapy drugs or CRSPR/Cas9, α-satellite transcription is dramatically stimulated in a DNA damage checkpoint-independent but TopI-dependent manner. These DSB-induced α-satellite RNAs were predominantly derived from the α-satellite high-order repeats of human centromeres and forms into strong speckles in the nucleus. Remarkably, TopI-dependent satellite transcription also exists in mouse 3T3 and Drosophila S2 cells and in Drosophila larval imaginal wing discs and tumor tissues. Altogether, our findings herein reveal an evolutionally conserved mechanism with TopI as a key player for the regulation of satellite transcription at both cellular and animal levels.
Collapse
Affiliation(s)
- Zhen Teng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Lu Yang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Qian Zhang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Contribute equally
| | - Yujue Chen
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Xianfeng Wang
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Yiran Zheng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Aiguo Tian
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Di Tian
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Zhen Lin
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Hong Liu
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
3
|
Kitagawa R, Niikura Y, Becker A, Houghton PJ, Kitagawa K. EWSR1 maintains centromere identity. Cell Rep 2023; 42:112568. [PMID: 37243594 PMCID: PMC10758295 DOI: 10.1016/j.celrep.2023.112568] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023] Open
Abstract
The centromere is essential for ensuring high-fidelity transmission of chromosomes. CENP-A, the centromeric histone H3 variant, is thought to be the epigenetic mark of centromere identity. CENP-A deposition at the centromere is crucial for proper centromere function and inheritance. Despite its importance, the precise mechanism responsible for maintenance of centromere position remains obscure. Here, we report a mechanism to maintain centromere identity. We demonstrate that CENP-A interacts with EWSR1 (Ewing sarcoma breakpoint region 1) and EWSR1-FLI1 (the oncogenic fusion protein in Ewing sarcoma). EWSR1 is required for maintaining CENP-A at the centromere in interphase cells. EWSR1 and EWSR1-FLI1 bind CENP-A through the SYGQ2 region within the prion-like domain, important for phase separation. EWSR1 binds to R-loops through its RNA-recognition motif in vitro. Both the domain and motif are required for maintaining CENP-A at the centromere. Therefore, we conclude that EWSR1 guards CENP-A in centromeric chromatins by binding to centromeric RNA.
Collapse
Affiliation(s)
- Risa Kitagawa
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Yohei Niikura
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Argentina Becker
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Katsumi Kitagawa
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA.
| |
Collapse
|
4
|
Wang Y, Wu L, Yuen KWY. The roles of transcription, chromatin organisation and chromosomal processes in holocentromere establishment and maintenance. Semin Cell Dev Biol 2022; 127:79-89. [PMID: 35042676 DOI: 10.1016/j.semcdb.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
The centromere is a unique functional region on each eukaryotic chromosome where the kinetochore assembles and orchestrates microtubule attachment and chromosome segregation. Unlike monocentromeres that occupy a specific region on the chromosome, holocentromeres are diffused along the length of the chromosome. Despite being less common, holocentromeres have been verified in almost 800 nematode, insect, and plant species. Understanding of the molecular and epigenetic regulation of holocentromeres is lagging that of monocentromeres. Here we review how permissive locations for holocentromeres are determined across the genome, potentially by chromatin organisation, transcription, and non-coding RNAs, specifically in the nematode C. elegans. In addition, we discuss how holocentric CENP-A or CENP-T-containing nucleosomes are recruited and deposited, through the help of histone chaperones, licensing factors, and condensin complexes, both during de novo holocentromere establishment, and in each mitotic cell cycle. The process of resolving sister centromeres after DNA replication in holocentric organisms is also mentioned. Conservation and diversity between holocentric and monocentric organisms are highlighted, and outstanding questions are proposed.
Collapse
Affiliation(s)
- Yue Wang
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Lillian Wu
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong; Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong.
| |
Collapse
|
5
|
Noncoding RNA Roles in Pharmacogenomic Responses to Aspirin: New Molecular Mechanisms for an Old Drug. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6830560. [PMID: 34926688 PMCID: PMC8677408 DOI: 10.1155/2021/6830560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
Aspirin, as one of the most frequently prescribed drugs, can have therapeutic effects on different conditions such as cardiovascular and metabolic disorders and malignancies. The effects of this common cardiovascular drug are exerted through different molecular and cellular pathways. Altered noncoding RNA (ncRNA) expression profiles during aspirin treatments indicate a close relationship between these regulatory molecules and aspirin effects through regulating gene expressions. A better understanding of the molecular networks contributing to aspirin efficacy would help optimize efficient therapies for this very popular drug. This review is aimed at discussing and highlighting the identified interactions between aspirin and ncRNAs and their targeting pathways and better understanding pharmacogenetic responses to aspirin.
Collapse
|
6
|
Chen Y, Zhang Q, Liu H. An emerging role of transcription in chromosome segregation: Ongoing centromeric transcription maintains centromeric cohesion. Bioessays 2021; 44:e2100201. [PMID: 34761408 DOI: 10.1002/bies.202100201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/09/2023]
Abstract
Non-coding centromeres, which dictate kinetochore formation for proper chromosome segregation, are extremely divergent in DNA sequences across species but are under active transcription carried out by RNA polymerase (RNAP) II. The RNAP II-mediated centromeric transcription has been shown to facilitate the deposition of the centromere protein A (CENP-A) to centromeres, establishing a conserved and critical role of centromeric transcription in centromere maintenance. Our recent work revealed another role of centromeric transcription in chromosome segregation: maintaining centromeric cohesion during mitosis. Interestingly, this role appears to be fulfilled through ongoing centromeric transcription rather than centromeric transcripts. In addition, we found that centromeric transcription may not require some of the traditional transcription initiation factors, suggestive of "uniqueness" in its regulation. In this review, we discuss the novel role and regulation of centromeric transcription as well as the potential underlying mechanisms.
Collapse
Affiliation(s)
- Yujue Chen
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70112, USA
| | - Qian Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70112, USA
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, 70112, USA.,Tulane Aging Center, Tulane University School of Medicine, New Orleans, 70112, USA
| |
Collapse
|
7
|
DeBose-Scarlett EM, Sullivan BA. Genomic and Epigenetic Foundations of Neocentromere Formation. Annu Rev Genet 2021; 55:331-348. [PMID: 34496611 DOI: 10.1146/annurev-genet-071719-020924] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centromeres are essential to genome inheritance, serving as the site of kinetochore assembly and coordinating chromosome segregation during cell division. Abnormal centromere function is associated with birth defects, infertility, and cancer. Normally, centromeres are assembled and maintained at the same chromosomal location. However, ectopic centromeres form spontaneously at new genomic locations and contribute to genome instability and developmental defects as well as to acquired and congenital human disease. Studies in model organisms have suggested that certain regions of the genome, including pericentromeres, heterochromatin, and regions of open chromatin or active transcription, support neocentromere activation. However, there is no universal mechanism that explains neocentromere formation. This review focuses on recent technological and intellectual advances in neocentromere research and proposes future areas of study. Understanding neocentromere biology will provide a better perspective on chromosome and genome organization and functional context for information generated from the Human Genome Project, ENCODE, and other large genomic consortia. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Evon M DeBose-Scarlett
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710, USA;
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710, USA;
| |
Collapse
|
8
|
Leclerc S, Kitagawa K. The Role of Human Centromeric RNA in Chromosome Stability. Front Mol Biosci 2021; 8:642732. [PMID: 33869284 PMCID: PMC8044762 DOI: 10.3389/fmolb.2021.642732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chromosome instability is a hallmark of cancer and is caused by inaccurate segregation of chromosomes. One cellular structure used to avoid this fate is the kinetochore, which binds to the centromere on the chromosome. Human centromeres are poorly understood, since sequencing and analyzing repeated alpha-satellite DNA regions, which can span a few megabases at the centromere, are particularly difficult. However, recent analyses revealed that these regions are actively transcribed and that transcription levels are tightly regulated, unveiling a possible role of RNA at the centromere. In this short review, we focus on the recent discovery of the function of human centromeric RNA in the regulation and structure of the centromere, and discuss the consequences of dysregulation of centromeric RNA in cancer.
Collapse
Affiliation(s)
- Simon Leclerc
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Katsumi Kitagawa
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
9
|
Enukashvily NI, Dobrynin MA, Chubar AV. RNA-seeded membraneless bodies: Role of tandemly repeated RNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:151-193. [PMID: 34090614 DOI: 10.1016/bs.apcsb.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Membraneless organelles (bodies, granules, etc.) are spatially distinct sub-nuclear and cytoplasmic foci involved in all the processes in a living cell, such as development, cell death, carcinogenesis, proliferation, and differentiation. Today the list of the membraneless organelles includes a wide spectrum of intranuclear and cytoplasmic bodies. Proteins with intrinsically disordered regions are the key players in the membraneless body assembly. However, recent data assume an important role of RNA molecules in the process of the liquid-liquid phase separation. High-level expression of RNA above a critical concentration threshold is mandatory to nucleate interactions with specific proteins and for seeding membraneless organelles. RNA components are considered by many authors as the principal determinants of organelle identity. Tandemly repeated (TR) DNA of big satellites (a TR family that includes centromeric and pericentromeric DNA sequences) was believed to be transcriptionally silent for a long period. Now we know about the TR transcription upregulation during gameto- and embryogenesis, carcinogenesis, stress response. In the review, we summarize the recent data about the involvement of TR RNA in the formation of nuclear membraneless granules, bodies, etc., with different functions being in some cases an initiator of the structures assembly. These RNP structures sequestrate and inactivate different proteins and transcripts. The TR induced sequestration is one of the key principles of nuclear architecture and genome functioning. Studying the role of the TR-based membraneless organelles in stress and disease will bring some new ideas for translational medicine.
Collapse
Affiliation(s)
- Natella I Enukashvily
- Institute of Cytology RAS, St. Petersburg, Russia; North-Western Medical State University named after I.I. Mechnikov, St. Petersburg, Russia.
| | | | | |
Collapse
|
10
|
Mihìc P, Hédouin S, Francastel C. Centromeres Transcription and Transcripts for Better and for Worse. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:169-201. [PMID: 34386876 DOI: 10.1007/978-3-030-74889-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are chromosomal regions that are essential for the faithful transmission of genetic material through each cell division. They represent the chromosomal platform on which assembles a protein complex, the kinetochore, which mediates attachment to the mitotic spindle. In most organisms, centromeres assemble on large arrays of tandem satellite repeats, although their DNA sequences and organization are highly divergent among species. It has become evident that centromeres are not defined by underlying DNA sequences, but are instead epigenetically defined by the deposition of the centromere-specific histone H3 variant, CENP-A. In addition, and although long regarded as silent chromosomal loci, centromeres are in fact transcriptionally competent in most species, yet at low levels in normal somatic cells, but where the resulting transcripts participate in centromere architecture, identity, and function. In this chapter, we discuss the various roles proposed for centromere transcription and their transcripts, and the potential molecular mechanisms involved. We also discuss pathological cases in which unscheduled transcription of centromeric repeats or aberrant accumulation of their transcripts are pathological signatures of chromosomal instability diseases. In sum, tight regulation of centromeric satellite repeats transcription is critical for healthy development and tissue homeostasis, and thus prevents the emergence of disease states.
Collapse
Affiliation(s)
- Pia Mihìc
- Université De Paris, Epigenetics and Cell Fate, CNRS UMR7216, Paris, France
| | - Sabrine Hédouin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claire Francastel
- Université De Paris, Epigenetics and Cell Fate, CNRS UMR7216, Paris, France.
| |
Collapse
|
11
|
Ishikura S, Nakabayashi K, Nagai M, Tsunoda T, Shirasawa S. ZFAT binds to centromeres to control noncoding RNA transcription through the KAT2B-H4K8ac-BRD4 axis. Nucleic Acids Res 2020; 48:10848-10866. [PMID: 32997115 PMCID: PMC7641738 DOI: 10.1093/nar/gkaa815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Centromeres are genomic regions essential for faithful chromosome segregation. Transcription of noncoding RNA (ncRNA) at centromeres is important for their formation and functions. Here, we report the molecular mechanism by which the transcriptional regulator ZFAT controls the centromeric ncRNA transcription in human and mouse cells. Chromatin immunoprecipitation with high-throughput sequencing analysis shows that ZFAT binds to centromere regions at every chromosome. We find a specific 8-bp DNA sequence for the ZFAT-binding motif that is highly conserved and widely distributed at whole centromere regions of every chromosome. Overexpression of ZFAT increases the centromeric ncRNA levels at specific chromosomes, whereas its silencing reduces them, indicating crucial roles of ZFAT in centromeric transcription. Overexpression of ZFAT increases the centromeric levels of both the histone acetyltransferase KAT2B and the acetylation at the lysine 8 in histone H4 (H4K8ac). siRNA-mediated knockdown of KAT2B inhibits the overexpressed ZFAT-induced increase in centromeric H4K8ac levels, suggesting that ZFAT recruits KAT2B to centromeres to induce H4K8ac. Furthermore, overexpressed ZFAT recruits the bromodomain-containing protein BRD4 to centromeres through KAT2B-mediated H4K8ac, leading to RNA polymerase II-dependent ncRNA transcription. Thus, ZFAT binds to centromeres to control ncRNA transcription through the KAT2B-H4K8ac-BRD4 axis.
Collapse
Affiliation(s)
- Shuhei Ishikura
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.,Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Masayoshi Nagai
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Toshiyuki Tsunoda
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.,Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.,Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
12
|
Bury L, Moodie B, Ly J, McKay LS, Miga KH, Cheeseman IM. Alpha-satellite RNA transcripts are repressed by centromere-nucleolus associations. eLife 2020; 9:59770. [PMID: 33174837 PMCID: PMC7679138 DOI: 10.7554/elife.59770] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/09/2020] [Indexed: 01/03/2023] Open
Abstract
Although originally thought to be silent chromosomal regions, centromeres are instead actively transcribed. However, the behavior and contributions of centromere-derived RNAs have remained unclear. Here, we used single-molecule fluorescence in-situ hybridization (smFISH) to detect alpha-satellite RNA transcripts in intact human cells. We find that alpha-satellite RNA-smFISH foci levels vary across cell lines and over the cell cycle, but do not remain associated with centromeres, displaying localization consistent with other long non-coding RNAs. Alpha-satellite expression occurs through RNA polymerase II-dependent transcription, but does not require established centromere or cell division components. Instead, our work implicates centromere–nucleolar interactions as repressing alpha-satellite expression. The fraction of nucleolar-localized centromeres inversely correlates with alpha-satellite transcripts levels across cell lines and transcript levels increase substantially when the nucleolus is disrupted. The control of alpha-satellite transcripts by centromere-nucleolar contacts provides a mechanism to modulate centromere transcription and chromatin dynamics across diverse cell states and conditions.
Collapse
Affiliation(s)
- Leah Bury
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Brittania Moodie
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Jimmy Ly
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Liliana S McKay
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Karen Hh Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, United States
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
13
|
Arunkumar G, Melters DP. Centromeric Transcription: A Conserved Swiss-Army Knife. Genes (Basel) 2020; 11:E911. [PMID: 32784923 PMCID: PMC7463856 DOI: 10.3390/genes11080911] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
In most species, the centromere is comprised of repetitive DNA sequences, which rapidly evolve. Paradoxically, centromeres fulfill an essential function during mitosis, as they are the chromosomal sites wherein, through the kinetochore, the mitotic spindles bind. It is now generally accepted that centromeres are transcribed, and that such transcription is associated with a broad range of functions. More than a decade of work on this topic has shown that centromeric transcripts are found across the eukaryotic tree and associate with heterochromatin formation, chromatin structure, kinetochore structure, centromeric protein loading, and inner centromere signaling. In this review, we discuss the conservation of small and long non-coding centromeric RNAs, their associations with various centromeric functions, and their potential roles in disease.
Collapse
Affiliation(s)
| | - Daniël P. Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
14
|
Wong CYY, Lee BCH, Yuen KWY. Epigenetic regulation of centromere function. Cell Mol Life Sci 2020; 77:2899-2917. [PMID: 32008088 PMCID: PMC11105045 DOI: 10.1007/s00018-020-03460-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 12/20/2022]
Abstract
The centromere is a specialized region on the chromosome that directs equal chromosome segregation. Centromeres are usually not defined by DNA sequences alone. How centromere formation and function are determined by epigenetics is still not fully understood. Active centromeres are often marked by the presence of centromeric-specific histone H3 variant, centromere protein A (CENP-A). How CENP-A is assembled into the centromeric chromatin during the cell cycle and propagated to the next cell cycle or the next generation to maintain the centromere function has been intensively investigated. In this review, we summarize current understanding of how post-translational modifications of CENP-A and other centromere proteins, centromeric and pericentric histone modifications, non-coding transcription and transcripts contribute to centromere function, and discuss their intricate relationships and potential feedback mechanisms.
Collapse
Affiliation(s)
- Charmaine Yan Yu Wong
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Bernard Chi Hang Lee
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
15
|
Corless S, Höcker S, Erhardt S. Centromeric RNA and Its Function at and Beyond Centromeric Chromatin. J Mol Biol 2020; 432:4257-4269. [DOI: 10.1016/j.jmb.2020.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
|
16
|
O'Neill RJ. Seq'ing identity and function in a repeat-derived noncoding RNA world. Chromosome Res 2020; 28:111-127. [PMID: 32146545 PMCID: PMC7393779 DOI: 10.1007/s10577-020-09628-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 01/06/2023]
Abstract
Innovations in high-throughout sequencing approaches are being marshaled to both reveal the composition of the abundant and heterogeneous noncoding RNAs that populate cell nuclei and lend insight to the mechanisms by which noncoding RNAs influence chromosome biology and gene expression. This review focuses on some of the recent technological developments that have enabled the isolation of nascent transcripts and chromatin-associated and DNA-interacting RNAs. Coupled with emerging genome assembly and analytical approaches, the field is poised to achieve a comprehensive catalog of nuclear noncoding RNAs, including those derived from repetitive regions within eukaryotic genomes. Herein, particular attention is paid to the challenges and advances in the sequence analyses of repeat and transposable element-derived noncoding RNAs and in ascribing specific function(s) to such RNAs.
Collapse
Affiliation(s)
- Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
17
|
Achrem M, Szućko I, Kalinka A. The epigenetic regulation of centromeres and telomeres in plants and animals. COMPARATIVE CYTOGENETICS 2020; 14:265-311. [PMID: 32733650 PMCID: PMC7360632 DOI: 10.3897/compcytogen.v14i2.51895] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
The centromere is a chromosomal region where the kinetochore is formed, which is the attachment point of spindle fibers. Thus, it is responsible for the correct chromosome segregation during cell division. Telomeres protect chromosome ends against enzymatic degradation and fusions, and localize chromosomes in the cell nucleus. For this reason, centromeres and telomeres are parts of each linear chromosome that are necessary for their proper functioning. More and more research results show that the identity and functions of these chromosomal regions are epigenetically determined. Telomeres and centromeres are both usually described as highly condensed heterochromatin regions. However, the epigenetic nature of centromeres and telomeres is unique, as epigenetic modifications characteristic of both eu- and heterochromatin have been found in these areas. This specificity allows for the proper functioning of both regions, thereby affecting chromosome homeostasis. This review focuses on demonstrating the role of epigenetic mechanisms in the functioning of centromeres and telomeres in plants and animals.
Collapse
Affiliation(s)
- Magdalena Achrem
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| | - Izabela Szućko
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| | - Anna Kalinka
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| |
Collapse
|
18
|
Abstract
Marsupial genomes, which are packaged into large chromosomes, provide a powerful resource for studying the mechanisms of genome evolution. The extensive and valuable body of work on marsupial cytogenetics, combined more recently with genome sequence data, has enabled prediction of the 2n = 14 karyotype ancestral to all marsupial families. The application of both chromosome biology and genome sequencing, or chromosomics, has been a necessary approach for various aspects of mammalian genome evolution, such as understanding sex chromosome evolution and the origin and evolution of transmissible tumors in Tasmanian devils. The next phase of marsupial genome evolution research will employ chromosomics approaches to begin addressing fundamental questions in marsupial genome evolution and chromosome evolution more generally. The answers to these complex questions will impact our understanding across a broad range of fields, including the genetics of speciation, genome adaptation to environmental stressors, and species management.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2617, Australia;
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, USA;
| |
Collapse
|
19
|
Escudeiro A, Adega F, Robinson TJ, Heslop-Harrison JS, Chaves R. Conservation, Divergence, and Functions of Centromeric Satellite DNA Families in the Bovidae. Genome Biol Evol 2019; 11:1152-1165. [PMID: 30888421 PMCID: PMC6475130 DOI: 10.1093/gbe/evz061] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Repetitive satellite DNA (satDNA) sequences are abundant in eukaryote genomes, with a structural and functional role in centromeric function. We analyzed the nucleotide sequence and chromosomal location of the five known cattle (Bos taurus) satDNA families in seven species from the tribe Tragelaphini (Bovinae subfamily). One of the families (SAT1.723) was present at the chromosomes’ centromeres of the Tragelaphini species, as well in two more distantly related bovid species, Ovis aries and Capra hircus. Analysis of the interaction of SAT1.723 with centromeric proteins revealed that this satDNA sequence is involved in the centromeric activity in all the species analyzed and that it is preserved for at least 15–20 Myr across Bovidae species. The satDNA sequence similarity among the analyzed species reflected different stages of homogeneity/heterogeneity, revealing the evolutionary history of each satDNA family. The SAT1.723 monomer-flanking regions showed the presence of transposable elements, explaining the extensive shuffling of this satDNA between different genomic regions.
Collapse
Affiliation(s)
- Ana Escudeiro
- Department of Genetics and Biotechnology, CAG - Laboratory of Cytogenomics and Animal Genomics, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Filomena Adega
- Department of Genetics and Biotechnology, CAG - Laboratory of Cytogenomics and Animal Genomics, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | | | | | - Raquel Chaves
- Department of Genetics and Biotechnology, CAG - Laboratory of Cytogenomics and Animal Genomics, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| |
Collapse
|
20
|
Duda Z, Trusiak S, O'Neill R. Centromere Transcription: Means and Motive. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:257-281. [PMID: 28840241 DOI: 10.1007/978-3-319-58592-5_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chromosome biology field at large has benefited from studies of the cell cycle components, protein cascades and genomic landscape that are required for centromere identity, assembly and stable transgenerational inheritance. Research over the past 20 years has challenged the classical descriptions of a centromere as a stable, unmutable, and transcriptionally silent chromosome component. Instead, based on studies from a broad range of eukaryotic species, including yeast, fungi, plants, and animals, the centromere has been redefined as one of the more dynamic areas of the eukaryotic genome, requiring coordination of protein complex assembly, chromatin assembly, and transcriptional activity in a cell cycle specific manner. What has emerged from more recent studies is the realization that the transcription of specific types of nucleic acids is a key process in defining centromere integrity and function. To illustrate the transcriptional landscape of centromeres across eukaryotes, we focus this review on how transcripts interact with centromere proteins, when in the cell cycle centromeric transcription occurs, and what types of sequences are being transcribed. Utilizing data from broadly different organisms, a picture emerges that places centromeric transcription as an integral component of centromere function.
Collapse
Affiliation(s)
- Zachary Duda
- Department of Molecular and Cell Biology, The Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Sarah Trusiak
- Department of Molecular and Cell Biology, The Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel O'Neill
- Department of Molecular and Cell Biology, The Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
21
|
Centromere Repeats: Hidden Gems of the Genome. Genes (Basel) 2019; 10:genes10030223. [PMID: 30884847 PMCID: PMC6471113 DOI: 10.3390/genes10030223] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Satellite DNAs are now regarded as powerful and active contributors to genomic and chromosomal evolution. Paired with mobile transposable elements, these repetitive sequences provide a dynamic mechanism through which novel karyotypic modifications and chromosomal rearrangements may occur. In this review, we discuss the regulatory activity of satellite DNA and their neighboring transposable elements in a chromosomal context with a particular emphasis on the integral role of both in centromere function. In addition, we discuss the varied mechanisms by which centromeric repeats have endured evolutionary processes, producing a novel, species-specific centromeric landscape despite sharing a ubiquitously conserved function. Finally, we highlight the role these repetitive elements play in the establishment and functionality of de novo centromeres and chromosomal breakpoints that underpin karyotypic variation. By emphasizing these unique activities of satellite DNAs and transposable elements, we hope to disparage the conventional exemplification of repetitive DNA in the historically-associated context of ‘junk’.
Collapse
|
22
|
Escudeiro A, Ferreira D, Mendes-da-Silva A, Heslop-Harrison JS, Adega F, Chaves R. Bovine satellite DNAs – a history of the evolution of complexity and its impact in the Bovidae family. THE EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2018.1558294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- A. Escudeiro
- Department of Genetics and Biotechnology (DGB), CAG – Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - D. Ferreira
- Department of Genetics and Biotechnology (DGB), CAG – Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - A. Mendes-da-Silva
- Department of Genetics and Biotechnology (DGB), CAG – Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | | | - F. Adega
- Department of Genetics and Biotechnology (DGB), CAG – Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - R. Chaves
- Department of Genetics and Biotechnology (DGB), CAG – Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
23
|
Smurova K, De Wulf P. Centromere and Pericentromere Transcription: Roles and Regulation … in Sickness and in Health. Front Genet 2018; 9:674. [PMID: 30627137 PMCID: PMC6309819 DOI: 10.3389/fgene.2018.00674] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
The chromosomal loci known as centromeres (CEN) mediate the equal distribution of the duplicated genome between both daughter cells. Specifically, centromeres recruit a protein complex named the kinetochore, that bi-orients the replicated chromosome pairs to the mitotic or meiotic spindle structure. The paired chromosomes are then separated, and the individual chromosomes segregate in opposite direction along the regressing spindle into each daughter cell. Erroneous kinetochore assembly or activity produces aneuploid cells that contain an abnormal number of chromosomes. Aneuploidy may incite cell death, developmental defects (including genetic syndromes), and cancer (>90% of all cancer cells are aneuploid). While kinetochores and their activities have been preserved through evolution, the CEN DNA sequences have not. Hence, to be recognized as sites for kinetochore assembly, CEN display conserved structural themes. In addition, CEN nucleosomes enclose a CEN-exclusive variant of histone H3, named CENP-A, and carry distinct epigenetic labels on CENP-A and the other CEN histone proteins. Through the cell cycle, CEN are transcribed into non-coding RNAs. After subsequent processing, they become key components of the CEN chromatin by marking the CEN locus and by stably anchoring the CEN-binding kinetochore proteins. CEN transcription is tightly regulated, of low intensity, and essential for differentiation and development. Under- or overexpression of CEN transcripts, as documented for myriad cancers, provoke chromosome missegregation and aneuploidy. CEN are genetically stable and fully competent only when they are insulated from the surrounding, pericentromeric chromatin, which must be silenced. We will review CEN transcription and its contribution to faithful kinetochore function. We will further discuss how pericentromeric chromatin is silenced by RNA processing and transcriptionally repressive chromatin marks. We will report on the transcriptional misregulation of (peri)centromeres during stress, natural aging, and disease and reflect on whether their transcripts can serve as future diagnostic tools and anti-cancer targets in the clinic.
Collapse
Affiliation(s)
- Ksenia Smurova
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Peter De Wulf
- Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
24
|
Abstract
Accurate chromosome segregation is a fundamental process in cell biology. During mitosis, chromosomes are segregated into daughter cells through interactions between centromeres and microtubules in the mitotic spindle. Centromere domains have evolved to nucleate formation of the kinetochore, which is essential for establishing connections between chromosomal DNA and microtubules during mitosis. Centromeres are typically formed on highly repetitive DNA that is not conserved in sequence or size among organisms and can differ substantially between individuals within the same organism. However, transcription of repetitive DNA has emerged as a highly conserved property of the centromere. Recent work has shown that both the topological effect of transcription on chromatin and the nascent noncoding RNAs contribute to multiple aspects of centromere function. In this review, we discuss the fundamental aspects of centromere transcription, i.e., its dual role in chromatin remodeling/CENP-A deposition and kinetochore assembly during mitosis, from a cell cycle perspective.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Novais-Cruz M, Alba Abad M, van IJcken WFJ, Galjart N, Jeyaprakash AA, Maiato H, Ferrás C. Mitotic progression, arrest, exit or death relies on centromere structural integrity, rather than de novo transcription. eLife 2018; 7:36898. [PMID: 30080136 PMCID: PMC6128689 DOI: 10.7554/elife.36898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022] Open
Abstract
Recent studies have challenged the prevailing dogma that transcription is repressed during mitosis. Transcription was also proposed to sustain a robust spindle assembly checkpoint (SAC) response. Here, we used live-cell imaging of human cells, RNA-seq and qPCR to investigate the requirement for de novo transcription during mitosis. Under conditions of persistently unattached kinetochores, transcription inhibition with actinomycin D, or treatment with other DNA-intercalating drugs, delocalized the chromosomal passenger complex (CPC) protein Aurora B from centromeres, compromising SAC signaling and cell fate. However, we were unable to detect significant changes in mitotic transcript levels. Moreover, inhibition of transcription independently of DNA intercalation had no effect on Aurora B centromeric localization, SAC response, mitotic progression, exit or death. Mechanistically, we show that DNA intercalating agents reduce the interaction of the CPC with nucleosomes. Thus, mitotic progression, arrest, exit or death is determined by centromere structural integrity, rather than de novo transcription.
Collapse
Affiliation(s)
- Marco Novais-Cruz
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| | - Maria Alba Abad
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
| | | | - Niels Galjart
- Department of Cell BiologyErasmus Medical CenterRotterdamNetherlands
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de MedicinaUniversidade do PortoPortoPortugal
| | - Cristina Ferrás
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| |
Collapse
|
26
|
Talbert PB, Henikoff S. Transcribing Centromeres: Noncoding RNAs and Kinetochore Assembly. Trends Genet 2018; 34:587-599. [DOI: 10.1016/j.tig.2018.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
|
27
|
Johnson RN, O'Meally D, Chen Z, Etherington GJ, Ho SYW, Nash WJ, Grueber CE, Cheng Y, Whittington CM, Dennison S, Peel E, Haerty W, O'Neill RJ, Colgan D, Russell TL, Alquezar-Planas DE, Attenbrow V, Bragg JG, Brandies PA, Chong AYY, Deakin JE, Di Palma F, Duda Z, Eldridge MDB, Ewart KM, Hogg CJ, Frankham GJ, Georges A, Gillett AK, Govendir M, Greenwood AD, Hayakawa T, Helgen KM, Hobbs M, Holleley CE, Heider TN, Jones EA, King A, Madden D, Graves JAM, Morris KM, Neaves LE, Patel HR, Polkinghorne A, Renfree MB, Robin C, Salinas R, Tsangaras K, Waters PD, Waters SA, Wright B, Wilkins MR, Timms P, Belov K. Adaptation and conservation insights from the koala genome. Nat Genet 2018; 50:1102-1111. [PMID: 29967444 PMCID: PMC6197426 DOI: 10.1038/s41588-018-0153-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
Abstract
The koala, the only extant species of the marsupial family Phascolarctidae, is classified as 'vulnerable' due to habitat loss and widespread disease. We sequenced the koala genome, producing a complete and contiguous marsupial reference genome, including centromeres. We reveal that the koala's ability to detoxify eucalypt foliage may be due to expansions within a cytochrome P450 gene family, and its ability to smell, taste and moderate ingestion of plant secondary metabolites may be due to expansions in the vomeronasal and taste receptors. We characterized novel lactation proteins that protect young in the pouch and annotated immune genes important for response to chlamydial disease. Historical demography showed a substantial population crash coincident with the decline of Australian megafauna, while contemporary populations had biogeographic boundaries and increased inbreeding in populations affected by historic translocations. We identified genetically diverse populations that require habitat corridors and instituting of translocation programs to aid the koala's survival in the wild.
Collapse
Affiliation(s)
- Rebecca N Johnson
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia.
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia.
| | - Denis O'Meally
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
- Animal Research Centre, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Zhiliang Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | | | - Simon Y W Ho
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Will J Nash
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
- San Diego Zoo Global, San Diego, CA, USA
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
- UQ Genomics Initiative, University of Queensland, St Lucia, Queensland, Australia
| | - Camilla M Whittington
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Siobhan Dennison
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | | | - Rachel J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Don Colgan
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Tonia L Russell
- Ramaciotti Centre for Genomics, University of New South Wales, Kensington, New South Wales, Australia
| | | | - Val Attenbrow
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Jason G Bragg
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Sydney, New South Wales, Australia
| | - Parice A Brandies
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Amanda Yoon-Yee Chong
- Earlham Institute, Norwich Research Park, Norwich, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Biological Sciences, University of East Anglia, Norwich, UK
| | - Zachary Duda
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Kyle M Ewart
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Greta J Frankham
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Amber K Gillett
- Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Takashi Hayakawa
- Department of Wildlife Science (Nagoya Railroad Co., Ltd.), Primate Research Institute, Kyoto University, Inuyama, Japan
- Japan Monkey Centre, Inuyama, Japan
| | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- School of Biological Sciences, Environment Institute, Centre for Applied Conservation Science, and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew Hobbs
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Clare E Holleley
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Thomas N Heider
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Elizabeth A Jones
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew King
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Danielle Madden
- Animal Research Centre, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Jennifer A Marshall Graves
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
- School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Katrina M Morris
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Linda E Neaves
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Hardip R Patel
- John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | - Adam Polkinghorne
- Animal Research Centre, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Marilyn B Renfree
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Charles Robin
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Ryan Salinas
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Kyriakos Tsangaras
- Department of Translational Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Shafagh A Waters
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Belinda Wright
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
- Ramaciotti Centre for Genomics, University of New South Wales, Kensington, New South Wales, Australia
| | - Peter Timms
- Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Podgornaya OI, Ostromyshenskii DI, Enukashvily NI. Who Needs This Junk, or Genomic Dark Matter. BIOCHEMISTRY (MOSCOW) 2018; 83:450-466. [PMID: 29626931 DOI: 10.1134/s0006297918040156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Centromeres (CEN), pericentromeric regions (periCEN), and subtelomeric regions (subTel) comprise the areas of constitutive heterochromatin (HChr). Tandem repeats (TRs or satellite DNA) are the main components of HChr forming no less than 10% of the mouse and human genome. HChr is assembled within distinct structures in the interphase nuclei of many species - chromocenters. In this review, the main classes of HChr repeat sequences are considered in the order of their number increase in the sequencing reads of the mouse chromocenters (ChrmC). TRs comprise ~70% of ChrmC occupying the first place. Non-LTR (-long terminal repeat) retroposons (mainly LINE, long interspersed nuclear element) are the next (~11%), and endogenous retroviruses (ERV; LTR-containing) are in the third position (~9%). HChr is not enriched with ERV in comparison with the whole genome, but there are differences in distribution of certain elements: while MaLR-like elements (ERV3) are dominant in the whole genome, intracisternal A-particles and corresponding LTR (ERV2) are prevalent in HChr. Most of LINE in ChrmC is represented by the 2-kb fragment at the end of the 2nd open reading frame and its flanking regions. Almost all tandem repeats classified as CEN or periCEN are contained in ChrmC. Our previous classification revealed 60 new mouse TR families with 29 of them being absent in ChrmC, which indicates their location on chromosome arms. TR transcription is necessary for maintenance of heterochromatic status of the HChr genome part. A burst of TR transcription is especially important in embryogenesis and other cases of radical changes in the cell program, including carcinogenesis. The recently discovered mechanism of epigenetic regulation with noncoding sequences transcripts, long noncoding RNA, and its role in embryogenesis and pluripotency maintenance is discussed.
Collapse
Affiliation(s)
- O I Podgornaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | | | | |
Collapse
|
29
|
Ostromyshenskii DI, Chernyaeva EN, Kuznetsova IS, Podgornaya OI. Mouse chromocenters DNA content: sequencing and in silico analysis. BMC Genomics 2018; 19:151. [PMID: 29458329 PMCID: PMC5819297 DOI: 10.1186/s12864-018-4534-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 02/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromocenters are defined as a punctate condensed blocks of chromatin in the interphase cell nuclei of certain cell types with unknown biological significance. In recent years a progress in revealing of chromocenters protein content has been made although the details of DNA content within constitutive heterochromatin still remain unclear. It is known that these regions are enriched in tandem repeats (TR) and transposable elements. Quick improvement of genome sequencing does not help to assemble the heterochromatic regions due to lack of appropriate bioinformatics techniques. RESULTS Chromocenters DNA have been isolated by a biochemical approach from mouse liver cells nuclei and sequenced on the Illumina MiSeq resulting in ChrmC dataset. Analysis of ChrmC dataset by the bioinformatics tools available revealed that the major component of chromocenter DNA are TRs: ~ 66% MaSat and ~ 4% MiSat. Other previously classified TR families constitute ~ 1% of ChrmC dataset. About 6% of chromocenters DNA are mostly unannotated sequences. In the contigs assembled with IDBA_UD there are many fragments of heterochromatic Y-chromosome, rDNA and other pseudo-genes and non-coding DNA. A protein coding sfi1 homolog gene fragment was also found in contigs. The Sfi1 homolog gene is located on the chromosome 11 in the reference genome very close to the Golden Pass Gap (a ~ 3 Mb empty region reserved to the pericentromeric region) and proves the purity of chromocenters isolation. The second major fraction are non-LTR retroposons (SINE and LINE) with overwhelming majority of LINE - ~ 11% of ChrmC. Most of the LINE fragments are from the ~ 2 kb region at the end of the 2nd ORF and its' flanking region. The precise LINEs' segment of ~ 2 kb is the necessary mouse constitutive heterohromatin component together with TR. The third most abundant fraction are ERVs. The ERV distribution in chromocenters differs from the whole genome: IAP (ERV2 class) is the most numerous in ChrmC while MaLR (ERV3 class) prevails in the reference genome. IAP and its LTR also prevail in TR containing contigs extracted from the WGS dataset. In silico prediction of IAP and LINE fragments in chromocenters was confirmed by direct fluorescent in situ hybridization (FISH). CONCLUSION Our data of chromocenters' DNA (ChrmC) sequencing demonstrate that IAP with LTR and a precise ~ 2 kb fragment of LINE represent a substantial fraction of mouse chromocenters (constitutive heteroсhromatin) along with TRs.
Collapse
Affiliation(s)
- Dmitrii I Ostromyshenskii
- Institute of Cytology RAS, St.-Petersburg, 194064, Russia.
- Far Eastern Federal University, Vladivostok, 690922, Russia.
| | | | - Inna S Kuznetsova
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Olga I Podgornaya
- Institute of Cytology RAS, St.-Petersburg, 194064, Russia
- Far Eastern Federal University, Vladivostok, 690922, Russia
- St Petersburg State University, St Petersburg, 199034, Russia
| |
Collapse
|
30
|
Klein SJ, O'Neill RJ. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 2018; 26:5-23. [PMID: 29332159 PMCID: PMC5857280 DOI: 10.1007/s10577-017-9569-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Although it was nearly 70 years ago when transposable elements (TEs) were first discovered “jumping” from one genomic location to another, TEs are now recognized as contributors to genomic innovations as well as genome instability across a wide variety of species. In this review, we illustrate the ways in which active TEs, specifically retroelements, can create novel chromosome rearrangements and impact gene expression, leading to disease in some cases and species-specific diversity in others. We explore the ways in which eukaryotic genomes have evolved defense mechanisms to temper TE activity and the ways in which TEs continue to influence genome structure despite being rendered transpositionally inactive. Finally, we focus on the role of TEs in the establishment, maintenance, and stabilization of critical, yet rapidly evolving, chromosome features: eukaryotic centromeres. Across centromeres, specific types of TEs participate in genomic conflict, a balancing act wherein they are actively inserting into centromeric domains yet are harnessed for the recruitment of centromeric histones and potentially new centromere formation.
Collapse
Affiliation(s)
- Savannah J Klein
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
31
|
Niu D, Zhang X, Song X, Wang Z, Li Y, Qiao L, Wang Z, Liu J, Deng Y, He Z, Yang D, Liu R, Wang Y, Zhao H. Deep Sequencing Uncovers Rice Long siRNAs and Its Involvement in Immunity Against Rhizoctonia solani. PHYTOPATHOLOGY 2018; 108:60-69. [PMID: 28876208 DOI: 10.1094/phyto-03-17-0119-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Small RNA (sRNA) is a class of noncoding RNA that can silence the expression of target genes. In rice, the majority of characterized sRNAs are within the range of 21 to 24 nucleotides (nt) long, whose biogenesis and function are associated with a specific sets of components, such as Dicer-like (OsDCLs) and Argonaute proteins (OsAGOs). Rice sRNAs longer than 24 nt are occasionally reported, with biogenesis and functional mechanism uninvestigated, especially in a context of defense responses against pathogen infection. By using deep sequencing, we identified a group of rice long small interfering RNAs (lsiRNAs) that are within the range of 25 to 40 nt in length. Our results show that some rice lsiRNAs are differentially expressed upon infection of Rhizoctonia solani, the causal agent of the rice sheath blight disease. Bioinformatic analysis and experimental validation indicate that some rice lsiRNAs can target defense-related genes. We further demonstrate that rice lsiRNAs are neither derived from RNA degradation nor originated as secondary small interfering RNAs (siRNAs). Moreover, lsiRNAs require OsDCL4 for biogenesis and OsAGO18 for function. Therefore, our study indicates that rice lsiRNAs are a unique class of endogenous sRNAs produced in rice, which may participate in response against pathogens.
Collapse
Affiliation(s)
- Dongdong Niu
- First, second, third, fourth, sixth, seventh, and fourteenth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; first, second, third, fourth, sixth, and fourteenth authors: Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; second author: Institute of Industrial Crops, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China; fifth and twelfth authors: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China; eighth, ninth, and tenth authors: National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; eleventh author: College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and thirteenth author: State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xin Zhang
- First, second, third, fourth, sixth, seventh, and fourteenth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; first, second, third, fourth, sixth, and fourteenth authors: Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; second author: Institute of Industrial Crops, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China; fifth and twelfth authors: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China; eighth, ninth, and tenth authors: National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; eleventh author: College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and thirteenth author: State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoou Song
- First, second, third, fourth, sixth, seventh, and fourteenth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; first, second, third, fourth, sixth, and fourteenth authors: Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; second author: Institute of Industrial Crops, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China; fifth and twelfth authors: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China; eighth, ninth, and tenth authors: National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; eleventh author: College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and thirteenth author: State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhihui Wang
- First, second, third, fourth, sixth, seventh, and fourteenth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; first, second, third, fourth, sixth, and fourteenth authors: Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; second author: Institute of Industrial Crops, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China; fifth and twelfth authors: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China; eighth, ninth, and tenth authors: National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; eleventh author: College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and thirteenth author: State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanqiang Li
- First, second, third, fourth, sixth, seventh, and fourteenth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; first, second, third, fourth, sixth, and fourteenth authors: Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; second author: Institute of Industrial Crops, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China; fifth and twelfth authors: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China; eighth, ninth, and tenth authors: National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; eleventh author: College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and thirteenth author: State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lulu Qiao
- First, second, third, fourth, sixth, seventh, and fourteenth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; first, second, third, fourth, sixth, and fourteenth authors: Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; second author: Institute of Industrial Crops, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China; fifth and twelfth authors: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China; eighth, ninth, and tenth authors: National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; eleventh author: College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and thirteenth author: State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhaoyun Wang
- First, second, third, fourth, sixth, seventh, and fourteenth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; first, second, third, fourth, sixth, and fourteenth authors: Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; second author: Institute of Industrial Crops, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China; fifth and twelfth authors: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China; eighth, ninth, and tenth authors: National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; eleventh author: College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and thirteenth author: State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junzhong Liu
- First, second, third, fourth, sixth, seventh, and fourteenth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; first, second, third, fourth, sixth, and fourteenth authors: Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; second author: Institute of Industrial Crops, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China; fifth and twelfth authors: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China; eighth, ninth, and tenth authors: National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; eleventh author: College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and thirteenth author: State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yiwen Deng
- First, second, third, fourth, sixth, seventh, and fourteenth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; first, second, third, fourth, sixth, and fourteenth authors: Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; second author: Institute of Industrial Crops, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China; fifth and twelfth authors: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China; eighth, ninth, and tenth authors: National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; eleventh author: College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and thirteenth author: State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zuhua He
- First, second, third, fourth, sixth, seventh, and fourteenth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; first, second, third, fourth, sixth, and fourteenth authors: Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; second author: Institute of Industrial Crops, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China; fifth and twelfth authors: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China; eighth, ninth, and tenth authors: National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; eleventh author: College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and thirteenth author: State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Donglei Yang
- First, second, third, fourth, sixth, seventh, and fourteenth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; first, second, third, fourth, sixth, and fourteenth authors: Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; second author: Institute of Industrial Crops, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China; fifth and twelfth authors: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China; eighth, ninth, and tenth authors: National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; eleventh author: College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and thirteenth author: State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Renyi Liu
- First, second, third, fourth, sixth, seventh, and fourteenth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; first, second, third, fourth, sixth, and fourteenth authors: Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; second author: Institute of Industrial Crops, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China; fifth and twelfth authors: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China; eighth, ninth, and tenth authors: National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; eleventh author: College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and thirteenth author: State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanli Wang
- First, second, third, fourth, sixth, seventh, and fourteenth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; first, second, third, fourth, sixth, and fourteenth authors: Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; second author: Institute of Industrial Crops, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China; fifth and twelfth authors: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China; eighth, ninth, and tenth authors: National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; eleventh author: College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and thirteenth author: State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hongwei Zhao
- First, second, third, fourth, sixth, seventh, and fourteenth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; first, second, third, fourth, sixth, and fourteenth authors: Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; second author: Institute of Industrial Crops, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China; fifth and twelfth authors: Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China; eighth, ninth, and tenth authors: National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; eleventh author: College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and thirteenth author: State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
32
|
McNulty SM, Sullivan LL, Sullivan BA. Human Centromeres Produce Chromosome-Specific and Array-Specific Alpha Satellite Transcripts that Are Complexed with CENP-A and CENP-C. Dev Cell 2017; 42:226-240.e6. [PMID: 28787590 DOI: 10.1016/j.devcel.2017.07.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/24/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
Abstract
Human centromeres are defined by alpha satellite DNA arrays that are distinct and chromosome specific. Most human chromosomes contain multiple alpha satellite arrays that are competent for centromere assembly. Here, we show that human centromeres are defined by chromosome-specific RNAs linked to underlying organization of distinct alpha satellite arrays. Active and inactive arrays on the same chromosome produce discrete sets of transcripts in cis. Non-coding RNAs produced from active arrays are complexed with CENP-A and CENP-C, while inactive-array transcripts associate with CENP-B and are generally less stable. Loss of CENP-A does not affect transcript abundance or stability. However, depletion of array-specific RNAs reduces CENP-A and CENP-C at the targeted centromere via faulty CENP-A loading, arresting cells before mitosis. This work shows that each human alpha satellite array produces a unique set of non-coding transcripts, and RNAs present at active centromeres are necessary for kinetochore assembly and cell-cycle progression.
Collapse
Affiliation(s)
- Shannon M McNulty
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lori L Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Division of Human Genetics, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
33
|
Garrido-Ramos MA. Satellite DNA: An Evolving Topic. Genes (Basel) 2017; 8:genes8090230. [PMID: 28926993 PMCID: PMC5615363 DOI: 10.3390/genes8090230] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.
Collapse
Affiliation(s)
- Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
34
|
Abstract
The genetic material, contained on chromosomes, is often described as the "blueprint for life." During nuclear division, the chromosomes are pulled into each of the two daughter nuclei by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units must link the chromosomes to the microtubules, signal to the cell when the attachment is made so that division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. To perform each of these functions, kinetochores are large protein complexes, approximately 5MDa in size, and they contain at least 45 unique proteins. Many of the central components in the kinetochore are well conserved, yielding a common core of proteins forming consistent structures. However, many of the peripheral subcomplexes vary between different taxonomic groups, including changes in primary sequence and gain or loss of whole proteins. It is still unclear how significant these changes are, and answers to this question may provide insights into adaptation to specific lifestyles or progression of disease that involve chromosome instability.
Collapse
|
35
|
Johnson WL, Yewdell WT, Bell JC, McNulty SM, Duda Z, O'Neill RJ, Sullivan BA, Straight AF. RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. eLife 2017; 6. [PMID: 28760200 PMCID: PMC5538822 DOI: 10.7554/elife.25299] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/07/2017] [Indexed: 12/15/2022] Open
Abstract
Heterochromatin formed by the SUV39 histone methyltransferases represses transcription from repetitive DNA sequences and ensures genomic stability. How SUV39 enzymes localize to their target genomic loci remains unclear. Here, we demonstrate that chromatin-associated RNA contributes to the stable association of SUV39H1 with constitutive heterochromatin in human cells. We find that RNA associated with mitotic chromosomes is concentrated at pericentric heterochromatin, and is encoded, in part, by repetitive α-satellite sequences, which are retained in cis at their transcription sites. Purified SUV39H1 directly binds nucleic acids through its chromodomain; and in cells, SUV39H1 associates with α-satellite RNA transcripts. Furthermore, nucleic acid binding mutants destabilize the association of SUV39H1 with chromatin in mitotic and interphase cells – effects that can be recapitulated by RNase treatment or RNA polymerase inhibition – and cause defects in heterochromatin function. Collectively, our findings uncover a previously unrealized function for chromatin-associated RNA in regulating constitutive heterochromatin in human cells. DOI:http://dx.doi.org/10.7554/eLife.25299.001 Each cell in a human body contains the same DNA sequence, which serves as a set of instructions for how the body should develop and operate. However, only certain sections of DNA are “active” at any particular time and in any given type of cell. When a section of DNA is active, cells make many copies of it using a molecule called RNA. When a section of DNA in inactive, very little RNA is made. Some sections of DNA must always be kept inactive to avoid damaging the cell. DNA is packaged around proteins called histones, and enzymes that modify histones control which sections of DNA are switched on or off. One such modifying enzyme, called SUV39H1, is important for inactivating sections of DNA that could cause harm to the cell if they are active. Previous studies showed that the loss of SUV39H1 and related proteins cause abnormalities and cancer in mice. However, it is not clear how this enzyme identifies and inactivates the DNA it needs to target. Johnson, Yewdell et al. studied SUV39H1 in human cells. The experiments show that RNA binds to the SUV39H1 enzyme and controls how it interacts with DNA. Specifically, Johnson, Yewdell et al. found that sections of DNA that are inactive can still make a small amount of RNA, and that this RNA tethers SUV39H1 to the DNA to keep the DNA switched off. Mutant forms of SUV39H1 that are unable to interact with RNA fall off the DNA, which allows DNA sequences that are normally switched off to become active. The findings of Johnson, Yewdell et al. reveal a new role for RNAs in regulating whether DNA is switched on or off. The next step is to determine whether other enzymes that can also modify histones use the same mechanism to activate or inactivate DNA. Differences in how the activity of DNA is regulated between individuals plays a crucial role in generating the diversity we see in nature. Therefore, this work helps us to understand our basic biology and may provide new opportunities for treating disease. DOI:http://dx.doi.org/10.7554/eLife.25299.002
Collapse
Affiliation(s)
- Whitney L Johnson
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - William T Yewdell
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Jason C Bell
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Shannon M McNulty
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Zachary Duda
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States.,Institute for Systems Genomics, University of Connecticut, Storrs, United States
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States.,Institute for Systems Genomics, University of Connecticut, Storrs, United States
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
36
|
Abstract
Nucleus is the residence and place of work for a plethora of long noncoding RNAs. Here, we provide a summary of the functions and functional mechanisms of several relatively well studied examples of nuclear long noncoding RNAs (lncRNAs) in the nucleus, such as Xist, NEAT1, MALAT1 and TERRA. The recently identified novel EIciRNA is also highlighted. These nuclear lncRNAs play a variety of roles with diverse molecular mechanisms in animal cells. We also discuss insights and concerns about current and future studies of nuclear lnc RNAs.
Collapse
Affiliation(s)
- Bin Yu
- a The CAS Key Laboratory of Innate Immunity and Chronic Disease , CAS Center for Excellence in Molecular Cell Science , School of Life Sciences , University of Science and Technology of China , Hefei , Anhui Province , China
| | - Ge Shan
- a The CAS Key Laboratory of Innate Immunity and Chronic Disease , CAS Center for Excellence in Molecular Cell Science , School of Life Sciences , University of Science and Technology of China , Hefei , Anhui Province , China
| |
Collapse
|
37
|
Cáceres-Gutiérrez R, Herrera LA. Centromeric Non-coding Transcription: Opening the Black Box of Chromosomal Instability? Curr Genomics 2017; 18:227-235. [PMID: 28603453 PMCID: PMC5439370 DOI: 10.2174/1389202917666161102095508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/01/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023] Open
Abstract
In eukaryotes, mitosis is tightly regulated to avoid the generation of numerical chromosome aberrations, or aneuploidies. The aneuploid phenotype is a consequence of chromosomal instability (CIN), i.e., an enhanced rate of chromosome segregation errors, which is frequently found in cancer cells and is associated with tumor aggressiveness and increased tumor cell survival potential. To avoid the generation of aneuploidies, cells rely on the spindle assembly checkpoint (SAC), a widely conserved mechanism that protects the genome against this type of error. This signaling pathway stops mitotic pro-gression before anaphase until all chromosomes are correctly attached to spindle microtubules. Howev-er, impairment of the SAC cannot account for the establishment of CIN because cells bearing this phe-notype have a functional SAC. Hence, in cells with CIN, anaphase is not triggered until all chromo-somes are correctly attached to spindle microtubules and congressed at the metaphase plate. Thus, an in-teresting question arises: What mechanisms actually mediate CIN in cancer cells? Recent research has shown that some pathways involved in chromosome segregation are closely associated to centromere-encoded non-coding RNA (cencRNA) and that these RNAs are deregulated in abnormal conditions, such as cancer. These mechanisms may provide new explanations for chromosome segregation errors. The present review discusses some of these findings and proposes novel mechanisms for the establish-ment of CIN based on regulation by cencRNA.
Collapse
Affiliation(s)
- Rodrigo Cáceres-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexicocity, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexicocity, Mexico
| |
Collapse
|
38
|
Abstract
Genomic variation is a source of functional diversity that is typically studied in genic and non-coding regulatory regions. However, the extent of variation within noncoding portions of the human genome, particularly highly repetitive regions, and the functional consequences are not well understood. Satellite DNA, including α satellite DNA found at human centromeres, comprises up to 10% of the genome, but is difficult to study because its repetitive nature hinders contiguous sequence assemblies. We recently described variation within α satellite DNA that affects centromere function. On human chromosome 17 (HSA17), we showed that size and sequence polymorphisms within primary array D17Z1 are associated with chromosome aneuploidy and defective centromere architecture. However, HSA17 can counteract this instability by assembling the centromere at a second, "backup" array lacking variation. Here, we discuss our findings in a broader context of human centromere assembly, and highlight areas of future study to uncover links between genomic and epigenetic features of human centromeres.
Collapse
Affiliation(s)
- Lori L Sullivan
- a Department of Molecular Genetics and Microbiology , Duke University Medical Center , Durham , NC , USA
| | - Kimberline Chew
- a Department of Molecular Genetics and Microbiology , Duke University Medical Center , Durham , NC , USA
| | - Beth A Sullivan
- a Department of Molecular Genetics and Microbiology , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
39
|
Moreno-Moreno O, Torras-Llort M, Azorín F. Variations on a nucleosome theme: The structural basis of centromere function. Bioessays 2017; 39. [PMID: 28220502 DOI: 10.1002/bies.201600241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The centromere is a specialized chromosomal structure that dictates kinetochore assembly and, thus, is essential for accurate chromosome segregation. Centromere identity is determined epigenetically by the presence of a centromere-specific histone H3 variant, CENP-A, that replaces canonical H3 in centromeric chromatin. Here, we discuss recent work by Roulland et al. that identifies structural elements of the nucleosome as essential determinants of centromere function. In particular, CENP-A nucleosomes have flexible DNA ends due to the short αN helix of CENP-A. The higher flexibility of the DNA ends of centromeric nucleosomes impairs binding of linker histones H1, while it facilitates binding of other essential centromeric proteins, such as CENP-C, and is required for mitotic fidelity. This work extends previous observations indicating that the differential structural properties of CENP-A nucleosomes are on the basis of its contribution to centromere identity and function. Here, we discuss the implications of this work and the questions arising from it.
Collapse
Affiliation(s)
- Olga Moreno-Moreno
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Mònica Torras-Llort
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona, Spain
| |
Collapse
|
40
|
Zasadzińska E, Foltz DR. Orchestrating the Specific Assembly of Centromeric Nucleosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:165-192. [PMID: 28840237 DOI: 10.1007/978-3-319-58592-5_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Centromeres are chromosomal loci that are defined epigenetically in most eukaryotes by incorporation of a centromere-specific nucleosome in which the canonical histone H3 variant is replaced by Centromere Protein A (CENP-A). Therefore, the assembly and propagation of centromeric nucleosomes are critical for maintaining centromere identify and ensuring genomic stability. Centromeres direct chromosome segregation (during mitosis and meiosis) by recruiting the constitutive centromere-associated network of proteins throughout the cell cycle that in turn recruits the kinetochore during mitosis. Assembly of centromere-specific nucleosomes in humans requires the dedicated CENP-A chaperone HJURP, and the Mis18 complex to couple the deposition of new CENP-A to the site of the pre-existing centromere, which is essential for maintaining centromere identity. Human CENP-A deposition occurs specifically in early G1, into pre-existing chromatin, and several additional chromatin-associated complexes regulate CENP-A nucleosome deposition and stability. Here we review the current knowledge on how new CENP-A nucleosomes are assembled selectively at the existing centromere in different species and how this process is controlled to ensure stable epigenetic inheritance of the centromere.
Collapse
Affiliation(s)
- Ewelina Zasadzińska
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
41
|
McNulty SM, Sullivan BA. Centromere Silencing Mechanisms. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:233-255. [PMID: 28840240 DOI: 10.1007/978-3-319-58592-5_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Centromere function is essential for genome stability and chromosome inheritance. Typically, each chromosome has a single locus that consistently serves as the site of centromere formation and kinetochore assembly. Decades of research have defined the DNA sequence and protein components of functional centromeres, and the interdependencies of specific protein complexes for proper centromere assembly. Less is known about how centromeres are disassembled or functionally silenced. Centromere silencing, or inactivation, is particularly relevant in the cases of dicentric chromosomes that occur via genome rearrangements that place two centromeres on the same chromosome. Dicentrics are usually unstable unless one centromere is inactivated, thereby allowing the structurally dicentric chromosome to behave like one of the monocentric, endogenous chromosomes. The molecular basis for centromere inactivation is not well understood, although studies in model organisms and in humans suggest that both genomic and epigenetic mechanisms are involved. In this chapter, we review recent studies using synthetic chromosomes and engineered or induced dicentrics from various organisms to define the molecular processes that are involved in the complex process of centromere inactivation.
Collapse
Affiliation(s)
- Shannon M McNulty
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, DUMC 3054, Durham, NC, 27710, USA.,Division of Human Genetics, Duke University Medical Center, DUMC 3054, Durham, NC, 27710, USA
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, DUMC 3054, Durham, NC, 27710, USA. .,Division of Human Genetics, Duke University Medical Center, DUMC 3054, Durham, NC, 27710, USA.
| |
Collapse
|
42
|
Giulotto E, Raimondi E, Sullivan KF. The Unique DNA Sequences Underlying Equine Centromeres. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:337-354. [PMID: 28840244 DOI: 10.1007/978-3-319-58592-5_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Centromeres are highly distinctive genetic loci whose function is specified largely by epigenetic mechanisms. Understanding the role of DNA sequences in centromere function has been a daunting task due to the highly repetitive nature of centromeres in animal chromosomes. The discovery of a centromere devoid of satellite DNA in the domestic horse consolidated observations on the epigenetic nature of centromere identity, showing that entirely natural chromosomes could function without satellite DNA cues. Horses belong to the genus Equus which exhibits a very high degree of evolutionary plasticity in centromere position and DNA sequence composition. Examination of horses has revealed that the position of the satellite-free centromere is variable among individuals. Analysis of centromere location and composition in other Equus species, including domestic donkey and zebras, confirms that the satellite-less configuration of centromeres is common in this group which has undergone particularly rapid karyotype evolution. These features have established the equids as a new mammalian system in which to investigate the molecular organization, dynamics and evolutionary behaviour of centromeres.
Collapse
Affiliation(s)
- Elena Giulotto
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Elena Raimondi
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy
| | - Kevin F Sullivan
- National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
43
|
Ferreira D, Meles S, Escudeiro A, Mendes-da-Silva A, Adega F, Chaves R. Satellite non-coding RNAs: the emerging players in cells, cellular pathways and cancer. Chromosome Res 2016; 23:479-93. [PMID: 26293605 DOI: 10.1007/s10577-015-9482-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For several decades, transcriptional inactivity was considered as one of the particular features of constitutive heterochromatin and, therefore, of its major component, satellite DNA sequences. However, more recently, succeeding evidences have demonstrated that these sequences can indeed be transcribed, yielding satellite non-coding RNAs with important roles in the organization and regulation of genomes. Since then, several studies have been conducted, trying to understand the function(s) of these sequences not only in the normal but also in cancer genomes. It is thought that the association between cancer and satncRNAs is mostly due to the influence of these transcripts in the genome instability, a hallmark of cancer. The few reports on satellite DNA transcription in cancer contexts point to its overexpression; however, this scenario may be far more complex, variable, and influenced by a number of factors and the exact role of satncRNAs in the oncogenic process remains poorly understood. The greater is the knowledge on the association of satncRNAs with cancer, the greater would be the opportunity to assist cancer treatment, either by the design of effective therapies targeting these molecules or by using them as biomarkers in cancer diagnosis, prognosis, and with predictive value.
Collapse
Affiliation(s)
- Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa, Portugal
| | - Susana Meles
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Mendes-da-Silva
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa, Portugal
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa, Portugal.
| |
Collapse
|
44
|
Sullivan LL, Maloney KA, Towers AJ, Gregory SG, Sullivan BA. Human centromere repositioning within euchromatin after partial chromosome deletion. Chromosome Res 2016; 24:451-466. [PMID: 27581771 DOI: 10.1007/s10577-016-9536-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Centromeres are defined by a specialized chromatin organization that includes nucleosomes that contain the centromeric histone variant centromere protein A (CENP-A) instead of canonical histone H3. Studies in various organisms have shown that centromeric chromatin (i.e., CENP-A chromatin or centrochromatin) exhibits plasticity, in that it can assemble on different types of DNA sequences. However, once established on a chromosome, the centromere is maintained at the same position. In humans, this location is the highly homogeneous repetitive DNA alpha satellite. Mislocalization of centromeric chromatin to atypical locations can lead to genome instability, indicating that restriction of centromeres to a distinct genomic position is important for cell and organism viability. Here, we describe a rearrangement of Homo sapiens chromosome 17 (HSA17) that has placed alpha satellite DNA next to euchromatin. We show that on this mutant chromosome, CENP-A chromatin has spread from the alpha satellite into the short arm of HSA17, establishing a ∼700 kb hybrid centromeric domain that spans both repetitive and unique sequences and changes the expression of at least one gene over which it spreads. Our results illustrate the plasticity of human centromeric chromatin and suggest that heterochromatin normally constrains CENP-A chromatin onto alpha satellite DNA. This work highlights that chromosome rearrangements, particularly those that remove the pericentromere, create opportunities for centromeric nucleosomes to move into non-traditional genomic locations, potentially changing the surrounding chromatin environment and altering gene expression.
Collapse
Affiliation(s)
- Lori L Sullivan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3054, Durham, NC, 27710, USA
| | - Kristin A Maloney
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3054, Durham, NC, 27710, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Aaron J Towers
- University Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC, 27710, USA.,Quintiles, 4820 Emperor Blvd., Durham, NC, 27703, USA
| | - Simon G Gregory
- Department of Medicine, Duke Molecular Physiology Institute, 300 N. Duke Street, Durham, NC, 27701, USA.,Division of Human Genetics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3054, Durham, NC, 27710, USA. .,Quintiles, 4820 Emperor Blvd., Durham, NC, 27703, USA.
| |
Collapse
|
45
|
Ramos É, Cardoso AL, Brown J, Marques DF, Fantinatti BEA, Cabral-de-Mello DC, Oliveira RA, O'Neill RJ, Martins C. The repetitive DNA element BncDNA, enriched in the B chromosome of the cichlid fish Astatotilapia latifasciata, transcribes a potentially noncoding RNA. Chromosoma 2016; 126:313-323. [PMID: 27169573 DOI: 10.1007/s00412-016-0601-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/03/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022]
Abstract
Supernumerary chromosomes have been studied in many species of eukaryotes, including the cichlid fish, Astatotilapia latifasciata. However, there are many unanswered questions about the maintenance, inheritance, and functional aspects of supernumerary chromosomes. The cichlid family has been highlighted as a model for evolutionary studies, including those that focus on mechanisms of chromosome evolution. Individuals of A. latifasciata are known to carry up to two B heterochromatic isochromosomes that are enriched in repetitive DNA and contain few intact gene sequences. We isolated and characterized a transcriptionally active repeated DNA, called B chromosome noncoding DNA (BncDNA), highly represented across all B chromosomes of A. latifasciata. BncDNA transcripts are differentially processed among six different tissues, including the production of smaller transcripts, indicating transcriptional variation may be linked to B chromosome presence and sexual phenotype. The transcript lengths and lack of similarity with known protein/gene sequences indicate BncRNA might represent a novel long noncoding RNA family (lncRNA). The potential for interaction between BncRNA and known miRNAs were computationally predicted, resulting in the identification of possible binding of this sequence in upregulated miRNAs related to the presence of B chromosomes. In conclusion, Bnc is a transcriptionally active repetitive DNA enriched in B chromosomes with potential action over B chromosome maintenance in somatic cells and meiotic drive in gametic cells.
Collapse
Affiliation(s)
- Érica Ramos
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Adauto L Cardoso
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Judith Brown
- Allied Health Sciences Department and Institute for Systems Genomics, University of Connecticut, 06269, Storrs, CT, USA
| | - Diego F Marques
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Bruno E A Fantinatti
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Diogo C Cabral-de-Mello
- Department of Biology, Institute of Biosciences, Sao Paulo State University, 13506-900, Rio Claro, SP, Brazil
| | - Rogério A Oliveira
- Department of Biostatistics, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, 06269, Storrs, CT, USA
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil.
| |
Collapse
|
46
|
Bersani F, Lee E, Kharchenko PV, Xu AW, Liu M, Xega K, MacKenzie OC, Brannigan BW, Wittner BS, Jung H, Ramaswamy S, Park PJ, Maheswaran S, Ting DT, Haber DA. Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer. Proc Natl Acad Sci U S A 2015; 112:15148-53. [PMID: 26575630 PMCID: PMC4679016 DOI: 10.1073/pnas.1518008112] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aberrant transcription of the pericentromeric human satellite II (HSATII) repeat is present in a wide variety of epithelial cancers. In deriving experimental systems to study its deregulation, we observed that HSATII expression is induced in colon cancer cells cultured as xenografts or under nonadherent conditions in vitro, but it is rapidly lost in standard 2D cultures. Unexpectedly, physiological induction of endogenous HSATII RNA, as well as introduction of synthetic HSATII transcripts, generated cDNA intermediates in the form of DNA/RNA hybrids. Single molecule sequencing of tumor xenografts showed that HSATII RNA-derived DNA (rdDNA) molecules are stably incorporated within pericentromeric loci. Suppression of RT activity using small molecule inhibitors reduced HSATII copy gain. Analysis of whole-genome sequencing data revealed that HSATII copy number gain is a common feature in primary human colon tumors and is associated with a lower overall survival. Together, our observations suggest that cancer-associated derepression of specific repetitive sequences can promote their RNA-driven genomic expansion, with potential implications on pericentromeric architecture.
Collapse
Affiliation(s)
- Francesca Bersani
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129
| | - Eunjung Lee
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115
| | - Peter V Kharchenko
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115; Hematology/Oncology Program, Children's Hospital, Boston, MA 02115
| | - Andrew W Xu
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115
| | - Mingzhu Liu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129; Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Kristina Xega
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129
| | - Olivia C MacKenzie
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129
| | - Brian W Brannigan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129
| | | | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Peter J Park
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115; Informatics Program, Children's Hospital, Boston, MA 02115
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114;
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129; Howard Hughes Medical Institute, Chevy Chase, MD 20815; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114;
| |
Collapse
|
47
|
Chen CC, Bowers S, Lipinszki Z, Palladino J, Trusiak S, Bettini E, Rosin L, Przewloka MR, Glover DM, O'Neill RJ, Mellone BG. Establishment of Centromeric Chromatin by the CENP-A Assembly Factor CAL1 Requires FACT-Mediated Transcription. Dev Cell 2015; 34:73-84. [PMID: 26151904 PMCID: PMC4495351 DOI: 10.1016/j.devcel.2015.05.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 04/09/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023]
Abstract
Centromeres are essential chromosomal structures that mediate accurate chromosome segregation during cell division. Centromeres are specified epigenetically by the heritable incorporation of the centromeric histone H3 variant CENP-A. While many of the primary factors that mediate centromeric deposition of CENP-A are known, the chromatin and DNA requirements of this process have remained elusive. Here, we uncover a role for transcription in Drosophila CENP-A deposition. Using an inducible ectopic centromere system that uncouples CENP-A deposition from endogenous centromere function and cell-cycle progression, we demonstrate that CENP-A assembly by its loading factor, CAL1, requires RNAPII-mediated transcription of the underlying DNA. This transcription depends on the CAL1 binding partner FACT, but not on CENP-A incorporation. Our work establishes RNAPII passage as a key step in chaperone-mediated CENP-A chromatin establishment and propagation.
Collapse
Affiliation(s)
- Chin-Chi Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Sarion Bowers
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Zoltan Lipinszki
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, P.O. Box 521, 6701 Szeged, Hungary
| | - Jason Palladino
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Sarah Trusiak
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Emily Bettini
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Leah Rosin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Barbara G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
48
|
Steiner FA, Henikoff S. Diversity in the organization of centromeric chromatin. Curr Opin Genet Dev 2015; 31:28-35. [PMID: 25956076 DOI: 10.1016/j.gde.2015.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 03/26/2015] [Accepted: 03/28/2015] [Indexed: 01/15/2023]
Abstract
Centromeric chromatin is distinguished primarily by nucleosomes containing the histone variant cenH3, which organizes the kinetochore that links the chromosome to the spindle apparatus. Whereas budding yeast have simple 'point' centromeres with single cenH3 nucleosomes, and fission yeast have 'regional' centromeres without obvious sequence specificity, the centromeres of most organisms are embedded in highly repetitive 'satellite' DNA. Recent studies have revealed a remarkable diversity in centromere chromatin organization among different lineages, including some that have lost cenH3 altogether. We review recent progress in understanding point, regional and satellite centromeres, as well as less well-studied centromere types, such as holocentromeres. We also discuss the formation of neocentromeres, the role of pericentric heterochromatin, and the structure and composition of the cenH3 nucleosome.
Collapse
Affiliation(s)
- Florian A Steiner
- Basic Sciences Division and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
49
|
Sadakierska-Chudy A, Filip M. A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res 2014; 27:172-97. [PMID: 25516120 PMCID: PMC4300421 DOI: 10.1007/s12640-014-9508-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/31/2022]
Abstract
The complexity of the genome is regulated by epigenetic mechanisms, which act on the level of DNA, histones, and nucleosomes. Epigenetic machinery is involved in various biological processes, including embryonic development, cell differentiation, neurogenesis, and adult cell renewal. In the last few years, it has become clear that the number of players identified in the regulation of chromatin structure and function is still increasing. In addition to well-known phenomena, including DNA methylation and histone modification, new, important elements, including nucleosome mobility, histone tail clipping, and regulatory ncRNA molecules, are being discovered. The present paper provides the current state of knowledge about the role of 16 different histone post-translational modifications, nucleosome positioning, and histone tail clipping in the structure and function of chromatin. We also emphasize the significance of cross-talk among chromatin marks and ncRNAs in epigenetic control.
Collapse
Affiliation(s)
- Anna Sadakierska-Chudy
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland,
| | | |
Collapse
|
50
|
Larracuente AM. The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive. BMC Evol Biol 2014; 14:233. [PMID: 25424548 PMCID: PMC4280042 DOI: 10.1186/s12862-014-0233-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/05/2014] [Indexed: 01/29/2023] Open
Abstract
Background Satellite DNA can make up a substantial fraction of eukaryotic genomes and has roles in genome structure and chromosome segregation. The rapid evolution of satellite DNA can contribute to genomic instability and genetic incompatibilities between species. Despite its ubiquity and its contribution to genome evolution, we currently know little about the dynamics of satellite DNA evolution. The Responder (Rsp) satellite DNA family is found in the pericentric heterochromatin of chromosome 2 of Drosophila melanogaster. Rsp is well-known for being the target of Segregation Distorter (SD)— an autosomal meiotic drive system in D. melanogaster. I present an evolutionary genetic analysis of the Rsp family of repeats in D. melanogaster and its closely-related species in the melanogaster group (D. simulans, D. sechellia, D. mauritiana, D. erecta, and D. yakuba) using a combination of available BAC sequences, whole genome shotgun Sanger reads, Illumina short read deep sequencing, and fluorescence in situ hybridization. Results I show that Rsp repeats have euchromatic locations throughout the D. melanogaster genome, that Rsp arrays show evidence for concerted evolution, and that Rsp repeats exist outside of D. melanogaster, in the melanogaster group. The repeats in these species are considerably diverged at the sequence level compared to D. melanogaster, and have a strikingly different genomic distribution, even between closely-related sister taxa. Conclusions The genomic organization of the Rsp repeat in the D. melanogaster genome is complex—it exists of large blocks of tandem repeats in the heterochromatin and small blocks of tandem repeats in the euchromatin. My discovery of heterochromatic Rsp-like sequences outside of D. melanogaster suggests that SD evolved after its target satellite and that the evolution of the Rsp satellite family is highly dynamic over a short evolutionary time scale (<240,000 years). Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0233-9) contains supplementary material, which is available to authorized users.
Collapse
|