1
|
Cai Z, Yao B, Tan Y, Liu Y, Su J. Seasonal piRNA Expression Profile Changes in the Testes of Plateau Zokor ( Eospalax baileyi). Animals (Basel) 2024; 14:2620. [PMID: 39272405 PMCID: PMC11394656 DOI: 10.3390/ani14172620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Seasonal reproduction is a mammalian behavior that has developed over an extended evolutionary period and requires animals to respond to external environmental changes to facilitate reproduction. In this study, we investigated the role of PIWI-interacting RNA (piRNA) in the seasonal reproduction of plateau zokors (Eospalax baileyi). piRNA expression profiles in plateau zokor testes during both breeding and non-breeding seasons were examined. The piRNAs had a distinctive ping-pong signature and ranged from 27 to 32 nt with a peak at 30 nt. Testicular piRNAs predominantly aligned to specific genomic regions, including repeat and gene regions. Analysis of the piRNA-mRNA interaction network and functional enrichment of differentially expressed piRNAs targeting mRNAs revealed their association with testicular development and spermatogenesis. Significantly, PIWIL4 is an mRNA gene that interacts with piRNA and exhibits high expression levels within the testes during the non-breeding phase. This study provides a foundation to improve our understanding of piRNA regulatory mechanisms during testicular development and spermatogenesis in seasonally reproducing animals and, specifically, in the plateau zokor.
Collapse
Affiliation(s)
- Zhiyuan Cai
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| | - Baohui Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Yuchen Tan
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongjie Liu
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Yin H, Zhou Z, Fu C. Fance deficiency impaired DNA damage repair of prospermatogonia and altered the repair dynamics of spermatocytes. Reprod Biol Endocrinol 2024; 22:113. [PMID: 39210375 PMCID: PMC11360510 DOI: 10.1186/s12958-024-01284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is the most severe form of male infertility and affects approximately 1% of men worldwide. Fanconi anemia (FA) genes were known for their essential role in DNA repair and growing evidence showed the crucial role of FA pathway in NOA. However, the underlying mechanisms for Fance deficiency lead to a serious deficit and delayed maturation of male germ cells remain unclear. METHODS We used Fance deficiency mouse model for experiments, and collected testes or epididymides from mice at 8 weeks (8W), 17.5 days post coitum (dpc), and postnatal 11 (P11) to P23. The mice referred to three genotypes: wildtype (Fance +/+), heterozygous (Fance +/-), and homozygous (Fance -/-). Hematoxylin and eosin staining, immunofluorescence staining, and surface spread of spermatocytes were performed to explore the mechanisms for NOA of Fance -/- mice. Each experiment was conducted with a minimum of three biological replicates and Kruskal-Wallis with Dunn's correction was used for statistical analysis. RESULTS In the present study, we found that the adult male Fance -/- mice exhibited massive germ cell loss in seminiferous tubules and dramatically decreased sperms in epididymides. During the embryonic period, the number of Fance -/- prospermatogonia decreased significantly, without impacts on the proliferation (Ki-67, PCNA) and apoptosis (cleaved PARP, cleaved Caspase 3) status. The DNA double-strand breaks (γH2AX) increased at the cellular level of Fance -/- prospermatogonia, potentially associated with the increased nonhomologous end joining (53BP1) and decreased homologous recombination (RAD51) activity. Besides, Fance deficiency impeded the progression of meiotic prophase I of spermatocytes. The mechanisms entailed the reduced recruitment of the DNA end resection protein RPA2 at leptotene and recombinases RAD51 and DMC1 at zygotene. It also involved impaired removal of RPA2 at zygotene and FANCD2 foci at pachytene. And the accelerated initial formation of crossover at early pachytene, which is indicated by MLH1. CONCLUSIONS Fance deficiency caused massive male germ cell loss involved in the imbalance of DNA damage repair in prospermatogonia and altered dynamics of proteins in homologous recombination, DNA end resection, and crossover, providing new insights into the etiology and molecular basis of NOA.
Collapse
Affiliation(s)
- Huan Yin
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China
| | - Zhixian Zhou
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China.
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China.
| |
Collapse
|
3
|
Xu H, Zhang Y, Wang C, Fu Z, Lv J, Yang Y, Zhang Z, Qi Y, Meng K, Yuan J, Wang X. Research progress on the fanconi anemia signaling pathway in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1393111. [PMID: 38846492 PMCID: PMC11153779 DOI: 10.3389/fendo.2024.1393111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Collapse
Affiliation(s)
- Haohui Xu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhuoyan Fu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing Lv
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yufang Yang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Mental Health, Jining Medical University, Jining, China
| | - Zihan Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuanmin Qi
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
4
|
Cao L, He X, Ren J, Wen C, Guo T, Yang F, Qin Y, Chen ZJ, Zhao S, Yang Y. Novel compound heterozygous variants in FANCI cause premature ovarian insufficiency. Hum Genet 2024; 143:357-369. [PMID: 38483614 DOI: 10.1007/s00439-024-02650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/25/2024] [Indexed: 04/25/2024]
Abstract
Premature ovarian insufficiency (POI) is a common reproductive aging disorder due to a dramatic decline of ovarian function before 40 years of age. Accumulating evidence reveals that genetic defects, particularly those related to DNA damage response, are a crucial contributing factor to POI. We have demonstrated that the functional Fanconi anemia (FA) pathway maintains the rapid proliferation of primordial germ cells to establish a sufficient reproductive reserve by counteracting replication stress, but the clinical implications of this function in human ovarian function remain to be established. Here, we screened the FANCI gene, which encodes a key component for FA pathway activation, in our whole-exome sequencing database of 1030 patients with idiopathic POI, and identified two pairs of novel compound heterozygous variants, c.[97C > T];[1865C > T] and c.[158-2A > G];[c.959A > G], in two POI patients, respectively. The missense variants did not alter FANCI protein expression and nuclear localization, apart from the variant c.158-2A > G causing abnormal splicing and leading to a truncated mutant p.(S54Pfs*5). Furthermore, the four variants all diminished FANCD2 ubiquitination levels and increased DNA damage under replication stress, suggesting that the FANCI variants impaired FA pathway activation and replication stress response. This study first links replication stress response defects with the pathogenesis of human POI, providing a new insight into the essential roles of the FA genes in ovarian function.
Collapse
Affiliation(s)
- Lili Cao
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China
| | - Xinmiao He
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China
| | - Jiayi Ren
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China
| | - Canxin Wen
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China
| | - Ting Guo
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China
| | - Fan Yang
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Yingying Qin
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Shidou Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China.
| | - Yajuan Yang
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Yang X, Ren S, Yang J, Pan Y, Zhou Z, Chen Q, Fang Y, Shang L, Zhang F, Zhang X, Wu Y. Rare variants in FANCJ induce premature ovarian insufficiency in humans and mice. J Genet Genomics 2024; 51:252-255. [PMID: 37062450 DOI: 10.1016/j.jgg.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Affiliation(s)
- Xi Yang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Shuting Ren
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Jialin Yang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Yuncheng Pan
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Zixue Zhou
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Qing Chen
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Yunzheng Fang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Lingyue Shang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, China.
| | - Xiaojin Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China.
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China; National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
6
|
Horan TS, Ascenção CFR, Mellor C, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in double strand break repair processing, but not crossover formation during prophase I of meiosis in male mice. PLoS Genet 2024; 20:e1011175. [PMID: 38377115 PMCID: PMC10906868 DOI: 10.1371/journal.pgen.1011175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Meiotic recombination between homologous chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs). Approximately 10% of these DSBs result in crossovers (COs), sites of physical DNA exchange between homologs that are critical to correct chromosome segregation. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers, the latter representing the defining marks of CO sites. The regulation of CO number and position is poorly understood, but undoubtedly requires the coordinated action of multiple repair pathways. In a previous report, we found gene-trap disruption of the DNA helicase, FANCJ (BRIP1/BACH1), elicited elevated numbers of MLH1 foci and chiasmata. In somatic cells, FANCJ interacts with numerous DNA repair proteins including MLH1, and we hypothesized that FANCJ functions with MLH1 to regulate the major CO pathway. To further elucidate the meiotic function of FANCJ, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, truncation of the N-terminal Helicase domain, and a C-terminal dual-tagged allele. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, none of our Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 in meiosis. Instead, FANCJ co-localizes with BRCA1 and TOPBP1, forming discrete foci along the chromosome cores beginning in early meiotic prophase I and densely localized to unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data indicate a role for FANCJ in early DSB repair, but they rule out a role for FANCJ in MLH1-mediated CO events.
Collapse
Affiliation(s)
- Tegan S. Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| | - Carolline F. R. Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Christopher Mellor
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Marcus B. Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
7
|
Horan TS, Ascenção CFR, Mellor CA, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in Double Strand Break repair processing, but not crossover formation during Prophase I of meiosis in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561296. [PMID: 37873301 PMCID: PMC10592954 DOI: 10.1101/2023.10.06.561296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
During meiotic prophase I, recombination between homologous parental chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs), each of which must be repaired with absolute fidelity to ensure genome stability of the germline. One outcome of these DSB events is the formation of Crossovers (COs), the sites of physical DNA exchange between homologs that are critical to ensure the correct segregation of parental chromosomes. However, COs account for only a small (~10%) proportion of all DSB repair events; the remaining 90% are repaired as non-crossovers (NCOs), most by synthesis dependent strand annealing. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers. The number and positioning of COs is exquisitely controlled via mechanisms that remain poorly understood, but which undoubtedly require the coordinated action of multiple repair pathways downstream of the initiating DSB. In a previous report we found evidence suggesting that the DNA helicase and Fanconi Anemia repair protein, FANCJ (BRIP1/BACH1), functions to regulate meiotic recombination in mouse. A gene-trap disruption of Fancj showed an elevated number of MLH1 foci and COs. FANCJ is known to interact with numerous DNA repair proteins in somatic cell repair contexts, including MLH1, BLM, BRCA1, and TOPBP1, and we hypothesized that FANCJ regulates CO formation through a direct interaction with MLH1 to suppress the major CO pathway. To further elucidate the function of FANCJ in meiosis, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, a mutant line lacking the MLH1 interaction site and the N-terminal region of the Helicase domain, and a C-terminal 6xHIS-HA dual-tagged allele of Fancj. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, while Fanconi-like phenotypes are observed within the somatic cell lineages of the full deletion Fancj line, none of the Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I of meiosis. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 during late prophase I. Instead, FANCJ forms discrete foci along the chromosome cores beginning in early meiotic prophase I, occasionally co-localizing with MSH4, and then becomes densely localized on unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Strikingly, this localization strongly overlaps with BRCA1 and TOPBP1. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data suggest a role for FANCJ in early DSB repair events, and possibly in the formation of NCOs, but they rule out a role for FANCJ in MLH1-mediated CO events. Thus, the role of FANCJ in meiotic cells involves different pathways and different interactors to those described in somatic cell lineages.
Collapse
Affiliation(s)
- Tegan S Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Carolline F R Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | | | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Marcus B Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
8
|
Tsui V, Lyu R, Novakovic S, Stringer JM, Dunleavy JE, Granger E, Semple T, Leichter A, Martelotto LG, Merriner DJ, Liu R, McNeill L, Zerafa N, Hoffmann ER, O’Bryan MK, Hutt K, Deans AJ, Heierhorst J, McCarthy DJ, Crismani W. Fancm has dual roles in the limiting of meiotic crossovers and germ cell maintenance in mammals. CELL GENOMICS 2023; 3:100349. [PMID: 37601968 PMCID: PMC10435384 DOI: 10.1016/j.xgen.2023.100349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 08/22/2023]
Abstract
Meiotic crossovers are required for accurate chromosome segregation and producing new allelic combinations. Meiotic crossover numbers are tightly regulated within a narrow range, despite an excess of initiating DNA double-strand breaks. Here, we reveal the tumor suppressor FANCM as a meiotic anti-crossover factor in mammals. We use unique large-scale crossover analyses with both single-gamete sequencing and pedigree-based bulk-sequencing datasets to identify a genome-wide increase in crossover frequencies in Fancm-deficient mice. Gametogenesis is heavily perturbed in Fancm loss-of-function mice, which is consistent with the reproductive defects reported in humans with biallelic FANCM mutations. A portion of the gametogenesis defects can be attributed to the cGAS-STING pathway after birth. Despite the gametogenesis phenotypes in Fancm mutants, both sexes are capable of producing offspring. We propose that the anti-crossover function and role in gametogenesis of Fancm are separable and will inform diagnostic pathways for human genomic instability disorders.
Collapse
Affiliation(s)
- Vanessa Tsui
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruqian Lyu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Stevan Novakovic
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jessica M. Stringer
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jessica E.M. Dunleavy
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Elissah Granger
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Tim Semple
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Anna Leichter
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Luciano G. Martelotto
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - D. Jo Merriner
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruijie Liu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Lucy McNeill
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Nadeen Zerafa
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Eva R. Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Moira K. O’Bryan
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Karla Hutt
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Andrew J. Deans
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jörg Heierhorst
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Molecular Genetics Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Davis J. McCarthy
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Wayne Crismani
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
DNA repair protein FANCD2 has both ubiquitination-dependent and ubiquitination-independent functions during germ cell development. J Biol Chem 2023; 299:102905. [PMID: 36642183 PMCID: PMC9971320 DOI: 10.1016/j.jbc.2023.102905] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
When DNA interstrand crosslink lesions occur, a core complex of Fanconi anemia proteins promotes the ubiquitination of FANCD2 and FANCI, which recruit downstream factors to repair the lesion. However, FANCD2 maintains genome stability not only through its ubiquitination-dependent but also its ubiquitination-independent functions in various DNA damage response pathways. Increasing evidence suggests that FANCD2 is essential for fertility, but its ubiquitination-dependent and ubiquitination-independent roles during germ cell development are not well characterized. In this study, we analyzed germ cell development in Fancd2 KO and ubiquitination-deficient mutant (Fancd2K559R/K559R) mice. We showed that in the embryonic stage, both the ubiquitination-dependent and ubiquitination-independent functions of FANCD2 were required for the expansion of primordial germ cells and establishment of the reproductive reserve by reducing transcription-replication conflicts and thus maintaining genome stability in primordial germ cells. Furthermore, we found that during meiosis in spermatogenesis, FANCD2 promoted chromosome synapsis and regulated crossover formation independently of its ubiquitination, but that both ubiquitinated and nonubiquitinated FANCD2 functioned in programmed double strand break repair. Finally, we revealed that on meiotic XY chromosomes, H3K4me2 accumulation required ubiquitination-independent functionality of FANCD2, while the regulation of H3K9me2 and H3K9me3 depended on FANCD2 ubiquitination. Taken together, our findings suggest that FANCD2 has distinct functions that are both dependent on and independent of its ubiquitination during germ cell development.
Collapse
|
10
|
Rabbani M, Zheng X, Manske GL, Vargo A, Shami AN, Li JZ, Hammoud SS. Decoding the Spermatogenesis Program: New Insights from Transcriptomic Analyses. Annu Rev Genet 2022; 56:339-368. [PMID: 36070560 PMCID: PMC10722372 DOI: 10.1146/annurev-genet-080320-040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spermatogenesis is a complex differentiation process coordinated spatiotemporally across and along seminiferous tubules. Cellular heterogeneity has made it challenging to obtain stage-specific molecular profiles of germ and somatic cells using bulk transcriptomic analyses. This has limited our ability to understand regulation of spermatogenesis and to integrate knowledge from model organisms to humans. The recent advancement of single-cell RNA-sequencing (scRNA-seq) technologies provides insights into the cell type diversity and molecular signatures in the testis. Fine-grained cell atlases of the testis contain both known and novel cell types and define the functional states along the germ cell developmental trajectory in many species. These atlases provide a reference system for integrated interspecies comparisons to discover mechanistic parallels and to enable future studies. Despite recent advances, we currently lack high-resolution data to probe germ cell-somatic cell interactions in the tissue environment, but the use of highly multiplexed spatial analysis technologies has begun to resolve this problem. Taken together, recent single-cell studies provide an improvedunderstanding of gametogenesis to examine underlying causes of infertility and enable the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Xianing Zheng
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Gabe L Manske
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Vargo
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Adrienne N Shami
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Kohzaki M. Mammalian Resilience Revealed by a Comparison of Human Diseases and Mouse Models Associated With DNA Helicase Deficiencies. Front Mol Biosci 2022; 9:934042. [PMID: 36032672 PMCID: PMC9403131 DOI: 10.3389/fmolb.2022.934042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 12/01/2022] Open
Abstract
Maintaining genomic integrity is critical for sustaining individual animals and passing on the genome to subsequent generations. Several enzymes, such as DNA helicases and DNA polymerases, are involved in maintaining genomic integrity by unwinding and synthesizing the genome, respectively. Indeed, several human diseases that arise caused by deficiencies in these enzymes have long been known. In this review, the author presents the DNA helicases associated with human diseases discovered to date using recent analyses, including exome sequences. Since several mouse models that reflect these human diseases have been developed and reported, this study also summarizes the current knowledge regarding the outcomes of DNA helicase deficiencies in humans and mice and discusses possible mechanisms by which DNA helicases maintain genomic integrity in mammals. It also highlights specific diseases that demonstrate mammalian resilience, in which, despite the presence of genomic instability, patients and mouse models have lifespans comparable to those of the general population if they do not develop cancers; finally, this study discusses future directions for therapeutic applications in humans that can be explored using these mouse models.
Collapse
|
12
|
Yin H, Suye S, Zhou Z, Cai H, Fu C. The reduction of oocytes and disruption of the meiotic prophase I in Fanconi Anemia E deficient mice. Reproduction 2022; 164:71-82. [PMID: 35671285 DOI: 10.1530/rep-21-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
Fance is an important factor participating in the repair of DNA interstrand cross-links and its defect causes severe follicle depletion in female mice. To explore the underlying mechanisms, we investigated the effects of Fance on ovarian development in embryonic and newborn mice. We found that the number of oocytes was significantly decreased in Fance-/- mice as early as 13.5 days post coitum (dpc). The continuous decrease of oocytes in Fance-/- mice compared with the Fance+/+ mice led to the primordial follicles being almost exhausted at 2 days postpartum (dpp). The mitotic-meiotic transition occurred normally, but the meiotic progression was arrested in pachytene in Fance-/- oocytes. We detected the expressions of RAD51 (homologous recombination repair factor), 53BP1 (non-homologous end-joining repair factor), and γH2AX by immunostaining analysis and chromosome spreads. The expressions of 53BP1 were increased and RAD51 decreased significantly in Fance-/- oocytes compared with Fance+/+ oocytes. Also, the meiotic crossover indicated by MLH1 foci was significantly increased in Fance-/- oocytes. Oocyte proliferation and apoptosis were comparable between Fance-/- and Fance+/+ mice (P>0.05). The aberrant high expression at 17.5dpc and low expressions at 1dpp and 2dpp indicated the expression pattern of pluripotent marker OCT4 was disordered in Fance-/- oocytes. These findings elucidate that Fance mutation leads to a progressive reduction of oocytes and disrupts the progression of meiotic prophase I but not the initiation. And our study reveals that the potential mechanisms involve DNA damage repair, meiotic crossover, and pluripotency of oocytes.
Collapse
Affiliation(s)
- Huan Yin
- H Yin, Department of Obstetrics and Gynecology, Central South University, Changsha, China
| | - Suye Suye
- S Suye, Department of Obstetrics and Gynecology, Central South University, Changsha, China
| | - Zhixian Zhou
- Z Zhou, Department of Obstetrics and Gynecology, Central South University, Changsha, China
| | - Haiyi Cai
- H Cai, Department of Clinical Medicine, Harbin Medical University, Harbin, China
| | - Chun Fu
- C Fu, Department of Obstetrics and Gynecology, Central South University, Changsha, China
| |
Collapse
|
13
|
Gorsi B, Hernandez E, Moore MB, Moriwaki M, Chow CY, Coelho E, Taylor E, Lu C, Walker A, Touraine P, Nelson LM, Cooper AR, Mardis ER, Rajkovic A, Yandell M, Welt CK. Causal and Candidate Gene Variants in a Large Cohort of Women With Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2022; 107:685-714. [PMID: 34718612 PMCID: PMC9006976 DOI: 10.1210/clinem/dgab775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT A genetic etiology likely accounts for the majority of unexplained primary ovarian insufficiency (POI). OBJECTIVE We hypothesized that heterozygous rare variants and variants in enhanced categories are associated with POI. DESIGN The study was an observational study. SETTING Subjects were recruited at academic institutions. PATIENTS Subjects from Boston (n = 98), the National Institutes of Health and Washington University (n = 98), Pittsburgh (n = 20), Italy (n = 43), and France (n = 32) were diagnosed with POI (amenorrhea with an elevated follicle-stimulating hormone level). Controls were recruited for health in old age or were from the 1000 Genomes Project (total n = 233). INTERVENTION We performed whole exome sequencing (WES), and data were analyzed using a rare variant scoring method and a Bayes factor-based framework for identifying genes harboring pathogenic variants. We performed functional studies on identified genes that were not previously implicated in POI in a D. melanogaster model. MAIN OUTCOME Genes with rare pathogenic variants and gene sets with increased burden of deleterious variants were identified. RESULTS Candidate heterozygous variants were identified in known genes and genes with functional evidence. Gene sets with increased burden of deleterious alleles included the categories transcription and translation, DNA damage and repair, meiosis and cell division. Variants were found in novel genes from the enhanced categories. Functional evidence supported 7 new risk genes for POI (USP36, VCP, WDR33, PIWIL3, NPM2, LLGL1, and BOD1L1). CONCLUSIONS Candidate causative variants were identified through WES in women with POI. Aggregating clinical data and genetic risk with a categorical approach may expand the genetic architecture of heterozygous rare gene variants causing risk for POI.
Collapse
Affiliation(s)
- Bushra Gorsi
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Edgar Hernandez
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Marvin Barry Moore
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Mika Moriwaki
- Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, UT, USA
| | - Clement Y Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Emily Coelho
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Elaine Taylor
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Claire Lu
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Amanda Walker
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Philippe Touraine
- Sorbonne Universite, Hôpital Universitaire Pitié Salpêtrière-Charles Foix, Service d’Endocrinologie et Médecine de la Reproduction, Centre de Maladies Endocriniennes Rares de la Croissance et du Développement, Centre de Pathologies Gynécologiques Rares, Paris, France
| | | | | | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Ohio State University College of Medicine, Columbus, OH, USA
| | - Aleksander Rajkovic
- Department of Pathology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Mark Yandell
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Corrine K Welt
- Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
14
|
Vanni VS, Campo G, Cioffi R, Papaleo E, Salonia A, Viganò P, Lambertini M, Candiani M, Meirow D, Orvieto R. The neglected members of the family: non-BRCA mutations in the Fanconi anemia/BRCA pathway and reproduction. Hum Reprod Update 2022; 28:296-311. [PMID: 35043201 DOI: 10.1093/humupd/dmab045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND BReast CAncer (BRCA) genes are extensively studied in the context of fertility and reproductive aging. BRCA proteins are part of the DNA repair Fanconi anemia (FA)/BRCA pathway, in which more than 20 proteins are implicated. According to which gene is mutated and which interactions are lost owing to the mutation, carriers and patients with monoallelic or biallelic FA/BRCA mutations exhibit very different phenotypes, from overt FA to cancer predisposition or no pathological implications. The effect of the so far neglected non-BRCA FA mutations on fertility also deserves consideration. OBJECTIVE AND RATIONALE As improved treatments allow a longer life expectancy in patients with biallelic FA mutations and overt FA, infertility is emerging as a predominant feature. We thus reviewed the mechanisms for such a manifestation, as well as whether they also occur in monoallelic carriers of FA non-BRCA mutations. SEARCH METHODS Electronic databases PUBMED, EMBASE and CENTRAL were searched using the following term: 'fanconi' OR 'FANC' OR 'AND' 'fertility' OR 'pregnancy' OR 'ovarian reserve' OR 'spermatogenesis' OR 'hypogonadism'. All pertinent reports in the English-language literature were retrieved until May 2021 and the reference lists were systematically searched in order to identify any potential additional studies. OUTCOMES Biallelic FA mutations causing overt FA disease are associated with premature ovarian insufficiency (POI) occurring in the fourth decade in women and with primary non-obstructive azoospermia (NOA) in men. Hypogonadism in FA patients seems mainly associated with a defect in primordial germ cell proliferation in fetal life. In recent small, exploratory whole-exome sequencing studies, biallelic clinically occult mutations in the FA complementation group A (Fanca) and M (Fancm) genes were found in otherwise healthy patients with isolated NOA or POI, and also monoallelic carrier status for a loss-of-function mutation in Fanca has been implicated as a possible cause for POI. In those patients with known monoallelic FA mutations undergoing pre-implantation genetic testing, poor assisted reproduction outcomes are reported. However, the mechanisms underlying the repeated failures and the high miscarriage rates observed are not fully known. WIDER IMPLICATIONS The so far 'neglected' members of the FA/BRCA family will likely emerge as a relevant focus of investigation in the genetics of reproduction. Several (rather than a single) non-BRCA genes might be implicated. State-of-the-art methods, such as whole-genome/exome sequencing, and further exploratory studies are required to understand the prevalence and mechanisms for occult FA mutations in infertility and recurrent miscarriage.
Collapse
Affiliation(s)
- Valeria Stella Vanni
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Raffaella Cioffi
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Papaleo
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Salonia
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Massimo Candiani
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dror Meirow
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Raoul Orvieto
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
15
|
Brosh RM, Wu Y. An emerging picture of FANCJ's role in G4 resolution to facilitate DNA replication. NAR Cancer 2021; 3:zcab034. [PMID: 34873585 DOI: 10.1093/narcan/zcab034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
A well-accepted hallmark of cancer is genomic instability, which drives tumorigenesis. Therefore, understanding the molecular and cellular defects that destabilize chromosomal integrity is paramount to cancer diagnosis, treatment and cure. DNA repair and the replication stress response are overarching paradigms for maintenance of genomic stability, but the devil is in the details. ATP-dependent helicases serve to unwind DNA so it is replicated, transcribed, recombined and repaired efficiently through coordination with other nucleic acid binding and metabolizing proteins. Alternatively folded DNA structures deviating from the conventional anti-parallel double helix pose serious challenges to normal genomic transactions. Accumulating evidence suggests that G-quadruplex (G4) DNA is problematic for replication. Although there are multiple human DNA helicases that can resolve G4 in vitro, it is debated which helicases are truly important to resolve such structures in vivo. Recent advances have begun to elucidate the principal helicase actors, particularly in cellular DNA replication. FANCJ, a DNA helicase implicated in cancer and the chromosomal instability disorder Fanconi Anemia, takes center stage in G4 resolution to allow smooth DNA replication. We will discuss FANCJ's role with its protein partner RPA to remove G4 obstacles during DNA synthesis, highlighting very recent advances and implications for cancer therapy.
Collapse
Affiliation(s)
- Robert M Brosh
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
16
|
Jarysta A, Riou L, Firlej V, Lapoujade C, Kortulewski T, Barroca V, Gille AS, Dumont F, Jacques S, Letourneur F, Rosselli F, Allemand I, Fouchet P. Abnormal migration behavior linked to Rac1 signaling contributes to primordial germ cell exhaustion in Fanconi anemia pathway-deficient Fancg-/- embryos. Hum Mol Genet 2021; 31:97-110. [PMID: 34368842 PMCID: PMC8682768 DOI: 10.1093/hmg/ddab222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Fanconi anemia (FA) is a rare human genetic disorder characterized by bone marrow failure, predisposition to cancer and developmental defects including hypogonadism. Reproductive defects leading to germ cell aplasia are the most consistent phenotypes seen in FA mouse models. We examined the role of the nuclear FA core complex gene Fancg in the development of primordial germ cells (PGCs), the embryonic precursors of adult gametes, during fetal development. PGC maintenance was severely impaired in Fancg−/− embryos. We observed a defect in the number of PGCs starting at E9.5 and a strong attrition at E11.5 and E13.5. Remarkably, we observed a mosaic pattern reflecting a portion of testicular cords devoid of PGCs in E13.5 fetal gonads. Our in vitro and in vivo data highlight a potential role of Fancg in the proliferation and in the intrinsic cell motility abilities of PGCs. The random migratory process is abnormally activated in Fancg−/− PGCs, altering the migration of cells. Increased cell death and PGC attrition observed in E11.5 Fancg−/− embryos are features consistent with delayed migration of PGCs along the migratory pathway to the genital ridges. Moreover, we show that an inhibitor of RAC1 mitigates the abnormal migratory pattern observed in Fancg−/− PGCs.
Collapse
Affiliation(s)
- Amandine Jarysta
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Lydia Riou
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Virginie Firlej
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Clémentine Lapoujade
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Thierry Kortulewski
- Université de Paris and Université Paris-Saclay, Inserm, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire de RadioPathologie, F-92265, Fontenay-aux-Roses, France
| | - Vilma Barroca
- Université de Paris and Université Paris-Saclay, Inserm, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Gille
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France.,Département de Génétique, Développement et Cancer. Team From Gametes to Birth, Institut Cochin, INSERM U1016, Paris, France
| | - Florent Dumont
- Université Paris Saclay, UMS IPSIT, F-92296, Châtenay-Malabry, France
| | - Sébastien Jacques
- Plate-Forme Séquençage et Génomique, Institut Cochin, Inserm U1016, Université de Paris, 22 rue Méchain, 75014 Paris, France
| | - Franck Letourneur
- Plate-Forme Séquençage et Génomique, Institut Cochin, Inserm U1016, Université de Paris, 22 rue Méchain, 75014 Paris, France
| | - Filippo Rosselli
- CNRS-UMR9019, Intégrité du Génome et Cancers, Equipe Labellisée « La Ligue Contre Le cancer », Gustave Roussy Cancer Center, Université Paris-Saclay, 94805 Villejuif, France
| | - Isabelle Allemand
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Pierre Fouchet
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| |
Collapse
|
17
|
Pan Z, Zhu C, Chang G, Wu N, Ding H, Wang H. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:565-581. [PMID: 33523351 DOI: 10.1007/s10695-021-00932-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Ussuri catfish (Pseudobagrus ussuriensis) has an XX/XY sex determination system but its sex determination gene(s) remain unknown. To better understand the molecular sex determination mechanism, transcriptome analysis was conducted to obtain sex-related gene expression profiles. Transcriptome analyses were made of male and female developing/differentiating gonads by high-throughput RNA sequencing, including gonads from fish given an estradiol-induced sex reversal treatment. A total of 81,569 unigenes were assembled and 39,904 were significantly matched to known unique proteins by comparison with public databases. Twenty specifically expressed and 142 differentially expressed sex-related genes were extracted from annotated data by comparing the treatment groups. These genes are involved in spermatogenesis (e.g., Dnali1, nectin3, klhl10, mybl1, Katnal1, Eno4, Mns1, Spag6, Tsga10, Septin7), oogenesis (e.g., Lagr5, Fmn2, Npm2, zar1, Fbxo5, Fbxo43, Prdx4, Nrip1, Lfng, Atrip), gonadal development/differentiation (e.g., Cxcr4b, Hmgb2, Cftr, Ch25h, brip1, Prdm9, Tdrd1, Star, dmrt1, Tut4, Hsd17b12a, gdf9, dnd, arf1, Spata22), and estradiol response (e.g., Mmp14, Lhcgr, vtg1, vtg2, esr2b, Piwil1, Aifm1, Hsf1, gdf9). Dmrt1 and gdf9 may play an essential role in sex determination in P. ussuriensis. The expression patterns of six random genes were validated by quantitative real-time PCR, which confirmed the reliability and accuracy of the RNA-seq results. These data provide a valuable resource for future studies of gene expression and for understanding the molecular mechanism of sex determination/differentiation and gonadal development/differentiation (including hormone-induced sexual reversal) in Ussuri catfish. This has the potential to assist in producing monosex Ussuri catfish to increase aquacultural productivity.
Collapse
Affiliation(s)
- ZhengJun Pan
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China.
| | - ChuanKun Zhu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - GuoLiang Chang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Nan Wu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - HuaiYu Ding
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
18
|
Animal models of Fanconi anemia: A developmental and therapeutic perspective on a multifaceted disease. Semin Cell Dev Biol 2021; 113:113-131. [PMID: 33558144 DOI: 10.1016/j.semcdb.2020.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by developmental abnormalities, progressive bone marrow failure, and increased susceptibility to cancer. FA animal models have been useful to understand the pathogenesis of the disease. Herein, we review FA developmental models that have been developed to simulate human FA, focusing on zebrafish and mouse models. We summarize the recapitulated phenotypes observed in these in vivo models including bone, gametogenesis and sterility defects, as well as marrow failure. We also discuss the relevance of aldehydes in pathogenesis of FA, emphasizing on hematopoietic defects. In addition, we provide a summary of potential therapeutic agents, such as aldehyde scavengers, TGFβ inhibitors, and gene therapy for FA. The diversity of FA animal models makes them useful for understanding FA etiology and allows the discovery of new therapies.
Collapse
|
19
|
Charaka V, Tiwari A, Pandita RK, Hunt CR, Pandita TK. Role of HP1β during spermatogenesis and DNA replication. Chromosoma 2020; 129:215-226. [PMID: 32651609 DOI: 10.1007/s00412-020-00739-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 11/25/2022]
Abstract
Heterochromatin protein 1β (HP1β), encoded by the Cbx1 gene, has been functionally linked to chromatin condensation, transcriptional regulation, and DNA damage repair. Here we report that testis-specific Cbx1 conditional knockout (Cbx1 cKO) impairs male germ cell development in mice. Depletion of HP1β negatively affected sperm maturation and increased seminiferous tubule degeneration in Cbx1 cKO mice. In addition, the spermatogonia have elevated γ-H2AX foci levels as do Cbx1 deficient mouse embryonic fibroblasts (MEFs) as compared to wild-type (WT) control MEFs. The increase in γ-H2AX foci in proliferating Cbx1 cKO cells indicates defective replication-dependent DNA damage repair. Depletion or loss of HP1β from human cells and MEFs increased DNA replication fork stalling and firing of new origins of replication, indicating defective DNA synthesis. Taken together, these results suggest that loss of HP1β in proliferating cells leads to DNA replication defects with associated DNA damage that impact spermatogenesis.
Collapse
Affiliation(s)
- Vijay Charaka
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Anjana Tiwari
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Raj K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Geller DS, Levine NL, Hoang BH, Yang R, Weiser D, Morris J, Gorlick R, Gill JB, Roth ME, Tingling J, Brohl AS. Genomic Analysis Does Not Support Malignant Transformation of Osteoblastoma to Osteosarcoma. JCO Precis Oncol 2019; 3:PO.19.00166. [PMID: 32914027 PMCID: PMC7446473 DOI: 10.1200/po.19.00166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 04/29/2024] Open
Affiliation(s)
- David S. Geller
- Montefiore Medical Center, Bronx, NY
- Albert Einstein College of Medicine, Bronx, NY
| | | | - Bang H. Hoang
- Montefiore Medical Center, Bronx, NY
- Albert Einstein College of Medicine, Bronx, NY
| | - Rui Yang
- Montefiore Medical Center, Bronx, NY
- Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Jung M, Wells D, Rusch J, Ahmad S, Marchini J, Myers SR, Conrad DF. Unified single-cell analysis of testis gene regulation and pathology in five mouse strains. eLife 2019; 8:e43966. [PMID: 31237565 PMCID: PMC6615865 DOI: 10.7554/elife.43966] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
To fully exploit the potential of single-cell functional genomics in the study of development and disease, robust methods are needed to simplify the analysis of data across samples, time-points and individuals. Here we introduce a model-based factor analysis method, SDA, to analyze a novel 57,600 cell dataset from the testes of wild-type mice and mice with gonadal defects due to disruption of the genes Mlh3, Hormad1, Cul4a or Cnp. By jointly analyzing mutant and wild-type cells we decomposed our data into 46 components that identify novel meiotic gene-regulatory programs, mutant-specific pathological processes, and technical effects, and provide a framework for imputation. We identify, de novo, DNA sequence motifs associated with individual components that define temporally varying modes of gene expression control. Analysis of SDA components also led us to identify a rare population of macrophages within the seminiferous tubules of Mlh3-/- and Hormad1-/- mice, an area typically associated with immune privilege.
Collapse
Affiliation(s)
- Min Jung
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
| | - Daniel Wells
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Department of StatisticsUniversity of OxfordOxfordUnited Kingdom
| | - Jannette Rusch
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
| | - Suhaira Ahmad
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
| | - Jonathan Marchini
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Department of StatisticsUniversity of OxfordOxfordUnited Kingdom
| | - Simon R Myers
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Department of StatisticsUniversity of OxfordOxfordUnited Kingdom
| | - Donald F Conrad
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
- Division of Genetics, Oregon National Primate Research CenterOregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
22
|
Grive KJ, Hu Y, Shu E, Grimson A, Elemento O, Grenier JK, Cohen PE. Dynamic transcriptome profiles within spermatogonial and spermatocyte populations during postnatal testis maturation revealed by single-cell sequencing. PLoS Genet 2019; 15:e1007810. [PMID: 30893341 PMCID: PMC6443194 DOI: 10.1371/journal.pgen.1007810] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/01/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
Spermatogenesis is the process by which male gametes are formed from a self-renewing population of spermatogonial stem cells (SSCs) residing in the testis. SSCs represent less than 1% of the total testicular cell population in adults, but must achieve a stable balance between self-renewal and differentiation. Once differentiation has occurred, the newly formed and highly proliferative spermatogonia must then enter the meiotic program in which DNA content is doubled, then halved twice to create haploid gametes. While much is known about the critical cellular processes that take place during the specialized cell division that is meiosis, much less is known about how the spermatocytes in the "first-wave" in juveniles compare to those that contribute to long-term, "steady-state" spermatogenesis in adults. Given the strictly-defined developmental process of spermatogenesis, this study explored the transcriptional profiles of developmental cell stages during testis maturation. Using a combination of comprehensive germ cell sampling with high-resolution, single-cell-mRNA-sequencing, we have generated a reference dataset of germ cell gene expression. We show that discrete developmental stages of spermatogenesis possess significant differences in the transcriptional profiles from neonates compared to juveniles and adults. Importantly, these gene expression dynamics are also reflected at the protein level in their respective cell types. We also show differential utilization of many biological pathways with age in both spermatogonia and spermatocytes, demonstrating significantly different underlying gene regulatory programs in these cell types over the course of testis development and spermatogenic waves. This dataset represents the first unbiased sampling of spermatogonia and spermatocytes during testis maturation, at high-resolution, single-cell depth. Not only does this analysis reveal previously unknown transcriptional dynamics of a highly transitional cell population, it has also begun to reveal critical differences in biological pathway utilization in developing spermatogonia and spermatocytes, including response to DNA damage and double-strand breaks.
Collapse
Affiliation(s)
- Kathryn J. Grive
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Yang Hu
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - Eileen Shu
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Andrew Grimson
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - Jennifer K. Grenier
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Paula E. Cohen
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
23
|
The Fanconi Anemia Pathway and Fertility. Trends Genet 2019; 35:199-214. [DOI: 10.1016/j.tig.2018.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
|
24
|
Singh V, Jaiswal D, Singh K, Trivedi S, Agrawal NK, Gupta G, Rajender S, Singh K. Azoospermic infertility is associated with altered expression of DNA repair genes. DNA Repair (Amst) 2019; 75:39-47. [DOI: 10.1016/j.dnarep.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
|
25
|
Peng M, Cong K, Panzarino NJ, Nayak S, Calvo J, Deng B, Zhu LJ, Morocz M, Hegedus L, Haracska L, Cantor SB. Opposing Roles of FANCJ and HLTF Protect Forks and Restrain Replication during Stress. Cell Rep 2018; 24:3251-3261. [PMID: 30232006 PMCID: PMC6218949 DOI: 10.1016/j.celrep.2018.08.065] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/23/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
The DNA helicase FANCJ is mutated in hereditary breast and ovarian cancer and Fanconi anemia (FA). Nevertheless, how loss of FANCJ translates to disease pathogenesis remains unclear. We addressed this question by analyzing proteins associated with replication forks in cells with or without FANCJ. We demonstrate that FANCJ-knockout (FANCJ-KO) cells have alterations in the replisome that are consistent with enhanced replication stress, including an aberrant accumulation of the fork remodeling factor helicase-like transcription factor (HLTF). Correspondingly, HLTF contributes to fork degradation in FANCJ-KO cells. Unexpectedly, the unrestrained DNA synthesis that characterizes HLTF-deficient cells is FANCJ dependent and correlates with S1 nuclease sensitivity and fork degradation. These results suggest that FANCJ and HLTF promote replication fork integrity, in part by counteracting each other to keep fork remodeling and elongation in check. Indicating one protein compensates for loss of the other, loss of both HLTF and FANCJ causes a more severe replication stress response.
Collapse
Affiliation(s)
- Min Peng
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ke Cong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas J Panzarino
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sumeet Nayak
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jennifer Calvo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Bin Deng
- Department of Biology/VGN Proteomics Facility, University of Vermont, Burlington, VT 05405, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Monika Morocz
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged 6726, Temesvari krt. 62, Hungary
| | - Lili Hegedus
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged 6726, Temesvari krt. 62, Hungary
| | - Lajos Haracska
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged 6726, Temesvari krt. 62, Hungary
| | - Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
26
|
Hamer G, de Rooij DG. Mutations causing specific arrests in the development of mouse primordial germ cells and gonocytes. Biol Reprod 2018; 99:75-86. [DOI: 10.1093/biolre/ioy075] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk G de Rooij
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
27
|
Brieño-Enríquez MA, Moak SL, Toledo M, Filter JJ, Gray S, Barbero JL, Cohen PE, Holloway JK. Cohesin Removal along the Chromosome Arms during the First Meiotic Division Depends on a NEK1-PP1γ-WAPL Axis in the Mouse. Cell Rep 2016; 17:977-986. [PMID: 27760328 PMCID: PMC5123770 DOI: 10.1016/j.celrep.2016.09.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022] Open
Abstract
Mammalian NIMA-like kinase-1 (NEK1) is a dual-specificity kinase highly expressed in mouse germ cells during prophase I of meiosis. Loss of NEK1 induces retention of cohesin on chromosomes at meiotic prophase I. Timely deposition and removal of cohesin is essential for accurate chromosome segregation. Two processes regulate cohesin removal: a non-proteolytic mechanism involving WAPL, sororin, and PDS5B and direct cleavage by separase. Here, we demonstrate a role for NEK1 in the regulation of WAPL loading during meiotic prophase I, via an interaction between NEK1 and PDS5B. This regulation of WAPL by NEK1-PDS5B is mediated by protein phosphatase 1 gamma (PP1γ), which both interacts with and is a phosphotarget of NEK1. Taken together, our results reveal that NEK1 phosphorylates PP1γ, leading to the dephosphorylation of WAPL, which, in turn, results in its retention on chromosome cores to promote loss of cohesion at the end of prophase I in mammals.
Collapse
Affiliation(s)
- Miguel A Brieño-Enríquez
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA
| | - Stefannie L Moak
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA
| | - Melissa Toledo
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA
| | - Joshua J Filter
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Stephen Gray
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA
| | - José L Barbero
- Department of Cellular and Molecular Biology, Laboratory of Chromosomal Dynamics in Meiosis, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA.
| | - J Kim Holloway
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
28
|
Fu C, Begum K, Jordan PW, He Y, Overbeek PA. Dearth and Delayed Maturation of Testicular Germ Cells in Fanconi Anemia E Mutant Male Mice. PLoS One 2016; 11:e0159800. [PMID: 27486799 PMCID: PMC4972424 DOI: 10.1371/journal.pone.0159800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/09/2016] [Indexed: 12/20/2022] Open
Abstract
After using a self-inactivating lentivirus for non-targeted insertional mutagenesis in mice, we identified a transgenic family with a recessive mutation that resulted in reduced fertility in homozygous transgenic mice. The lentiviral integration site was amplified by inverse PCR. Sequencing revealed that integration had occurred in intron 8 of the mouse Fance gene, which encodes the Fanconi anemia E (Fance) protein. Fanconi anemia (FA) proteins play pivotal roles in cellular responses to DNA damage and Fance acts as a molecular bridge between the FA core complex and Fancd2. To investigate the reduced fertility in the mutant males, we analyzed postnatal development of testicular germ cells. At one week after birth, most tubules in the mutant testes contained few or no germ cells. Over the next 2–3 weeks, germ cells accumulated in a limited number of tubules, so that some tubules contained germ cells around the full periphery of the tubule. Once sufficient numbers of germ cells had accumulated, they began to undergo the later stages of spermatogenesis. Immunoassays revealed that the Fancd2 protein accumulated around the periphery of the nucleus in normal developing spermatocytes, but we did not detect a similar localization of Fancd2 in the Fance mutant testes. Our assays indicate that although Fance mutant males are germ cell deficient at birth, the extant germ cells can proliferate and, if they reach a threshold density, can differentiate into mature sperm. Analogous to previous studies of FA genes in mice, our results show that the Fance protein plays an important, but not absolutely essential, role in the initial developmental expansion of the male germ line.
Collapse
Affiliation(s)
- Chun Fu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- * E-mail:
| | - Khurshida Begum
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, United States of America
| | - Philip W. Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, United States of America
| | - Yan He
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Paul A. Overbeek
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, United States of America
| |
Collapse
|
29
|
Getting Ready for the Dance: FANCJ Irons Out DNA Wrinkles. Genes (Basel) 2016; 7:genes7070031. [PMID: 27376332 PMCID: PMC4962001 DOI: 10.3390/genes7070031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/13/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence indicates that alternate DNA structures, which deviate from normal double helical DNA, form in vivo and influence cellular processes such as replication and transcription. However, our understanding of how the cellular machinery deals with unusual DNA structures such as G-quadruplexes (G4), triplexes, or hairpins is only beginning to emerge. New advances in the field implicate a direct role of the Fanconi Anemia Group J (FANCJ) helicase, which is linked to a hereditary chromosomal instability disorder and important for cancer suppression, in replication past unusual DNA obstacles. This work sets the stage for significant progress in dissecting the molecular mechanisms whereby replication perturbation by abnormal DNA structures leads to genomic instability. In this review, we focus on FANCJ and its role to enable efficient DNA replication when the fork encounters vastly abundant naturally occurring DNA obstacles, which may have implications for targeting rapidly dividing cancer cells.
Collapse
|
30
|
Special issue on "recent advances in meiotic chromosome structure, recombination and segregation". Chromosoma 2016; 125:173-5. [PMID: 27022980 DOI: 10.1007/s00412-016-0586-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/21/2023]
|
31
|
Cantor SB, Nayak S. FANCJ at the FORK. Mutat Res 2016; 788:7-11. [PMID: 26926912 DOI: 10.1016/j.mrfmmm.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/28/2016] [Accepted: 02/10/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA.
| | - Sumeet Nayak
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA
| |
Collapse
|