1
|
Souza GM, Kretschmer R, Toma GA, de Oliveira AM, Deon GA, Setti PG, Zeni Dos Santos R, Goes CAG, Del Valle Garnero A, Gunski RJ, de Oliveira EHC, Porto-Foresti F, Liehr T, Utsunomia R, de Bello Cioffi M. Satellitome analysis on the pale-breasted thrush Turdus leucomelas (Passeriformes; Turdidae) uncovers the putative co-evolution of sex chromosomes and satellite DNAs. Sci Rep 2024; 14:20656. [PMID: 39232109 PMCID: PMC11375038 DOI: 10.1038/s41598-024-71635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
Do all birds' sex chromosomes follow the same canonical one-way direction of evolution? We combined cytogenetic and genomic approaches to analyze the process of the W chromosomal differentiation in two selected Passeriform species, named the Pale-breasted Thrush Turdus leucomelas and the Rufous-bellied thrush T. rufiventris. We characterized the full catalog of satellite DNAs (satellitome) of T. leucomelas, and the 10 TleSatDNA classes obtained together with 16 microsatellite motifs were in situ mapped in both species. Additionally, using Comparative Genomic Hybridization (CGH) assays, we investigated their intragenomic variations. The W chromosomes of both species did not accumulate higher amounts of both heterochromatin and repetitive sequences. However, while T. leucomelas showed a heterochromatin-poor W chromosome with a very complex evolutionary history, T. rufiventris showed a small and partially heterochromatic W chromosome that represents a differentiated version of its original autosomal complement (Z chromosome). The combined approach of CGH and sequential satDNA mapping suggest the occurrence of a former W-autosomal translocation event in T. leucomelas, which had an impact on the W chromosome in terms of sequence gains and losses. At the same time, an autosome, which is present in both males and females in a polymorphic state, lost sequences and integrated previously W-specific ones. This putative W-autosomal translocation, however, did not result in the emergence of a multiple-sex chromosome system. Instead, the generation of a neo-W chromosome suggests an unexpected evolutionary trajectory that deviates from the standard canonical model of sex chromosome evolution.
Collapse
Affiliation(s)
- Guilherme Mota Souza
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-610, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Alan Moura de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Princia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | | | | | - Ricardo José Gunski
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97307-020, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, PA, 67030-000, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Fabio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, 17033-360, Brazil
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich-Schiller Universität, 07747, Jena, Germany.
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, 17033-360, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
2
|
Alves Barcellos S, Kretschmer R, Santos de Souza M, Tura V, Pozzobon LC, Ochotorena de Freitas TR, Griffin DK, O'Connor R, Gunski RJ, Del Valle Garnero A. Understanding microchromosomal organization and evolution in four representative woodpeckers (Picidae, Piciformes) through BAC-FISH analysis. Genome 2024; 67:223-232. [PMID: 38742652 DOI: 10.1139/gen-2023-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The genome organization of woodpeckers has several distinctive features e.g., an uncommon accumulation of repetitive sequences, enlarged Z chromosomes, and atypical diploid numbers. Despite the large diversity of species, there is a paucity of detailed cytogenomic studies for this group and we thus aimed to rectify this. Genome organization patterns and hence evolutionary change in the microchromosome formation of four species (Colaptes campestris, Veniliornis spilogaster, Melanerpes candidus, and Picumnus nebulosus) was established through fluorescence in situ hybridization using bacterial artificial chromosomes originally derived from Gallus gallus and Taeniopygia guttata. Findings suggest that P. nebulosus (2n = 110), which was described for the first time, had the most basal karyotype among species of Picidae studied here, and probably arose as a result of fissions of avian ancestral macrochromosomes. We defined a new chromosomal number for V. spilogaster (2n = 88) and demonstrated microchromosomal rearrangements involving C. campestris plus a single, unique hitherto undescribed rearrangement in V. spilogaster. This comprised an inversion after a fusion involving the ancestral microchromosome 12 (homologous to chicken microchromosome 12). We also determined that the low diploid number of M. candidus is related to microchromosome fusions. Woodpeckers thus exhibit significantly rearranged karyotypes compared to the putative ancestral karyotype.
Collapse
Affiliation(s)
- Suziane Alves Barcellos
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Marcelo Santos de Souza
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil
| | - Victoria Tura
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil
| | - Luciano Cesar Pozzobon
- Departamento de Genética, Laboratório de Citogenética e Evolução, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Thales Renato Ochotorena de Freitas
- Departamento de Genética, Laboratório de Citogenética e Evolução, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Rebecca O'Connor
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil
| | - Analía Del Valle Garnero
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil
| |
Collapse
|
3
|
Kretschmer R, Santos de Souza M, Gunski RJ, Del Valle Garnero A, de Freitas TRO, Zefa E, Toma GA, Cioffi MDB, Herculano Corrêa de Oliveira E, O'Connor RE, Griffin DK. Understanding the chromosomal evolution in cuckoos (Aves, Cuculiformes): a journey through unusual rearrangements. Genome 2024; 67:168-177. [PMID: 38346285 DOI: 10.1139/gen-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The Cuculiformes are a family of over 150 species that live in a range of habitats, such as forests, savannas, and deserts. Here, bacterial artificial chromosome (BAC) probes (75 from chicken and 14 from zebra finch macrochromosomes 1-10 +ZW and for microchromosomes 11-28 (except 16)) were used to investigate chromosome homologies between chicken and the squirrel cuckoo (Piaya cayana). In addition, repetitive DNA probes were applied to characterize the chromosome organization and to explore the role of these sequences in the karyotype evolution of P. cayana. We also applied BAC probes for chicken chromosome 17 and Z to the guira cuckoo (Guira guira) to test whether this species has an unusual Robertsonian translocation between a microchromosome and the Z chromosome, recently described in the smooth-billed ani (Crotophaga ani). Our results revealed extensive chromosome reorganization with inter- and intrachromosomal rearrangements in P. cayana, including a conspicuous chromosome size and heterochromatin polymorphism on chromosome pair 20. Furthermore, we confirmed that the Z-autosome Robertsonian translocation found in C. ani is also found in G. guira, not P. cayana. These findings suggest that this translocation occurred prior to the divergence between C. ani and G. guira, but after the divergence with P. cayana.
Collapse
Affiliation(s)
- Rafael Kretschmer
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Marcelo Santos de Souza
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul 97300-162, Brazil
| | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul 97300-162, Brazil
| | - Analía Del Valle Garnero
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul 97300-162, Brazil
| | | | - Edison Zefa
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará 67030-000, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Rebecca E O'Connor
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| |
Collapse
|
4
|
O’Connor RE, Kretschmer R, Romanov MN, Griffin DK. A Bird's-Eye View of Chromosomic Evolution in the Class Aves. Cells 2024; 13:310. [PMID: 38391923 PMCID: PMC10886771 DOI: 10.3390/cells13040310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Birds (Aves) are the most speciose of terrestrial vertebrates, displaying Class-specific characteristics yet incredible external phenotypic diversity. Critical to agriculture and as model organisms, birds have adapted to many habitats. The only extant examples of dinosaurs, birds emerged ~150 mya and >10% are currently threatened with extinction. This review is a comprehensive overview of avian genome ("chromosomic") organization research based mostly on chromosome painting and BAC-based studies. We discuss traditional and contemporary tools for reliably generating chromosome-level assemblies and analyzing multiple species at a higher resolution and wider phylogenetic distance than previously possible. These results permit more detailed investigations into inter- and intrachromosomal rearrangements, providing unique insights into evolution and speciation mechanisms. The 'signature' avian karyotype likely arose ~250 mya and remained largely unchanged in most groups including extinct dinosaurs. Exceptions include Psittaciformes, Falconiformes, Caprimulgiformes, Cuculiformes, Suliformes, occasional Passeriformes, Ciconiiformes, and Pelecaniformes. The reasons for this remarkable conservation may be the greater diploid chromosome number generating variation (the driver of natural selection) through a greater possible combination of gametes and/or an increase in recombination rate. A deeper understanding of avian genomic structure permits the exploration of fundamental biological questions pertaining to the role of evolutionary breakpoint regions and homologous synteny blocks.
Collapse
Affiliation(s)
- Rebecca E. O’Connor
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Campus Universitário Capão do Leão, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil;
| | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Moscow Oblast, Russia
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
| |
Collapse
|
5
|
Stuart KC, Johnson RN, Major RE, Atsawawaranunt K, Ewart KM, Rollins LA, Santure AW, Whibley A. The genome of a globally invasive passerine, the common myna, Acridotheres tristis. DNA Res 2024; 31:dsae005. [PMID: 38366840 PMCID: PMC10917472 DOI: 10.1093/dnares/dsae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/18/2024] Open
Abstract
In an era of global climate change, biodiversity conservation is receiving increased attention. Conservation efforts are greatly aided by genetic tools and approaches, which seek to understand patterns of genetic diversity and how they impact species health and their ability to persist under future climate regimes. Invasive species offer vital model systems in which to investigate questions regarding adaptive potential, with a particular focus on how changes in genetic diversity and effective population size interact with novel selection regimes. The common myna (Acridotheres tristis) is a globally invasive passerine and is an excellent model species for research both into the persistence of low-diversity populations and the mechanisms of biological invasion. To underpin research on the invasion genetics of this species, we present the genome assembly of the common myna. We describe the genomic landscape of this species, including genome wide allelic diversity, methylation, repeats, and recombination rate, as well as an examination of gene family evolution. Finally, we use demographic analysis to identify that some native regions underwent a dramatic population increase between the two most recent periods of glaciation, and reveal artefactual impacts of genetic bottlenecks on demographic analysis.
Collapse
Affiliation(s)
- Katarina C Stuart
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Rebecca N Johnson
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Richard E Major
- Australian Museum Research Institute, Australian Museum, Sydney, Australia
| | | | - Kyle M Ewart
- Australian Museum Research Institute, Australian Museum, Sydney, Australia
- School of Life and Environmental Sciences,University of Sydney, Sydney, Australia
| | - Lee A Rollins
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| |
Collapse
|
6
|
Zhu F, Yin ZT, Zhao QS, Sun YX, Jie YC, Smith J, Yang YZ, Burt DW, Hincke M, Zhang ZD, Yuan MD, Kaufman J, Sun CJ, Li JY, Shao LW, Yang N, Hou ZC. A chromosome-level genome assembly for the Silkie chicken resolves complete sequences for key chicken metabolic, reproductive, and immunity genes. Commun Biol 2023; 6:1233. [PMID: 38057566 PMCID: PMC10700341 DOI: 10.1038/s42003-023-05619-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
A set of high-quality pan-genomes would help identify important genes that are still hidden/incomplete in bird reference genomes. In an attempt to address these issues, we have assembled a de novo chromosome-level reference genome of the Silkie (Gallus gallus domesticus), which is an important avian model for unique traits, like fibromelanosis, with unclear genetic foundation. This Silkie genome includes the complete genomic sequences of well-known, but unresolved, evolutionarily, endocrinologically, and immunologically important genes, including leptin, ovocleidin-17, and tumor-necrosis factor-α. The gap-less and manually annotated MHC (major histocompatibility complex) region possesses 38 recently identified genes, with differentially regulated genes recovered in response to pathogen challenges. We also provide whole-genome methylation and genetic variation maps, and resolve a complex genetic region that may contribute to fibromelanosis in these animals. Finally, we experimentally show leptin binding to the identified leptin receptor in chicken, confirming an active leptin ligand-receptor system. The Silkie genome assembly not only provides a rich data resource for avian genome studies, but also lays a foundation for further functional validation of resolved genes.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Qiang-Sen Zhao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Yun-Xiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Yu-Chen Jie
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Yu-Ze Yang
- Beijing General Station of Animal Husbandry, 100101, Beijing, China
| | - David W Burt
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, KIH 8M5, Canada
| | - Zi-Ding Zhang
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Meng-Di Yuan
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Cong-Jiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jun-Ying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Li-Wa Shao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
- Sanya Institute of China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Seligmann ICA, Furo IDO, dos Santos MDS, Gunski RJ, Garnero ADV, Silva FAO, O´Brien P, Ferguson-Smith M, Kretschmer R, de Oliveira EHC. Comparative chromosome painting in three Pelecaniformes species (Aves): Exploring the role of macro and microchromosome fusions in karyotypic evolution. PLoS One 2023; 18:e0294776. [PMID: 38011093 PMCID: PMC10681242 DOI: 10.1371/journal.pone.0294776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
Pelecaniformes is an order of waterbirds that exhibit diverse and distinct morphologies. Ibis, heron, pelican, hammerkop, and shoebill are included within the order. Despite their fascinating features, the phylogenetic relationships among the families within Pelecaniformes remain uncertain and pose challenges due to their complex evolutionary history. Their karyotypic evolution is another little-known aspect. Therefore, to shed light on the chromosomal rearrangements that have occurred during the evolution of Pelecaniformes, we have used whole macrochromosome probes from Gallus gallus (GGA) to show homologies on three species with different diploid numbers, namely Cochlearius cochlearius (2n = 74), Eudocimus ruber (2n = 66), and Syrigma sibilatrix (2n = 62). A fusion between GGA6 and GGA7 was found in C. cochlearius and S. sibilatrix. In S. sibilatrix the GGA8, GGA9 and GGA10 hybridized to the long arms of biarmed macrochromosomes, indicating fusions with microchromosomes. In E. ruber the GGA7 and GGA8 hybridized to the same chromosome pair. After comparing our painting results with previously published data, we show that distinct chromosomal rearrangements have occurred in different Pelecaniformes lineages. Our study provides new insight into the evolutionary history of Pelecaniformes and the chromosomal changes involving their macrochromosomes and microchromosomes that have taken place in different species within this order.
Collapse
Affiliation(s)
- Igor Chamon Assumpção Seligmann
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Ivanete de Oliveira Furo
- Laboratório de Reprodução Animal, LABRAC, Universidade Federal Rural da Amazônia, UFRA, Parauapebas, State of Pará, Brazil
| | - Michelly da Silva dos Santos
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, State of Pará, Brazil
| | - Ricardo José Gunski
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, State of Rio Grande do Sul, Brazil
| | - Analía del Valle Garnero
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, State of Rio Grande do Sul, Brazil
| | - Fabio Augusto Oliveira Silva
- Programa de Pós-graduação em Neurociência e Biologia Molecular, Universidade Federal do Pará, Belém, State of Pará, Brazil
| | - Patricia O´Brien
- Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Malcolm Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas, State of Rio Grande do Sul, Brazil
| | - Edivaldo Herculano C. de Oliveira
- Faculdade de Ciências Naturais, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, State of Pará, Brazil
- Laboratório de Citogenômica e Mutagênese Ambiental, SEAMB, Instituto Evandro Chagas, Ananindeua, State of Pará, Brazil
| |
Collapse
|
8
|
Sales-Oliveira V, Altmanová M, Gvoždík V, Kretschmer R, Ezaz T, Liehr T, Padutsch N, Badjedjea G, Utsunomia R, Tanomtong A, Cioffi M. Cross-species chromosome painting and repetitive DNA mapping illuminate the karyotype evolution in true crocodiles (Crocodylidae). Chromosoma 2023; 132:289-303. [PMID: 37493806 DOI: 10.1007/s00412-023-00806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Crocodilians have maintained very similar karyotype structures and diploid chromosome numbers for around 100 million years, with only minor variations in collinearity. Why this karyotype structure has largely stayed unaltered for so long is unclear. In this study, we analyzed the karyotypes of six species belonging to the genera Crocodylus and Osteolaemus (Crocodylidae, true crocodiles), among which the Congolian endemic O. osborni was included and investigated. We utilized various techniques (differential staining, fluorescence in situ hybridization with repetitive DNA and rDNA probes, whole chromosome painting, and comparative genomic hybridization) to better understand how crocodile chromosomes evolved. We studied representatives of three of the four main diploid chromosome numbers found in crocodiles (2n = 30/32/38). Our data provided new information about the species studied, including the identification of four major chromosomal rearrangements that occurred during the karyotype diversification process in crocodiles. These changes led to the current diploid chromosome numbers of 2n = 30 (fusion) and 2n = 38 (fissions), derived from the ancestral state of 2n = 32. The conserved cytogenetic tendency in crocodilians, where extant species keep near-ancestral state, contrasts with the more dynamic karyotype evolution seen in other major reptile groups.
Collapse
Affiliation(s)
- Vanessa Sales-Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, 12844, Prague, Czech Republic
| | - Václav Gvoždík
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Niklas Padutsch
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Gabriel Badjedjea
- Department of Aquatic Ecology, Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | | | - Alongklod Tanomtong
- Department of Biology Faculty of Science, Khon Kaen University, Muang, Khon Kaen, 40002, Thailand
| | - Marcelo Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
9
|
Catalán A, Merondun J, Knief U, Wolf JBW. Chromatin accessibility, not 5mC methylation covaries with partial dosage compensation in crows. PLoS Genet 2023; 19:e1010901. [PMID: 37747941 PMCID: PMC10575545 DOI: 10.1371/journal.pgen.1010901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/13/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
The evolution of genetic sex determination is often accompanied by degradation of the sex-limited chromosome. Male heterogametic systems have evolved convergent, epigenetic mechanisms restoring the resulting imbalance in gene dosage between diploid autosomes (AA) and the hemizygous sex chromosome (X). Female heterogametic systems (AAf Zf, AAm ZZm) tend to only show partial dosage compensation (0.5 < Zf:AAf < 1) and dosage balance (0.5
Collapse
Affiliation(s)
- Ana Catalán
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Justin Merondun
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Ulrich Knief
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
- Evolutionary Biology & Ecology,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jochen B. W. Wolf
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
10
|
Pinto BJ, Gamble T, Smith CH, Wilson MA. A lizard is never late: Squamate genomics as a recent catalyst for understanding sex chromosome and microchromosome evolution. J Hered 2023; 114:445-458. [PMID: 37018459 PMCID: PMC10445521 DOI: 10.1093/jhered/esad023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the "genomics age" was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012 and 2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.
Collapse
Affiliation(s)
- Brendan J Pinto
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, United States
| | - Tony Gamble
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, United States
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
- Bell Museum of Natural History, University of Minnesota, St Paul, MN, United States
| | - Chase H Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
- Center for Mechanisms of Evolution, Biodesign Institute, Tempe, AZ, United States
| |
Collapse
|
11
|
Olmo E. Reptile Evolution and Genetics: An Overview. Animals (Basel) 2023; 13:1924. [PMID: 37370434 PMCID: PMC10295626 DOI: 10.3390/ani13121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The study of evolution has been indissolubly linked to the study of heredity since its inception [1]. [...].
Collapse
Affiliation(s)
- Ettore Olmo
- Department of Life and Environmental Sciences, Università Politecnica delle Marche via Brecce Bianche Ancona, 60121 Ancona, Italy
| |
Collapse
|
12
|
Pinto BJ, Gamble T, Smith CH, Wilson MA. A lizard is never late: squamate genomics as a recent catalyst for understanding sex chromosome and microchromosome evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524006. [PMID: 37034614 PMCID: PMC10081179 DOI: 10.1101/2023.01.20.524006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the "genomics age" was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012-2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.
Collapse
Affiliation(s)
- Brendan J Pinto
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI USA
| | - Tony Gamble
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI USA
- Department of Biological Sciences, Marquette University, Milwaukee WI USA
- Bell Museum of Natural History, University of Minnesota, St Paul, MN USA
| | - Chase H Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ USA
- Center for Mechanisms of Evolution, Biodesign Institute, Tempe, AZ USA
| |
Collapse
|
13
|
Huang Z, Xu L, Cai C, Zhou Y, Liu J, Xu Z, Zhu Z, Kang W, Cen W, Pei S, Chen D, Shi C, Wu X, Huang Y, Xu C, Yan Y, Yang Y, Xue T, He W, Hu X, Zhang Y, Chen Y, Bi C, He C, Xue L, Xiao S, Yue Z, Jiang Y, Yu JK, Jarvis E, Li G, Lin G, Zhang Q, Zhou Q. Three amphioxus reference genomes reveal gene and chromosome evolution of chordates. Proc Natl Acad Sci U S A 2023; 120:e2201504120. [PMID: 36867684 PMCID: PMC10013865 DOI: 10.1073/pnas.2201504120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/18/2023] [Indexed: 03/05/2023] Open
Abstract
The slow-evolving invertebrate amphioxus has an irreplaceable role in advancing our understanding of the vertebrate origin and innovations. Here we resolve the nearly complete chromosomal genomes of three amphioxus species, one of which best recapitulates the 17 chordate ancestor linkage groups. We reconstruct the fusions, retention, or rearrangements between descendants of whole-genome duplications, which gave rise to the extant microchromosomes likely existed in the vertebrate ancestor. Similar to vertebrates, the amphioxus genome gradually establishes its three-dimensional chromatin architecture at the onset of zygotic activation and forms two topologically associated domains at the Hox gene cluster. We find that all three amphioxus species have ZW sex chromosomes with little sequence differentiation, and their putative sex-determining regions are nonhomologous to each other. Our results illuminate the unappreciated interspecific diversity and developmental dynamics of amphioxus genomes and provide high-quality references for understanding the mechanisms of chordate functional genome evolution.
Collapse
Affiliation(s)
- Zhen Huang
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian350108, China
| | - Luohao Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Chongqing400715, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna1090, Austria
| | - Cheng Cai
- The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Yitao Zhou
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Jing Liu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna1090, Austria
| | - Zaoxu Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Chongqing400715, China
| | - Zexian Zhu
- The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Wen Kang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Wan Cen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Surui Pei
- Annoroad Gene Technology Co., Ltd, Beijing100180, China
| | - Duo Chen
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Chenggang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Xiaotong Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Yongji Huang
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian350108, China
| | - Chaohua Xu
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Yanan Yan
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Ying Yang
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Ting Xue
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Wenjin He
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Xuefeng Hu
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Yanding Zhang
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Youqiang Chen
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Changwei Bi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu210096, China
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu210096, China
| | - Lingzhan Xue
- Aquaculture and Genetic breeding laboratory, Freshwater Fisheries Research Institute of Fujian, Fuzhou, Fujian350002, China
| | - Shijun Xiao
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin130118, China
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics, Carson International Cancer Center, and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong518060, China
| | - Yu Jiang
- Annoroad Gene Technology Co., Ltd, Beijing100180, China
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei11529, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan26242, Taiwan
| | - Erich D. Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY10065
- HHMI, Chevy Chase, MD20815
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Gang Lin
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Annoroad Gene Technology Co., Ltd, Beijing100180, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Qiujin Zhang
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization & Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian350117, China
- Annoroad Gene Technology Co., Ltd, Beijing100180, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian350117, China
| | - Qi Zhou
- The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Hangzhou, Zhejiang310052, China
- Evolutionary and Organismal Biology Research Center, School of Medicine, Zhejiang University, Hangzhou, Zhejiang310058, China
| |
Collapse
|
14
|
Rasband SA, Bolton PE, Fang Q, Johnson PLF, Braun MJ. Evolution of the Growth Hormone Gene Duplication in Passerine Birds. Genome Biol Evol 2023; 15:evad033. [PMID: 36848146 PMCID: PMC10016047 DOI: 10.1093/gbe/evad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 03/01/2023] Open
Abstract
Birds of the order Passeriformes represent the most speciose order of land vertebrates. Despite strong scientific interest in this super-radiation, genetic traits unique to passerines are not well characterized. A duplicate copy of growth hormone (GH) is the only gene known to be present in all major lineages of passerines, but not in other birds. GH genes plausibly influence extreme life history traits that passerines exhibit, including the shortest embryo-to-fledging developmental period of any avian order. To unravel the implications of this GH duplication, we investigated the molecular evolution of the ancestral avian GH gene (GH or GH1) and the novel passerine GH paralog (GH2), using 497 gene sequences extracted from 342 genomes. Passerine GH1 and GH2 are reciprocally monophyletic, consistent with a single duplication event from a microchromosome onto a macrochromosome in a common ancestor of extant passerines. Additional chromosomal rearrangements have changed the syntenic and potential regulatory context of these genes. Both passerine GH1 and GH2 display substantially higher rates of nonsynonymous codon change than non-passerine avian GH, suggesting positive selection following duplication. A site involved in signal peptide cleavage is under selection in both paralogs. Other sites under positive selection differ between the two paralogs, but many are clustered in one region of a 3D model of the protein. Both paralogs retain key functional features and are actively but differentially expressed in two major passerine suborders. These phenomena suggest that GH genes may be evolving novel adaptive roles in passerine birds.
Collapse
Affiliation(s)
- Shauna A Rasband
- Behavior, Ecology, Evolution and Systematics Graduate Program, University of Maryland, College Park, Maryland
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC
| | - Peri E Bolton
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Qi Fang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | | | - Michael J Braun
- Behavior, Ecology, Evolution and Systematics Graduate Program, University of Maryland, College Park, Maryland
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC
| |
Collapse
|
15
|
Huang Z, Xu Z, Bai H, Huang Y, Kang N, Ding X, Liu J, Luo H, Yang C, Chen W, Guo Q, Xue L, Zhang X, Xu L, Chen M, Fu H, Chen Y, Yue Z, Fukagawa T, Liu S, Chang G, Xu L. Evolutionary analysis of a complete chicken genome. Proc Natl Acad Sci U S A 2023; 120:e2216641120. [PMID: 36780517 PMCID: PMC9974502 DOI: 10.1073/pnas.2216641120] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Microchromosomes are prevalent in nonmammalian vertebrates [P. D. Waters et al., Proc. Natl. Acad. Sci. U.S.A. 118 (2021)], but a few of them are missing in bird genome assemblies. Here, we present a new chicken reference genome containing all autosomes, a Z and a W chromosome, with all gaps closed except for the W. We identified ten small microchromosomes (termed dot chromosomes) with distinct sequence and epigenetic features, among which six were newly assembled. Those dot chromosomes exhibit extremely high GC content and a high level of DNA methylation and are enriched for housekeeping genes. The pericentromeric heterochromatin of dot chromosomes is disproportionately large and continues to expand with the proliferation of satellite DNA and testis-expressed genes. Our analyses revealed that the 41-bp CNM repeat frequently forms higher-order repeats (HORs) at the centromeres of acrocentric chromosomes. The centromere core regions where the kinetochore attaches often encompass telomeric sequence (TTAGGG)n, and in a one of the dot chromosomes, the centromere core recruits an endogenous retrovirus (ERV). We further demonstrate that the W chromosome shares some common features with dot chromosomes, having large arrays of hypermethylated tandem repeats. Finally, using the complete chicken chromosome models, we reconstructed a fine picture of chordate karyotype evolution, revealing frequent chromosomal fusions before and after vertebrate whole-genome duplications. Our sequence and epigenetic characterization of chicken chromosomes shed insights into the understanding of vertebrate genome evolution and chromosome biology.
Collapse
Affiliation(s)
- Zhen Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou350108, China
| | - Zaoxu Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu Province745000, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Yongji Huang
- Institute of Oceanography, Minjiang University, Fuzhou350108, China
| | - Na Kang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Xiaoting Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Jing Liu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna1090, Austria
| | - Haoran Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | | | | | - Qixin Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Lingzhan Xue
- Aquaculture and Genetic breeding laboratory, Freshwater Fisheries Research Institute of Fujian, Fuzhou350002, China
| | - Xueping Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Li Xu
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Meiling Chen
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Honggao Fu
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Youling Chen
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics, International Cancer Center, and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Guangdong, 518054, China
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, Beijing100193, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Luohao Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
16
|
Moreira LR, Klicka J, Smith BT. Demography and linked selection interact to shape the genomic landscape of codistributed woodpeckers during the Ice Age. Mol Ecol 2023; 32:1739-1759. [PMID: 36617622 DOI: 10.1111/mec.16841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023]
Abstract
The influence of genetic drift on population dynamics during Pleistocene glacial cycles is well understood, but the role of selection in shaping patterns of genomic variation during these events is less explored. We resequenced whole genomes to investigate how demography and natural selection interact to generate the genomic landscapes of Downy and Hairy Woodpecker, species codistributed in previously glaciated North America. First, we explored the spatial and temporal patterns of genomic diversity produced by neutral evolution. Next, we tested (i) whether levels of nucleotide diversity along the genome are correlated with intrinsic genomic properties, such as recombination rate and gene density, and (ii) whether different demographic trajectories impacted the efficacy of selection. Our results revealed cycles of bottleneck and expansion, and genetic structure associated with glacial refugia. Nucleotide diversity varied widely along the genome, but this variation was highly correlated between the species, suggesting the presence of conserved genomic features. In both taxa, nucleotide diversity was positively correlated with recombination rate and negatively correlated with gene density, suggesting that linked selection played a role in reducing diversity. Despite strong fluctuations in effective population size, the maintenance of relatively large populations during glaciations may have facilitated selection. Under these conditions, we found evidence that the individual demographic trajectory of populations modulated linked selection, with purifying selection being more efficient in removing deleterious alleles in large populations. These results highlight that while genome-wide variation reflects the expected signature of demographic change during climatic perturbations, the interaction of multiple processes produces a predictable and highly heterogeneous genomic landscape.
Collapse
Affiliation(s)
- Lucas R Moreira
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA.,Department of Ornithology, American Museum of Natural History, New York City, New York, USA.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - John Klicka
- Burke Museum of Natural History and Culture and Department of Biology, University of Washington, Seattle, Washington, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York City, New York, USA
| |
Collapse
|
17
|
Barros CP, Derks MFL, Mohr J, Wood BJ, Crooijmans RPMA, Megens HJ, Bink MCAM, Groenen MAM. A new haplotype-resolved turkey genome to enable turkey genetics and genomics research. Gigascience 2022; 12:giad051. [PMID: 37489751 PMCID: PMC10360393 DOI: 10.1093/gigascience/giad051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/12/2022] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND The domesticated turkey (Meleagris gallopavo) is a species of significant agricultural importance and is the second largest contributor, behind broiler chickens, to world poultry meat production. The previous genome is of draft quality and partly based on the chicken (Gallus gallus) genome. A high-quality reference genome of M. gallopavo is essential for turkey genomics and genetics research and the breeding industry. RESULTS By adopting the trio-binning approach, we were able to assemble a high-quality chromosome-level F1 assembly and 2 parental haplotype assemblies, leveraging long-read technologies and genome-wide chromatin interaction data (Hi-C). From a total of 40 chromosomes (2n = 80), we captured 35 chromosomes in a single scaffold, showing much improved genome completeness and continuity compared to the old assembly build. The 3 assemblies are of higher quality than the previous draft quality assembly and comparable to the chicken assemblies (GRCg7) shown by the largest contig N50 (26.6 Mb) and comparable BUSCO gene set completeness scores (96-97%). Comparative analyses confirm a previously identified large inversion of around 19 Mbp on the Z chromosome not found in other Galliformes. Structural variation between the parent haplotypes was identified, which poses potential new target genes for breeding. CONCLUSIONS We contribute a new high-quality turkey genome at the chromosome level, benefiting turkey genetics and other avian genomics research as well as the turkey breeding industry.
Collapse
Affiliation(s)
- Carolina P Barros
- Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Martijn F L Derks
- Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Jeff Mohr
- Hybrid Turkeys, 650 Riverbend Drive Suite C, Kitchener, ON N2K 3S2, Canada
| | - Benjamin J Wood
- Hybrid Turkeys, 650 Riverbend Drive Suite C, Kitchener, ON N2K 3S2, Canada
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | | | - Hendrik-Jan Megens
- Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Marco C A M Bink
- Hendrix Genetics Research, Technology & Services, Boxmeer, AC 5830, The Netherlands
| | - Martien A M Groenen
- Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| |
Collapse
|
18
|
Griffin DK, Larkin DM, O’Connor RE, Romanov MN. Dinosaurs: Comparative Cytogenomics of Their Reptile Cousins and Avian Descendants. Animals (Basel) 2022; 13:106. [PMID: 36611715 PMCID: PMC9817885 DOI: 10.3390/ani13010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Reptiles known as dinosaurs pervade scientific and popular culture, while interest in their genomics has increased since the 1990s. Birds (part of the crown group Reptilia) are living theropod dinosaurs. Chromosome-level genome assemblies cannot be made from long-extinct biological material, but dinosaur genome organization can be inferred through comparative genomics of related extant species. Most reptiles apart from crocodilians have both macro- and microchromosomes; comparative genomics involving molecular cytogenetics and bioinformatics has established chromosomal relationships between many species. The capacity of dinosaurs to survive multiple extinction events is now well established, and birds now have more species in comparison with any other terrestrial vertebrate. This may be due, in part, to their karyotypic features, including a distinctive karyotype of around n = 40 (~10 macro and 30 microchromosomes). Similarity in genome organization in distantly related species suggests that the common avian ancestor had a similar karyotype to e.g., the chicken/emu/zebra finch. The close karyotypic similarity to the soft-shelled turtle (n = 33) suggests that this basic pattern was mostly established before the Testudine-Archosaur divergence, ~255 MYA. That is, dinosaurs most likely had similar karyotypes and their extensive phenotypic variation may have been mediated by increased random chromosome segregation and genetic recombination, which is inherently higher in karyotypes with more and smaller chromosomes.
Collapse
Affiliation(s)
| | - Denis M. Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
| | | | | |
Collapse
|
19
|
de Souza MS, Barcellos SA, dos Santos MDS, Gunski RJ, Garnero ADV, de Oliveira EHC, O’Connor RE, Griffin DK, Kretschmer R. Microchromosome BAC-FISH Reveals Different Patterns of Genome Organization in Three Charadriiformes Species. Animals (Basel) 2022; 12:ani12213052. [PMID: 36359176 PMCID: PMC9655014 DOI: 10.3390/ani12213052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Microchromosomes, once considered unimportant elements of the genome, represent fundamental building blocks of bird karyotypes. Shorebirds (Charadriiformes) comprise a wide variety of approximately 390 species and are considered a valuable model group for biological studies. Despite this variety, cytogenetic analysis is still very scarce in this bird order. Thus, the aim of this study was to provide insight into the Charadriiformes karyotype, with emphasis on microchromosome evolution in three species of shorebirds-Calidris canutus, Jacana jacana, and Vanellus chilensis-combining classical and molecular approaches. Cross-species FISH mapping applied two BAC probes for each microchromosome, GGA10-28 (except GGA16). The experiments revealed different patterns of microchromosome organization in the species investigated. Hence, while in C. canutus, we found two microchromosomes involved in chromosome fusions, they were present as single pairs in V. chilensis. We also described a new chromosome number for C. canutus (2n = 92). Hence, this study contributed to the understanding of genome organization and evolution of three shorebird species.
Collapse
Affiliation(s)
- Marcelo Santos de Souza
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil
| | - Suziane Alves Barcellos
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil
| | - Michelly da Silva dos Santos
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua 67030-000, PA, Brazil
| | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil
| | - Analía del Valle Garnero
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua 67030-000, PA, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | | | | | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
- Correspondence:
| |
Collapse
|
20
|
Nikolakis ZL, Schield DR, Westfall AK, Perry BW, Ivey KN, Orton RW, Hales NR, Adams RH, Meik JM, Parker JM, Smith CF, Gompert Z, Mackessy SP, Castoe TA. Evidence that genomic incompatibilities and other multilocus processes impact hybrid fitness in a rattlesnake hybrid zone. Evolution 2022; 76:2513-2530. [PMID: 36111705 DOI: 10.1111/evo.14612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 01/22/2023]
Abstract
Hybrid zones provide valuable opportunities to understand the genomic mechanisms that promote speciation by providing insight into factors involved in intermediate stages of speciation. Here, we investigate introgression in a hybrid zone between two rattlesnake species (Crotalus viridis and Crotalus oreganus concolor) that have undergone historical allopatric divergence and recent range expansion and secondary contact. We use Bayesian genomic cline models to characterize genomic patterns of introgression between these lineages and identify loci potentially subject to selection in hybrids. We find evidence for a large number of genomic regions with biased ancestry that deviate from the genomic background in hybrids (i.e., excess ancestry loci), which tend to be associated with genomic regions with higher recombination rates. We also identify suites of excess ancestry loci that show highly correlated allele frequencies (including conspecific and heterospecific combinations) across physically unlinked genomic regions in hybrids. Our findings provide evidence for multiple multilocus evolutionary processes impacting hybrid fitness in this system.
Collapse
Affiliation(s)
- Zachary L Nikolakis
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309
| | - Aundrea K Westfall
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Kathleen N Ivey
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Richard W Orton
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Nicole R Hales
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Richard H Adams
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia, 31061
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University, Stephenville, Texas, 76402
| | - Joshua M Parker
- Department of Life Sciences, Fresno City College, Fresno, California, 93741
| | - Cara F Smith
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, 80639
| | | | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, 80639
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| |
Collapse
|
21
|
Wilcox JJS, Arca-Ruibal B, Samour J, Mateuta V, Idaghdour Y, Boissinot S. Linked-Read Sequencing of Eight Falcons Reveals a Unique Genomic Architecture in Flux. Genome Biol Evol 2022; 14:evac090. [PMID: 35700227 PMCID: PMC9214253 DOI: 10.1093/gbe/evac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022] Open
Abstract
Falcons are diverse birds of cultural and economic importance. They have undergone major lineage-specific chromosomal rearrangements, resulting in greatly-reduced chromosome counts relative to other birds. Here, we use 10X Genomics linked reads to provide new high-contiguity genomes for two gyrfalcons, a saker falcon, a lanner falcon, three subspecies of peregrine falcons, and the common kestrel. Assisted by a transcriptome sequenced from 22 gyrfalcon tissues, we annotate these genomes for a variety of genomic features, estimate historical demography, and then investigate genomic equilibrium in the context of falcon-specific chromosomal rearrangements. We find that falcon genomes are not in AT-GC equilibrium with a bias in substitutions towards higher AT content; this bias is predominantly but not exclusively driven by hypermutability of CpG sites. Small indels and large structural variants were also biased towards insertions rather than deletions. Patterns of disequilibrium were linked to chromosomal rearrangements: falcons have lost GC content in regions that have fused to larger chromosomes from microchromosomes and gained GC content in regions of macrochromosomes that have translocated to microchromosomes. Inserted bases have accumulated on regions ancestrally belonging to microchromosomes, consistent with insertion-biased gene conversion. We also find an excess of interspersed repeats on regions of microchromosomes that have fused to macrochromosomes. Our results reveal that falcon genomes are in a state of flux. They further suggest that many of the key differences between microchromosomes and macrochromosomes are driven by differences in chromosome size, and indicate a clear role for recombination and biased-gene-conversion in determining genomic equilibrium.
Collapse
Affiliation(s)
- Justin J S Wilcox
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | | | - Jaime Samour
- Wildlife Management and Falcon Medicine and Breeding Consultancy, Abu Dhabi, United Arab Emirates
| | | | - Youssef Idaghdour
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Biology Program, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Stéphane Boissinot
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Biology Program, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
Pauciullo A, Versace C, Perucatti A, Gaspa G, Li LY, Yang CY, Zheng HY, Liu Q, Shang JH. Oocyte aneuploidy rates in river and swamp buffalo types (Bubalus bubalis) determined by Multi-color Fluorescence In Situ Hybridization (M-FISH). Sci Rep 2022; 12:8440. [PMID: 35590020 PMCID: PMC9120204 DOI: 10.1038/s41598-022-12603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/13/2022] [Indexed: 11/15/2022] Open
Abstract
Aneuploidy is one of the main causes of fetal and embryonic mortality in mammals. Nonetheless, its incidence in domestic ruminants has been investigated little. Indeed, no incidence data have ever been reported for water buffalo. To establish the incidence of aneuploidy in this species, we analysed in vitro matured metaphase II (MII) oocytes with corresponding first polar bodies (I PB) of the river (2n = 50) and swamp (2n = 48) buffaloes. For the first time, six river type probes (corresponding to chromosomes 1–5 and heterosome X), were tested on swamp buffalo metaphases using Multicolor-Fluorescent In Situ Hybridization (M-FISH) before their use on oocytes MII metaphases. Of the 120 total Cumulus Oocyte Complexes (COCs, 60 for each buffalo type) subjected to in vitro maturation, 104 reached the MII stage and were analysed by M-FISH. Haploid chromosome arrangement and visible I PB were observed in 89 of the oocytes (45 in river and 44 in swamp type). In the river type, the analysis revealed one oocyte was disomic for the chromosome X (2.22%). In the swamp type, one oocyte was found to be nullisomic for chromosome X (2.27%); another was found to be nullisomic for chromosome 5 (2.27%). We also observed one oocyte affected by a premature separation of sister chromatids (PSSC) on the chromosome X (2.27%). In both buffalo types, no abnormalities were detected in other investigated chromosomes. Based on merged data, the overall aneuploidy rate for the species was 3.37%. Oocytes with unreduced chromosomes averaged 1.92% across the two types, with 1.96% in river and 1.88% in swamp. The interspecies comparison between these data and cattle and pig published data revealed substantial difference in both total aneuploidy and diploidy rates. Reducing the negative impact of the meiotic segregation errors on the fertility is key to more sustainable breeding, an efficient embryo transfer industry and ex-situ bio-conservation. In this respect, additional M-FISH studies are needed on oocytes of domestic species using larger sets of probes and/or applying next generation sequencing technologies.
Collapse
Affiliation(s)
- Alfredo Pauciullo
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095, Grugliasco (TO), Italy.
| | - Carmine Versace
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| | - Angela Perucatti
- Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM, 80056, Portici (NA), Italy
| | - Giustino Gaspa
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| | - Ling-Yu Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Chun-Yan Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Hai-Ying Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Qinyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| |
Collapse
|
23
|
Sotelo-Muñoz M, Poignet M, Albrecht T, Kauzál O, Dedukh D, Schlebusch SA, Janko K, Reifová R. Germline-restricted chromosome shows remarkable variation in size among closely related passerine species. Chromosoma 2022; 131:77-86. [PMID: 35389062 DOI: 10.1007/s00412-022-00771-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
Passerine birds have a supernumerary chromosome in their germ cells called the germline-restricted chromosome (GRC). The GRC was first discovered more than two decades ago in zebra finch but recent studies have suggested that it is likely present in all passerines, the most species rich avian order, encompassing more than half of all modern bird species. Despite its wide taxonomic distribution, studies on this chromosome are still scarce and limited to a few species. Here, we cytogenetically analyzed the GRC in five closely related estrildid finch species of the genus Lonchura. We show that the GRC varies enormously in size, ranging from a tiny micro-chromosome to one of the largest macro-chromosomes in the cell, not only among recently diverged species but also within species and sometimes even between germ cells of a single individual. In Lonchura atricapilla, we also observed variation in GRC copy number among male germ cells of a single individual. Finally, our analysis of hybrids between two Lonchura species with noticeably different GRC size directly supported maternal inheritance of the GRC. Our results reveal the extraordinarily dynamic nature of the GRC, which might be caused by frequent gains and losses of sequences on this chromosome leading to substantial differences in genetic composition of the GRC between and even within species. Such differences might theoretically contribute to reproductive isolation between species and thus accelerate the speciation rate of passerine birds compared to other bird lineages.
Collapse
Affiliation(s)
- Manuelita Sotelo-Muñoz
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic.
| | - Manon Poignet
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60365, Brno, Czech Republic
| | - Ondřej Kauzál
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60365, Brno, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
| | - Stephen A Schlebusch
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic.
| |
Collapse
|
24
|
Stuart KC, Sherwin WB, Cardilini AP, Rollins LA. Genetics and Plasticity Are Responsible for Ecogeographical Patterns in a Recent Invasion. Front Genet 2022; 13:824424. [PMID: 35360868 PMCID: PMC8963341 DOI: 10.3389/fgene.2022.824424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
Patterns of covariation between phenotype and environment are presumed to be reflective of local adaptation, and therefore translate to a meaningful influence on an individual's overall fitness within that specific environment. However, these environmentally driven patterns may be the result of numerous and interacting processes, such as genetic variation, epigenetic variation, or plastic non-heritable variation. Understanding the relative importance of different environmental variables on underlying genetic patterns and resulting phenotypes is fundamental to understanding adaptation. Invasive systems are excellent models for such investigations, given their propensity for rapid evolution. This study uses reduced representation sequencing data paired with phenotypic data to examine whether important phenotypic traits in invasive starlings (Sturnus vulgaris) within Australia appear to be highly heritable (presumably genetic) or appear to vary with environmental gradients despite underlying genetics (presumably non-heritable plasticity). We also sought to determine which environmental variables, if any, play the strongest role shaping genetic and phenotypic patterns. We determined that environmental variables-particularly elevation-play an important role in shaping allelic trends in Australian starlings and may also reinforce neutral genetic patterns resulting from historic introduction regime. We examined a range of phenotypic traits that appear to be heritable (body mass and spleen mass) or negligibly heritable (e.g. beak surface area and wing length) across the starlings' Australian range. Using SNP variants associated with each of these phenotypes, we identify key environmental variables that correlate with genetic patterns, specifically that temperature and precipitation putatively play important roles shaping phenotype in this species. Finally, we determine that overall phenotypic variation is correlated with underlying genetic variation, and that these interact positively with the level of vegetation variation within a region, suggesting that ground cover plays an important role in shaping selection and plasticity of phenotypic traits within the starlings of Australia.
Collapse
Affiliation(s)
- Katarina C. Stuart
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - William B. Sherwin
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Adam P.A. Cardilini
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Lee A. Rollins
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Wang J, Su W, Hu Y, Li S, O'Brien PCM, Ferguson-Smith MA, Yang F, Nie W. Comparative chromosome maps between the stone curlew and three ciconiiform species (the grey heron, little egret and crested ibis). BMC Ecol Evol 2022; 22:23. [PMID: 35240987 PMCID: PMC8892796 DOI: 10.1186/s12862-022-01979-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Previous cytogenetic studies show that the karyotypes of species in Ciconiiformes vary considerably, from 2n = 52 to 78. Their karyotypes include different numbers of small to minute bi-armed chromosomes that have evolved probably by fusions of two ancestral microchromosomes, besides macrochromosomes and dot-like microchromosomes. However, it is impossible to define the inter-species homologies of such small-sized bi-armed chromosomes based on chromosome morphology and banding characteristics. Although painting probes from the chicken (Gallus gallus, GGA) chromosomes 1–9 and Z have been widely used to investigate avian chromosome homologies, GGA microchromosome probes are rarely used in these studies because most GGA microchromosome probes generated by flow sorting often contain multiple GGA microchromosomes. In contrast, the stone curlew (Burhinus oedicnemus, BOE, Charadriiformes) has an atypical low diploid chromosome number (42) karyotype and only 4 pairs of dot-like microchromosomes; a set of chromosome-specific painting probes that cover all BOE chromosomes has been generated. To get a genome-wide view of evolutionary chromosomal rearrangements in different lineages of Ciconiiformes, we used BOE painting probes instead of GGA painting probes to analyze the karyotypes of three ciconiiform species belonging to two different families: the eastern grey heron (Ardea cinerea, ACI, 2n = 64, Ardeidae), the little egret (Egretta garzetta, EGA, 2n = 64, Ardeidae) and the crested ibis (Nipponia nippon, NNI, 2n = 68, Threskiornithidae). Results BOE painting probes display the same hybridization pattern on chromosomes of ACI and EGA, while a different hybridization pattern is observed on chromosomes of NNI. BOE autosome probes detected 21 conserved homologous segments and 5 fusions on the sixteen pairs of recognizable chromosomes of ACI and EGA, while 16 conserved homologous segments and 4 fusions were found on the twelve pairs of recognizable chromosomes of NNI. Only a portion of smaller bi-armed chromosomes in the karyotypes of the ciconiiform species could have evolved from fusions of ancestral microchromosomes. In particular BOE 5, which is the result of a fusion between two segments homologous to GGA 7 and 8 respectively, was retained also as either a single chromosome in ACI (ACI 5) and EGA (EGA 5) or had fused with a part of the BOE 10 equivalent in NNI (NNI 5). Conclusion Our painting results indicate that different chromosome rearrangements occur in different ciconiiform lineages. Some of the small-sized bi-armed chromosomes in ACI, EGA and NNI are derived from the fusions of two microchromosomes, indicating that microchromosome fusions play an important role in ciconiiform chromosome evolution. The fusion segment homologous to GGA 7 and 8 is a potential cytogenetic signature that unites Ardeidae and Threskiornithidae.
Collapse
Affiliation(s)
- Jinhuan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, People's Republic of China
| | - Weiting Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, People's Republic of China
| | - Yi Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, People's Republic of China
| | - Shengbin Li
- Key Laboratory of Forensic Sciences, Ministry of Health, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Patricia C M O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, Shandong, People's Republic of China.
| | - Wenhui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, People's Republic of China.
| |
Collapse
|
26
|
Huang Z, De O Furo I, Liu J, Peona V, Gomes AJB, Cen W, Huang H, Zhang Y, Chen D, Xue T, Zhang Q, Yue Z, Wang Q, Yu L, Chen Y, Suh A, de Oliveira EHC, Xu L. Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots. Nat Commun 2022; 13:944. [PMID: 35177601 PMCID: PMC8854603 DOI: 10.1038/s41467-022-28585-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
The karyotype of most birds has remained considerably stable during more than 100 million years' evolution, except for some groups, such as parrots. The evolutionary processes and underlying genetic mechanism of chromosomal rearrangements in parrots, however, are poorly understood. Here, using chromosome-level assemblies of four parrot genomes, we uncover frequent chromosome fusions and fissions, with most of them occurring independently among lineages. The increased activities of chromosomal rearrangements in parrots are likely associated with parrot-specific loss of two genes, ALC1 and PARP3, that have known functions in the repair of double-strand breaks and maintenance of genome stability. We further find that the fusion of the ZW sex chromosomes and chromosome 11 has created a pair of neo-sex chromosomes in the ancestor of parrots, and the chromosome 25 has been further added to the sex chromosomes in monk parakeet. Together, the combination of our genomic and cytogenetic analyses characterizes the complex evolutionary history of chromosomal rearrangements and sex chromosomes in parrots.
Collapse
Affiliation(s)
- Zhen Huang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Ivanete De O Furo
- Universidade Federal Rural da Amazônia (UFRA) Laboratório de Reprodução Animal (LABRAC), Parauapebas, PA, Brazil
- Laboratório de Citogenômica e Mutagênese Ambiental, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Jing Liu
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Valentina Peona
- Department of Organismal Biology, Systematic Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | | | - Wan Cen
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fuzhou, Fujian, China
| | - Hao Huang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Duo Chen
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fuzhou, Fujian, China
| | - Ting Xue
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fuzhou, Fujian, China
| | - Qiujin Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics; International Cancer Center; and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Guangdong, China
| | - Quanxi Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
| | - Lingyu Yu
- Annoroad Gene Technology Co., Ltd, Beijing, China
| | - Youling Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
| | - Alexander Suh
- Department of Organismal Biology, Systematic Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, Organisms and the Environment, University of East Anglia, Norwich, UK
| | - Edivaldo H C de Oliveira
- Programa de Pós-graduação em Genética e Biologia Molecular, PPGBM, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Luohao Xu
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria.
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
27
|
Koochekian N, Ascanio A, Farleigh K, Card DC, Schield DR, Castoe TA, Jezkova T. A chromosome-level genome assembly and annotation of the desert horned lizard, Phrynosoma platyrhinos, provides insight into chromosomal rearrangements among reptiles. Gigascience 2022; 11:giab098. [PMID: 35134927 PMCID: PMC8848323 DOI: 10.1093/gigascience/giab098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/27/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The increasing number of chromosome-level genome assemblies has advanced our knowledge and understanding of macroevolutionary processes. Here, we introduce the genome of the desert horned lizard, Phrynosoma platyrhinos, an iguanid lizard occupying extreme desert conditions of the American southwest. We conduct analysis of the chromosomal structure and composition of this species and compare these features across genomes of 12 other reptiles (5 species of lizards, 3 snakes, 3 turtles, and 1 bird). FINDINGS The desert horned lizard genome was sequenced using Illumina paired-end reads and assembled and scaffolded using Dovetail Genomics Hi-C and Chicago long-range contact data. The resulting genome assembly has a total length of 1,901.85 Mb, scaffold N50 length of 273.213 Mb, and includes 5,294 scaffolds. The chromosome-level assembly is composed of 6 macrochromosomes and 11 microchromosomes. A total of 20,764 genes were annotated in the assembly. GC content and gene density are higher for microchromosomes than macrochromosomes, while repeat element distributions show the opposite trend. Pathway analyses provide preliminary evidence that microchromosome and macrochromosome gene content are functionally distinct. Synteny analysis indicates that large microchromosome blocks are conserved among closely related species, whereas macrochromosomes show evidence of frequent fusion and fission events among reptiles, even between closely related species. CONCLUSIONS Our results demonstrate dynamic karyotypic evolution across Reptilia, with frequent inferred splits, fusions, and rearrangements that have resulted in shuffling of chromosomal blocks between macrochromosomes and microchromosomes. Our analyses also provide new evidence for distinct gene content and chromosomal structure between microchromosomes and macrochromosomes within reptiles.
Collapse
Affiliation(s)
| | - Alfredo Ascanio
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Keaka Farleigh
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Daren C Card
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Tereza Jezkova
- Department of Biology, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
28
|
Carvalho CA, Furo IO, O’Brien PCM, Pereira J, O’Connor RE, Griffin D, Ferguson-Smith M, de Oliveira EHC. Comparative chromosome painting in Spizaetus tyrannus and Gallus gallus with the use of macro- and microchromosome probes. PLoS One 2021; 16:e0259905. [PMID: 34793511 PMCID: PMC8601422 DOI: 10.1371/journal.pone.0259905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
Although most birds show karyotypes with diploid number (2n) around 80, with few macrochromosomes and many microchromosomes pairs, some groups, such as the Accipitriformes, are characterized by a large karyotypic reorganization, which resulted in complements with low diploid numbers, and a smaller number of microchromosomal pairs when compared to other birds. Among Accipitriformes, the Accipitridae family is the most diverse and includes, among other subfamilies, the subfamily Aquilinae, composed of medium to large sized species. The Black-Hawk-Eagle (Spizaetus tyrannus-STY), found in South America, is a member of this subfamily. Available chromosome data for this species includes only conventional staining. Hence, in order to provide additional information on karyotype evolution process within this group, we performed comparative chromosome painting between S. tyrannus and Gallus gallus (GGA). Our results revealed that at least 29 fission-fusion events occurred in the STY karyotype, based on homology with GGA. Fissions occurred mainly in syntenic groups homologous to GGA1-GGA5. On the other hand, the majority of the microchromosomes were found fused to other chromosomal elements in STY, indicating these rearrangements played an important role in the reduction of the 2n to 68. Comparison with hybridization pattern of the Japanese-Mountain-Eagle (Nisaetus nipalensis orientalis), the only Aquilinae analyzed by comparative chromosome painting previously, did not reveal any synapomorphy that could represent a chromosome signature to this subfamily. Therefore, conclusions about karyotype evolution in Aquilinae require additional painting studies.
Collapse
Affiliation(s)
- Carlos A. Carvalho
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Citogenômica e Mutagênese Ambiental, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Ivanete O. Furo
- Laboratório de Citogenômica e Mutagênese Ambiental, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
- Universidade Federal Rural da Amazônia (UFRA) Laboratório de Reprodução Animal (LABRAC), Parauapebas, Pará, Brazil
| | | | - Jorge Pereira
- Animal and Veterinary Research Center, Universidade de Trá-os-Montes e Alto douro, Vila Real, Portugal
| | | | - Darren Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Citogenômica e Mutagênese Ambiental, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
- Faculdade de Ciências Naturais, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
29
|
Waters PD, Patel HR, Ruiz-Herrera A, Álvarez-González L, Lister NC, Simakov O, Ezaz T, Kaur P, Frere C, Grützner F, Georges A, Graves JAM. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc Natl Acad Sci U S A 2021; 118:e2112494118. [PMID: 34725164 PMCID: PMC8609325 DOI: 10.1073/pnas.2112494118] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Microchromosomes, once considered unimportant shreds of the chicken genome, are gene-rich elements with a high GC content and few transposable elements. Their origin has been debated for decades. We used cytological and whole-genome sequence comparisons, and chromosome conformation capture, to trace their origin and fate in genomes of reptiles, birds, and mammals. We find that microchromosomes as well as macrochromosomes are highly conserved across birds and share synteny with single small chromosomes of the chordate amphioxus, attesting to their origin as elements of an ancient animal genome. Turtles and squamates (snakes and lizards) share different subsets of ancestral microchromosomes, having independently lost microchromosomes by fusion with other microchromosomes or macrochromosomes. Patterns of fusions were quite different in different lineages. Cytological observations show that microchromosomes in all lineages are spatially separated into a central compartment at interphase and during mitosis and meiosis. This reflects higher interaction between microchromosomes than with macrochromosomes, as observed by chromosome conformation capture, and suggests some functional coherence. In highly rearranged genomes fused microchromosomes retain most ancestral characteristics, but these may erode over evolutionary time; surprisingly, de novo microchromosomes have rapidly adopted high interaction. Some chromosomes of early-branching monotreme mammals align to several bird microchromosomes, suggesting multiple microchromosome fusions in a mammalian ancestor. Subsequently, multiple rearrangements fueled the extraordinary karyotypic diversity of therian mammals. Thus, microchromosomes, far from being aberrant genetic elements, represent fundamental building blocks of amniote chromosomes, and it is mammals, rather than reptiles and birds, that are atypical.
Collapse
Affiliation(s)
- Paul D Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hardip R Patel
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Nicholas C Lister
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, 1010 Vienna, Austria
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| | - Celine Frere
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Frank Grützner
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Jennifer A Marshall Graves
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia;
- School of Life Sciences, La Trobe University, Bundoora, VIC 3068, Australia
| |
Collapse
|
30
|
Kretschmer R, Franz I, de Souza MS, Garnero ADV, Gunski RJ, de Oliveira EHC, O’Connor RE, Griffin DK, de Freitas TRO. Cytogenetic Evidence Clarifies the Phylogeny of the Family Rhynchocyclidae (Aves: Passeriformes). Cells 2021; 10:2650. [PMID: 34685630 PMCID: PMC8534115 DOI: 10.3390/cells10102650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
The phylogenetic position and taxonomic status of Rhynchocyclidae (Aves: Passeriformes) have been the subject of debate since their first description. In most models, Rhynchocyclidae represents a subfamily-level taxon placed within the Tyrant Flycatchers (Tyrannidae). Considering that this classification does not include cytotaxonomic characters, we tested the hypothesis that the chromosome organization of Rhynchocyclidae members differs from that of Tyrannidae. Hence, we selected two species, Tolmomyias sulphurescens, and Pitangus sulphuratus, representing Rhynchocyclidae and Tyrannidae, respectively. Results revealed a diploid number (2n) of 60 in T. sulphurescens and 2n = 80 in P. sulphuratus, indicating significant chromosomal differences. Chromosome mapping of Gallus gallus (GGA) and Taeniopygia guttata bacterial artificial chromosome (BAC) corresponding to chromosomes GGA1-28 (except 16) revealed that the genome evolution of T. sulphurescens involved extensive chromosome fusions of macrochromosomes and microchromosomes. On the other hand, P. sulphuratus retained the ancestral pattern of organization of macrochromosomes (except the centric fission involving GGA1) and microchromosomes. In conclusion, comparing our results with previous studies in Tyrant Flycatchers and allies indicates that P. sulphuratus has similar karyotypes to other Tyrannidae members. However, T. sulphurescens does not resemble the Tyrannidae family, reinforcing family status to the clade named Rhynchocyclidae.
Collapse
Affiliation(s)
- Rafael Kretschmer
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.K.); (R.E.O.)
- Laboratório de Citogenética e Evolução, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil;
| | - Ismael Franz
- Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil;
| | - Marcelo Santos de Souza
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil; (M.S.d.S.); (A.D.V.G.); (R.J.G.)
| | - Analía Del Valle Garnero
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil; (M.S.d.S.); (A.D.V.G.); (R.J.G.)
| | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, RS, Brazil; (M.S.d.S.); (A.D.V.G.); (R.J.G.)
| | - Edivaldo Herculano Corrêa de Oliveira
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua 67030-000, PA, Brazil
| | - Rebecca E. O’Connor
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.K.); (R.E.O.)
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.K.); (R.E.O.)
| | - Thales Renato Ochotorena de Freitas
- Laboratório de Citogenética e Evolução, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil;
| |
Collapse
|
31
|
Huttener R, Thorrez L, Veld TI, Granvik M, Van Lommel L, Waelkens E, Derua R, Lemaire K, Goyvaerts L, De Coster S, Buyse J, Schuit F. Sequencing refractory regions in bird genomes are hotspots for accelerated protein evolution. BMC Ecol Evol 2021; 21:176. [PMID: 34537008 PMCID: PMC8449477 DOI: 10.1186/s12862-021-01905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Background Approximately 1000 protein encoding genes common for vertebrates are still unannotated in avian genomes. Are these genes evolutionary lost or are they not yet found for technical reasons? Using genome landscapes as a tool to visualize large-scale regional effects of genome evolution, we reexamined this question. Results On basis of gene annotation in non-avian vertebrate genomes, we established a list of 15,135 common vertebrate genes. Of these, 1026 were not found in any of eight examined bird genomes. Visualizing regional genome effects by our sliding window approach showed that the majority of these "missing" genes can be clustered to 14 regions of the human reference genome. In these clusters, an additional 1517 genes (often gene fragments) were underrepresented in bird genomes. The clusters of “missing” genes coincided with regions of very high GC content, particularly in avian genomes, making them “hidden” because of incomplete sequencing. Moreover, proteins encoded by genes in these sequencing refractory regions showed signs of accelerated protein evolution. As a proof of principle for this idea we experimentally characterized the mRNA and protein products of four "hidden" bird genes that are crucial for energy homeostasis in skeletal muscle: ALDOA, ENO3, PYGM and SLC2A4. Conclusions A least part of the “missing” genes in bird genomes can be attributed to an artifact caused by the difficulty to sequence regions with extreme GC% (“hidden” genes). Biologically, these “hidden” genes are of interest as they encode proteins that evolve more rapidly than the genome wide average. Finally we show that four of these “hidden” genes encode key proteins for energy metabolism in flight muscle. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01905-7.
Collapse
Affiliation(s)
- R Huttener
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Thorrez
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium.,Tissue Engineering Laboratory, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - T In't Veld
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - M Granvik
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - E Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - R Derua
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - K Lemaire
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Goyvaerts
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - S De Coster
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - J Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - F Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium.
| |
Collapse
|
32
|
Srikulnath K, Ahmad SF, Singchat W, Panthum T. Why Do Some Vertebrates Have Microchromosomes? Cells 2021; 10:2182. [PMID: 34571831 PMCID: PMC8466491 DOI: 10.3390/cells10092182] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
With more than 70,000 living species, vertebrates have a huge impact on the field of biology and research, including karyotype evolution. One prominent aspect of many vertebrate karyotypes is the enigmatic occurrence of tiny and often cytogenetically indistinguishable microchromosomes, which possess distinctive features compared to macrochromosomes. Why certain vertebrate species carry these microchromosomes in some lineages while others do not, and how they evolve remain open questions. New studies have shown that microchromosomes exhibit certain unique characteristics of genome structure and organization, such as high gene densities, low heterochromatin levels, and high rates of recombination. Our review focuses on recent concepts to expand current knowledge on the dynamic nature of karyotype evolution in vertebrates, raising important questions regarding the evolutionary origins and ramifications of microchromosomes. We introduce the basic karyotypic features to clarify the size, shape, and morphology of macro- and microchromosomes and report their distribution across different lineages. Finally, we characterize the mechanisms of different evolutionary forces underlying the origin and evolution of microchromosomes.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
33
|
Impact of Repetitive DNA Elements on Snake Genome Biology and Evolution. Cells 2021; 10:cells10071707. [PMID: 34359877 PMCID: PMC8303610 DOI: 10.3390/cells10071707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
The distinctive biology and unique evolutionary features of snakes make them fascinating model systems to elucidate how genomes evolve and how variation at the genomic level is interlinked with phenotypic-level evolution. Similar to other eukaryotic genomes, large proportions of snake genomes contain repetitive DNA, including transposable elements (TEs) and satellite repeats. The importance of repetitive DNA and its structural and functional role in the snake genome, remain unclear. This review highlights the major types of repeats and their proportions in snake genomes, reflecting the high diversity and composition of snake repeats. We present snakes as an emerging and important model system for the study of repetitive DNA under the impact of sex and microchromosome evolution. We assemble evidence to show that certain repetitive elements in snakes are transcriptionally active and demonstrate highly dynamic lineage-specific patterns as repeat sequences. We hypothesize that particular TEs can trigger different genomic mechanisms that might contribute to driving adaptive evolution in snakes. Finally, we review emerging approaches that may be used to study the expression of repetitive elements in complex genomes, such as snakes. The specific aspects presented here will stimulate further discussion on the role of genomic repeats in shaping snake evolution.
Collapse
|
34
|
Perry BW, Schield DR, Adams RH, Castoe TA. Microchromosomes Exhibit Distinct Features of Vertebrate Chromosome Structure and Function with Underappreciated Ramifications for Genome Evolution. Mol Biol Evol 2021; 38:904-910. [PMID: 32986808 PMCID: PMC7947875 DOI: 10.1093/molbev/msaa253] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Microchromosomes are common yet poorly understood components of many vertebrate genomes. Recent studies have revealed that microchromosomes contain a high density of genes and possess other distinct characteristics compared with macrochromosomes. Whether distinctive characteristics of microchromosomes extend to features of genome structure and organization, however, remains an open question. Here, we analyze Hi-C sequencing data from multiple vertebrate lineages and show that microchromosomes exhibit consistently high degrees of interchromosomal interaction (particularly with other microchromosomes), appear to be colocalized to a common central nuclear territory, and are comprised of a higher proportion of open chromatin than macrochromosomes. These findings highlight an unappreciated level of diversity in vertebrate genome structure and function, and raise important questions regarding the evolutionary origins and ramifications of microchromosomes and the genes that they house.
Collapse
Affiliation(s)
- Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Richard H Adams
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
35
|
Kretschmer R, Rodrigues BS, Barcellos SA, Costa AL, Cioffi MDB, Garnero ADV, Gunski RJ, de Oliveira EHC, Griffin DK. Karyotype Evolution and Genomic Organization of Repetitive DNAs in the Saffron Finch, Sicalis flaveola (Passeriformes, Aves). Animals (Basel) 2021; 11:ani11051456. [PMID: 34069485 PMCID: PMC8160697 DOI: 10.3390/ani11051456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
The Saffron finch (Sicalis flaveola), a semi-domestic species, is tolerant of human proximity and nesting in roof spaces. Considering the importance of cytogenomic approaches in revealing different aspects of genomic organization and evolution, we provide detailed cytogenetic data for S. flaveola, including the standard Giemsa karyotype, C- and G-banding, repetitive DNA mapping, and bacterial artificial chromosome (BAC) FISH. We also compared our results with the sister groups, Passeriformes and Psittaciformes, bringing new insights into the chromosome and genome evolution of birds. The results revealed contrasting rates of intrachromosomal changes, highlighting the role of SSR (simple short repetition probes) accumulation in the karyotype reorganization. The SSRs showed scattered hybridization, but brighter signals were observed in the microchromosomes and the short arms of Z chromosome in S. flaveola. BACs probes showed conservation of ancestral syntenies of macrochromosomes (except GGA1), as well as the tested microchromosomes. The comparison of our results with previous studies indicates that the great biological diversity observed in Passeriformes was not likely accompanied by interchromosomal changes. In addition, although repetitive sequences often act as hotspots of genome rearrangements, Passeriformes species showed a higher number of signals when compared with the sister group Psittaciformes, indicating that these sequences were not involved in the extensive karyotype reorganization seen in the latter.
Collapse
Affiliation(s)
| | | | - Suziane Alves Barcellos
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, Brazil; (S.A.B.); (A.L.C.); (A.d.V.G.); (R.J.G.)
| | - Alice Lemos Costa
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, Brazil; (S.A.B.); (A.L.C.); (A.d.V.G.); (R.J.G.)
| | - Marcelo de Bello Cioffi
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil;
| | - Analía del Valle Garnero
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, Brazil; (S.A.B.); (A.L.C.); (A.d.V.G.); (R.J.G.)
| | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, Brazil; (S.A.B.); (A.L.C.); (A.d.V.G.); (R.J.G.)
| | - Edivaldo Herculano Corrêa de Oliveira
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- Correspondence: ; Tel.: +44-1227-823022
| |
Collapse
|
36
|
Cheng P, Huang Y, Lv Y, Du H, Ruan Z, Li C, Ye H, Zhang H, Wu J, Wang C, Ruan R, Li Y, Bian C, You X, Shi C, Han K, Xu J, Shi Q, Wei Q. The American Paddlefish Genome Provides Novel Insights into Chromosomal Evolution and Bone Mineralization in Early Vertebrates. Mol Biol Evol 2021; 38:1595-1607. [PMID: 33331879 PMCID: PMC8042750 DOI: 10.1093/molbev/msaa326] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sturgeons and paddlefishes (Acipenseriformes) occupy the basal position of ray-finned fishes, although they have cartilaginous skeletons as in Chondrichthyes. This evolutionary status and their morphological specializations make them a research focus, but their complex genomes (polyploidy and the presence of microchromosomes) bring obstacles and challenges to molecular studies. Here, we generated the first high-quality genome assembly of the American paddlefish (Polyodon spathula) at a chromosome level. Comparative genomic analyses revealed a recent species-specific whole-genome duplication event, and extensive chromosomal changes, including head-to-head fusions of pairs of intact, large ancestral chromosomes within the paddlefish. We also provide an overview of the paddlefish SCPP (secretory calcium-binding phosphoprotein) repertoire that is responsible for tissue mineralization, demonstrating that the earliest flourishing of SCPP members occurred at least before the split between Acipenseriformes and teleosts. In summary, this genome assembly provides a genetic resource for understanding chromosomal evolution in polyploid nonteleost fishes and bone mineralization in early vertebrates.
Collapse
Affiliation(s)
- Peilin Cheng
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Hui Zhang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jinming Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chengyou Wang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Rui Ruan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yanping Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | | | - Kai Han
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Junming Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- Laboratory of Marine Genomics, School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
37
|
Kretschmer R, de Souza MS, Furo IDO, Romanov MN, Gunski RJ, Garnero ADV, de Freitas TRO, de Oliveira EHC, O’Connor RE, Griffin DK. Interspecies Chromosome Mapping in Caprimulgiformes, Piciformes, Suliformes, and Trogoniformes (Aves): Cytogenomic Insight into Microchromosome Organization and Karyotype Evolution in Birds. Cells 2021; 10:cells10040826. [PMID: 33916942 PMCID: PMC8067558 DOI: 10.3390/cells10040826] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/18/2023] Open
Abstract
Interchromosomal rearrangements involving microchromosomes are rare events in birds. To date, they have been found mostly in Psittaciformes, Falconiformes, and Cuculiformes, although only a few orders have been analyzed. Hence, cytogenomic studies focusing on microchromosomes in species belonging to different bird orders are essential to shed more light on the avian chromosome and karyotype evolution. Based on this, we performed a comparative chromosome mapping for chicken microchromosomes 10 to 28 using interspecies BAC-based FISH hybridization in five species, representing four Neoaves orders (Caprimulgiformes, Piciformes, Suliformes, and Trogoniformes). Our results suggest that the ancestral microchromosomal syntenies are conserved in Pteroglossus inscriptus (Piciformes), Ramphastos tucanus tucanus (Piciformes), and Trogon surrucura surrucura (Trogoniformes). On the other hand, chromosome reorganization in Phalacrocorax brasilianus (Suliformes) and Hydropsalis torquata (Caprimulgiformes) included fusions involving both macro- and microchromosomes. Fissions in macrochromosomes were observed in P. brasilianus and H. torquata. Relevant hypothetical Neognathae and Neoaves ancestral karyotypes were reconstructed to trace these rearrangements. We found no interchromosomal rearrangement involving microchromosomes to be shared between avian orders where rearrangements were detected. Our findings suggest that convergent evolution involving microchromosomal change is a rare event in birds and may be appropriate in cytotaxonomic inferences in orders where these rearrangements occurred.
Collapse
Affiliation(s)
- Rafael Kretschmer
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.K.); (M.N.R.); (R.E.O.)
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900 Rio Grande do Sul, Brazil;
| | - Marcelo Santos de Souza
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, 97300-162 Rio Grande do Sul, Brazil; (M.S.d.S.); (R.J.G.); (A.d.V.G.)
| | - Ivanete de Oliveira Furo
- Laboratório de Reprodução Animal, LABRAC, Universidade Federal Rural da Amazônia, UFRA, Parauapebas, 68515-000 Pará, Brazil;
| | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.K.); (M.N.R.); (R.E.O.)
| | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, 97300-162 Rio Grande do Sul, Brazil; (M.S.d.S.); (R.J.G.); (A.d.V.G.)
| | - Analía del Valle Garnero
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, 97300-162 Rio Grande do Sul, Brazil; (M.S.d.S.); (R.J.G.); (A.d.V.G.)
| | | | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, 67030-000 Pará, Brazil;
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, 66075-110 Pará, Brazil
| | - Rebecca E. O’Connor
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.K.); (M.N.R.); (R.E.O.)
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.K.); (M.N.R.); (R.E.O.)
- Correspondence: ; Tel.: +44-1227-823022
| |
Collapse
|
38
|
Lamb TD. Analysis of Paralogons, Origin of the Vertebrate Karyotype, and Ancient Chromosomes Retained in Extant Species. Genome Biol Evol 2021; 13:6159445. [PMID: 33751101 PMCID: PMC8040251 DOI: 10.1093/gbe/evab044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 01/06/2023] Open
Abstract
A manually curated set of ohnolog families has been assembled, for seven species of bony vertebrates, that includes 255 four-member families and 631 three-member families, encompassing over 2,900 ohnologs. Across species, the patterns of chromosomes upon which the ohnologs reside fall into 17 distinct categories. These 17 paralogons reflect the 17 ancestral chromosomes that existed in our chordate ancestor immediately prior to the two rounds of whole-genome duplication (2R-WGD) that occurred around 600 Ma. Within each paralogon, it has now been possible to assign those pairs of ohnologs that diverged from each other at the first round of duplication, through analysis of the molecular phylogeny of four-member families. Comparison with another recent analysis has identified four apparently incorrect assignments of pairings following 2R, along with several omissions, in that study. By comparison of the patterns between paralogons, it has also been possible to identify nine chromosomal fusions that occurred between 1R and 2R, and three chromosomal fusions that occurred after 2R, that generated an ancestral bony-vertebrate karyotype comprising 47 chromosomes. At least 27 of those ancestral bony-vertebrate chromosomes can, in some extant species, be shown not to have undergone any fusion or fission events. Such chromosomes are here termed “archeochromosomes,” and have each survived essentially unchanged in their content of genes for some 400 Myr. Their utility lies in their potential for tracking the various fusion and fission events that have occurred in different lineages throughout the expansion of bony vertebrates.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
39
|
Ribas TFA, Pieczarka JC, Griffin DK, Kiazim LG, Nagamachi CY, O Brien PCM, Ferguson-Smith MA, Yang F, Aleixo A, O'Connor RE. Analysis of multiple chromosomal rearrangements in the genome of Willisornis vidua using BAC-FISH and chromosome painting on a supposed conserved karyotype. BMC Ecol Evol 2021; 21:34. [PMID: 33653261 PMCID: PMC7927240 DOI: 10.1186/s12862-021-01768-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Thamnophilidae birds are the result of a monophyletic radiation of insectivorous Passeriformes. They are a diverse group of 225 species and 45 genera and occur in lowlands and lower montane forests of Neotropics. Despite the large degree of diversity seen in this family, just four species of Thamnophilidae have been karyotyped with a diploid number ranging from 76 to 82 chromosomes. The karyotypic relationships within and between Thamnophilidae and another Passeriformes therefore remain poorly understood. Recent studies have identified the occurrence of intrachromosomal rearrangements in Passeriformes using in silico data and molecular cytogenetic tools. These results demonstrate that intrachromosomal rearrangements are more common in birds than previously thought and are likely to contribute to speciation events. With this in mind, we investigate the apparently conserved karyotype of Willisornis vidua, the Xingu Scale-backed Antbird, using a combination of molecular cytogenetic techniques including chromosome painting with probes derived from Gallus gallus (chicken) and Burhinus oedicnemus (stone curlew), combined with Bacterial Artificial Chromosome (BAC) probes derived from the same species. The goal was to investigate the occurrence of rearrangements in an apparently conserved karyotype in order to understand the evolutionary history and taxonomy of this species. In total, 78 BAC probes from the Gallus gallus and Taeniopygia guttata (the Zebra Finch) BAC libraries were tested, of which 40 were derived from Gallus gallus macrochromosomes 1-8, and 38 from microchromosomes 9-28. RESULTS The karyotype is similar to typical Passeriformes karyotypes, with a diploid number of 2n = 80. Our chromosome painting results show that most of the Gallus gallus chromosomes are conserved, except GGA-1, 2 and 4, with some rearrangements identified among macro- and microchromosomes. BAC mapping revealed many intrachromosomal rearrangements, mainly inversions, when comparing Willisornis vidua karyotype with Gallus gallus, and corroborates the fissions revealed by chromosome painting. CONCLUSIONS Willisornis vidua presents multiple chromosomal rearrangements despite having a supposed conservative karyotype, demonstrating that our approach using a combination of FISH tools provides a higher resolution than previously obtained by chromosome painting alone. We also show that populations of Willisornis vidua appear conserved from a cytogenetic perspective, despite significant phylogeographic structure.
Collapse
Affiliation(s)
- Talita Fernanda Augusto Ribas
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- School of Biosciences, University of Kent, Canterbury, UK
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | - Lucas G Kiazim
- School of Biosciences, University of Kent, Canterbury, UK
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Patricia Caroline Mary O Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Fengtang Yang
- Cytogenetics Facility, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Alexandre Aleixo
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
40
|
Liu J, Wang Z, Li J, Xu L, Liu J, Feng S, Guo C, Chen S, Ren Z, Rao J, Wei K, Chen Y, Jarvis ED, Zhang G, Zhou Q. A new emu genome illuminates the evolution of genome configuration and nuclear architecture of avian chromosomes. Genome Res 2021; 31:497-511. [PMID: 33408157 PMCID: PMC7919449 DOI: 10.1101/gr.271569.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023]
Abstract
Emu and other ratites are more informative than any other birds in reconstructing the evolution of the ancestral avian or vertebrate karyotype because of their much slower rate of genome evolution. Here, we generated a new chromosome-level genome assembly of a female emu, and estimated the tempo of chromosome evolution across major avian phylogenetic branches, by comparing it to chromosome-level genome assemblies of 11 other bird and one turtle species. We found ratites exhibited the lowest numbers of intra- and inter-chromosomal changes among birds since their divergence with turtles. The small-sized and gene-rich emu microchromosomes have frequent inter-chromosomal contacts that are associated with housekeeping genes, which appears to be driven by clustering their centromeres in the nuclear interior, away from the macrochromosomes in the nuclear periphery. Unlike nonratite birds, only less than one-third of the emu W Chromosome regions have lost homologous recombination and diverged between the sexes. The emu W is demarcated into a highly heterochromatic region (WS0) and another recently evolved region (WS1) with only moderate sequence divergence with the Z Chromosome. WS1 has expanded its inactive chromatin compartment, increased chromatin contacts within the region, and decreased contacts with the nearby regions, possibly influenced by the spreading of heterochromatin from WS0. These patterns suggest that alteration of chromatin conformation comprises an important early step of sex chromosome evolution. Overall, our results provide novel insights into the evolution of avian genome structure and sex chromosomes in three-dimensional space.
Collapse
Affiliation(s)
- Jing Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
| | - Zongji Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China
| | - Jing Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
| | - Jiaqi Liu
- Wuhan Gooalgene Technology Company, Wuhan 430070, China
| | - Shaohong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Chunxue Guo
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Shengchan Chen
- Longteng Ecological Culture Company, Limited, Zhashui 711400, China
| | - Zhanjun Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jinpeng Rao
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Kai Wei
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Yuezhou Chen
- Jianzhou Poultry Industry Company, Limited, Yong'an 366000, China
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, New York 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| |
Collapse
|
41
|
Comparative Mapping of the Macrochromosomes of Eight Avian Species Provides Further Insight into Their Phylogenetic Relationships and Avian Karyotype Evolution. Cells 2021; 10:cells10020362. [PMID: 33572408 PMCID: PMC7916199 DOI: 10.3390/cells10020362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Avian genomes typically consist of ~10 pairs of macro- and ~30 pairs of microchromosomes. While inter-chromosomally, a pattern emerges of very little change (with notable exceptions) throughout evolution, intrachromosomal changes remain relatively poorly studied. To rectify this, here we use a pan-avian universally hybridising set of 74 chicken bacterial artificial chromosome (BAC) probes on the macrochromosomes of eight bird species: common blackbird, Atlantic canary, Eurasian woodcock, helmeted guinea fowl, houbara bustard, mallard duck, and rock dove. A combination of molecular cytogenetic, bioinformatics, and mathematical analyses allowed the building of comparative cytogenetic maps, reconstruction of a putative Neognathae ancestor, and assessment of chromosome rearrangement patterns and phylogenetic relationships in the studied neognath lineages. We observe that, as with our previous studies, chicken appears to have the karyotype most similar to the ancestor; however, previous reports of an increased rate of intrachromosomal change in Passeriformes (songbirds) appear not to be the case in our dataset. The use of this universally hybridizing probe set is applicable not only for the re-tracing of avian karyotype evolution but, potentially, for reconstructing genome assemblies.
Collapse
|
42
|
Furo IDO, Kretschmer R, O'Brien PCM, Pereira JCDC, Gunski RJ, Garnero ADV, O'Connor RE, Griffin DK, Ferguson-Smith MA, Oliveira EHCD. Cytotaxonomy of Gallinula melanops (Gruiformes, Rallidae): Karyotype evolution and phylogenetic inference. Genet Mol Biol 2021; 44:e20200241. [PMID: 33821875 PMCID: PMC8022357 DOI: 10.1590/1678-4685-gmb-2020-0241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/29/2021] [Indexed: 11/22/2022] Open
Abstract
Although Rallidae is the most diverse family within Gruiformes, there is little information concerning the karyotype of the species in this group. In fact, Gallinula melanops, a species of Rallidae found in Brazil, is among the few species studied cytogenetically, but only with conventional staining and repetitive DNA mapping, showing 2n=80. Thus, in order to understand the karyotypic evolution and phylogeny of this group, the present study aimed to analyze the karyotype of G. melanops by classical and molecular cytogenetics, comparing the results with other species of Gruiformes. The results show that G. melanops has the same chromosome rearrangements as described in Gallinula chloropus (Clade Fulica), including fission of ancestral chromosomes 4 and 5 of Gallus gallus (GGA), beyond the fusion between two of segments resultants of the GGA4/GGA5, also fusions between the chromosomes GGA6/GGA7. Thus, despite the fact that some authors have suggested the inclusion of G. melanops in genus Porphyriops, our molecular cytogenetic results confirm its place in the Gallinula genus.
Collapse
Affiliation(s)
- Ivanete de Oliveira Furo
- Universidade Federal Rural da Amazônia (UFRA) Laboratório de Reprodução Animal (LABRAC), Parauapebas, PA, Brazil
- University of Cambridge Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
| | - Rafael Kretschmer
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Porto Alegre, RS, Brazil
- University of Kent, School of Biosciences, Canterbury, United Kingdom
| | - Patricia C M O'Brien
- University of Cambridge Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
| | - Jorge Claudio da Costa Pereira
- University of Cambridge Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
- University of Trás-os-Montes and Alto Douro (UTAD), Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Ricardo José Gunski
- Universidade Federal do Pampa, Programa de Pós-graduação em Ciências Biológicas (PPGCB), São Gabriel, RS, Brazil
| | - Analía Del Valle Garnero
- Universidade Federal do Pampa, Programa de Pós-graduação em Ciências Biológicas (PPGCB), São Gabriel, RS, Brazil
| | | | | | - Malcolm A Ferguson-Smith
- University of Cambridge Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
| | - Edivaldo Herculano Corrêa de Oliveira
- Instituto Evandro Chagas, Laboratório de Cultura de Tecidos e Citogenética (SAMAM), Ananindeua, PA, Brazil
- Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Belém, PA, Brazil
| |
Collapse
|
43
|
Chromosomal Analysis in Crotophaga ani (Aves, Cuculiformes) Reveals Extensive Genomic Reorganization and an Unusual Z-Autosome Robertsonian Translocation. Cells 2020; 10:cells10010004. [PMID: 33375072 PMCID: PMC7822047 DOI: 10.3390/cells10010004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 01/14/2023] Open
Abstract
Although cytogenetics studies in cuckoos (Aves, Cuculiformes) have demonstrated an interesting karyotype variation, such as variations in the chromosome morphology and diploid number, their chromosome organization and evolution, and relation with other birds are poorly understood. Hence, we combined conventional and molecular cytogenetic approaches to investigate chromosome homologies between chicken and the smooth-billed ani (Crotophaga ani). Our results demonstrate extensive chromosome reorganization in C. ani, with interchromosomal rearrangements involving macro and microchromosomes. Intrachromosomal rearrangements were observed in some macrochromosomes, including the Z chromosome. The most evolutionary notable finding was a Robertsonian translocation between the microchromosome 17 and the Z chromosome, a rare event in birds. Additionally, the simple short repeats (SSRs) tested here were preferentially accumulated in the microchromosomes and in the Z and W chromosomes, showing no relationship with the constitutive heterochromatin regions, except in the W chromosome. Taken together, our results suggest that the avian sex chromosome is more complex than previously postulated and revealed the role of microchromosomes in the avian sex chromosome evolution, especially cuckoos.
Collapse
|
44
|
Ahmad SF, Singchat W, Jehangir M, Panthum T, Srikulnath K. Consequence of Paradigm Shift with Repeat Landscapes in Reptiles: Powerful Facilitators of Chromosomal Rearrangements for Diversity and Evolution. Genes (Basel) 2020; 11:E827. [PMID: 32708239 PMCID: PMC7397244 DOI: 10.3390/genes11070827] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Reptiles are notable for the extensive genomic diversity and species richness among amniote classes, but there is nevertheless a need for detailed genome-scale studies. Although the monophyletic amniotes have recently been a focus of attention through an increasing number of genome sequencing projects, the abundant repetitive portion of the genome, termed the "repeatome", remains poorly understood across different lineages. Consisting predominantly of transposable elements or mobile and satellite sequences, these repeat elements are considered crucial in causing chromosomal rearrangements that lead to genomic diversity and evolution. Here, we propose major repeat landscapes in representative reptilian species, highlighting their evolutionary dynamics and role in mediating chromosomal rearrangements. Distinct karyotype variability, which is typically a conspicuous feature of reptile genomes, is discussed, with a particular focus on rearrangements correlated with evolutionary reorganization of micro- and macrochromosomes and sex chromosomes. The exceptional karyotype variation and extreme genomic diversity of reptiles are used to test several hypotheses concerning genomic structure, function, and evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Integrative Genomics Lab-LGI, Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| |
Collapse
|
45
|
Furo IDO, Kretschmer R, O'Brien PC, Pereira JC, Garnero ADV, Gunski RJ, O'Connor RE, Griffin DK, Gomes AJB, Ferguson-Smith MA, de Oliveira EHC. Chromosomal Evolution in the Phylogenetic Context: A Remarkable Karyotype Reorganization in Neotropical Parrot Myiopsitta monachus (Psittacidae). Front Genet 2020; 11:721. [PMID: 32754200 PMCID: PMC7366516 DOI: 10.3389/fgene.2020.00721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Myiopsitta monachus is a small Neotropical parrot (Psittaciformes: Arini Tribe) from subtropical and temperate regions of South America. It has a diploid chromosome number 2n = 48, different from other members of the Arini Tribe that have usually 70 chromosomes. The species has the lowest 2n within the Arini Tribe. In this study, we combined comparative chromosome painting with probes generated from chromosomes of Gallus gallus and Leucopternis albicollis, and FISH with bacterial artificial chromosomes (BACs) selected from the genome library of G. gallus with the aim to shed light on the dynamics of genome reorganization in M. monachus in the phylogenetic context. The homology maps showed a great number of fissions in macrochromosomes, and many fusions between microchromosomes and fragments of macrochromosomes. Our phylogenetic analysis by Maximum Parsimony agree with molecular data, placing M. monachus in a basal position within the Arini Tribe, together with Amazona aestiva (short tailed species). In M. monachus many chromosome rearrangements were found to represent autopomorphic characters, indicating that after this species split as an independent branch, an intensive karyotype reorganization took place. In addition, our results show that M. monachus probes generated by flow cytometry provide novel cytogenetic tools for the detection of avian chromosome rearrangements, since this species presents breakpoints that have not been described in other species.
Collapse
Affiliation(s)
- Ivanete de Oliveira Furo
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Cultura de Tecidos e Citogenética, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Brazil.,Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Rafael Kretschmer
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Patricia Caroline O'Brien
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Jorge C Pereira
- Animal and Veterinary Research Centre (CEVAV), University of Tràs-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | | | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | | | | | | | - Malcolm Andrew Ferguson-Smith
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Edivaldo Herculano Correa de Oliveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Cultura de Tecidos e Citogenética, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Brazil.,Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
46
|
Kretschmer R, Furo IDO, Gomes AJB, Kiazim LG, Gunski RJ, Garnero ADV, Pereira JC, Ferguson-Smith MA, de Oliveira EHC, Griffin DK, de Freitas TRO, O’Connor RE. A Comprehensive Cytogenetic Analysis of Several Members of the Family Columbidae (Aves, Columbiformes). Genes (Basel) 2020; 11:genes11060632. [PMID: 32521831 PMCID: PMC7349364 DOI: 10.3390/genes11060632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 11/18/2022] Open
Abstract
The Columbidae species (Aves, Columbiformes) show considerable variation in their diploid numbers (2n = 68-86), but there is limited understanding of the events that shaped the extant karyotypes. Hence, we performed whole chromosome painting (wcp) for paints GGA1-10 and bacterial artificial chromosome (BAC) probes for chromosomes GGA11-28 for Columbina passerina, Columbina talpacoti, Patagioenas cayennensis, Geotrygon violacea and Geotrygon montana. Streptopelia decaocto was only investigated with paints because BACs for GGA10-28 had been previously analyzed. We also performed phylogenetic analyses in order to trace the evolutionary history of this family in light of chromosomal changes using our wcp data with chicken probes and from Zenaida auriculata, Columbina picui, Columba livia and Leptotila verreauxi, previously published. G-banding was performed on all these species. Comparative chromosome paint and G-banding results suggested that at least one interchromosomal and many intrachromosomal rearrangements had occurred in the diversification of Columbidae species. On the other hand, a high degree of conservation of microchromosome organization was observed in these species. Our cladistic analysis, considering all the chromosome rearrangements detected, provided strong support for L. verreauxi and P. cayennensis, G. montana and G. violacea, C. passerina and C. talpacoti having sister taxa relationships, as well as for all Columbidae species analyzed herein. Additionally, the chromosome characters were mapped in a consensus phylogenetic topology previously proposed, revealing a pericentric inversion in the chromosome homologous to GGA4 in a chromosomal signature unique to small New World ground doves.
Collapse
Affiliation(s)
- Rafael Kretschmer
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (L.G.K.); (D.K.G.);
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil;
- Correspondence:
| | - Ivanete de Oliveira Furo
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil;
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil;
| | | | - Lucas G. Kiazim
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (L.G.K.); (D.K.G.);
| | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, Brazil; (R.J.G.); (A.d.V.G.)
| | - Analía del Valle Garnero
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel 97300-162, Brazil; (R.J.G.); (A.d.V.G.)
| | - Jorge C. Pereira
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, University of Cambridge Department of Veterinary Medicine, Cambridge CB3 0ES, UK;
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil;
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (L.G.K.); (D.K.G.);
| | | | - Rebecca E. O’Connor
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (L.G.K.); (D.K.G.);
| |
Collapse
|
47
|
Wilcox JJS, Boissinot S, Idaghdour Y. Falcon genomics in the context of conservation, speciation, and human culture. Ecol Evol 2019; 9:14523-14537. [PMID: 31938538 PMCID: PMC6953694 DOI: 10.1002/ece3.5864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Here, we review the diversity, evolutionary history, and genomics of falcons in the context of their conservation and interactions with humans, and provide a perspective on how new genomic approaches may be applied to expand our knowledge of these topics. For millennia, humans and falcons (genus Falco) have developed unique relationships through falconry, religious rituals, conservation efforts, and human lifestyle transitions. From an evolutionary perspective, falcons remain an enigma. Having experienced several recent radiations, they have reached an unparalleled and almost global distribution, with an intrageneric species richness that is roughly an order of magnitude higher than typical within their family (Falconidae) and across other birds (Phylum: Aves). This diversity has evolved in the context of unusual genomic architecture that includes unique chromosomal rearrangements, relatively low chromosome counts, extremely low microdeletion rates, and high levels of nuclear mitochondrial DNA segments (NUMTs). These genomic peculiarities combine with high levels of ecological and organismal diversity and a legacy of human interactions to make falcons obvious candidates for evolutionary studies, providing unique research opportunities in common topics, including chromosomal evolution, the mechanics of speciation, local adaptation, domestication, and urban adaptation.
Collapse
Affiliation(s)
- Justin J. S. Wilcox
- Center for Genomics & Systems BiologyNew York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Stéphane Boissinot
- Center for Genomics & Systems BiologyNew York University Abu DhabiAbu DhabiUnited Arab Emirates
- Program in BiologyNew York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Youssef Idaghdour
- Center for Genomics & Systems BiologyNew York University Abu DhabiAbu DhabiUnited Arab Emirates
- Program in BiologyNew York University Abu DhabiAbu DhabiUnited Arab Emirates
| |
Collapse
|
48
|
Seligmann ICA, Furo IO, Dos Santos MS, Tagliarini MM, Araujo CCD, O''Brien PCM, Ferguson-Smith MA, de Oliveira EHC. Comparative Chromosome Painting in Two Brazilian Stork Species with Different Diploid Numbers. Cytogenet Genome Res 2019; 159:32-38. [PMID: 31542782 DOI: 10.1159/000503019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2019] [Indexed: 11/19/2022] Open
Abstract
Despite the variation observed in the diploid chromosome number of storks (Ciconiiformes, Ciconiidae), from 2n = 52 to 2n = 78, most reports have relied solely on analyses by conventional staining. As most species have similar macrochromosomes, some authors propose that karyotype evolution involves mainly fusions between microchromosomes, which are highly variable in species with different diploid numbers. In order to verify this hypothesis, in this study, the karyotypes of 2 species of storks from South America with different diploid numbers, the jabiru (Jabiru mycteria, 2n = 56) and the maguary stork (Ciconia maguary, 2n = 72), were analyzed by chromosome painting using whole chromosome probes from the macrochromosomes of Gallus gallus (GGA) and Leucopternis albicollis (LAL). The results revealed that J. mycteria and C. maguary share synteny within chromosome pairs 1-9 and Z. The syntenies to the macrochromosomes of G. gallus are conserved, except for GGA4, which is homologous to 2 different pairs, as in most species of birds. A fusion of GGA8 and GGA9 was observed in both species. Additionally, chromosomes corresponding to GGA4p and GGA6 are fused to other segments that did not hybridize to any of the macrochromosome probes used, suggesting that these segments correspond to microchromosomes. Hence, our data corroborate the proposed hypothesis that karyotype evolution is based on fusions involving microchromosomes. In view of the morphological constancy of the macrochromosome pairs in most Ciconiidae, we propose a putative ancestral karyotype for the family, including the GGA8/GGA9 fusion, and a diploid number of 2n = 78. The use of probes for microchromosome pairs should be the next step in identifying other synapomorphies that may help to clarify the phylogeny of this family.
Collapse
|
49
|
Comparative Phylogenomics, a Stepping Stone for Bird Biodiversity Studies. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11070115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Birds are a group with immense availability of genomic resources, and hundreds of forthcoming genomes at the doorstep. We review recent developments in whole genome sequencing, phylogenomics, and comparative genomics of birds. Short read based genome assemblies are common, largely due to efforts of the Bird 10K genome project (B10K). Chromosome-level assemblies are expected to increase due to improved long-read sequencing. The available genomic data has enabled the reconstruction of the bird tree of life with increasing confidence and resolution, but challenges remain in the early splits of Neoaves due to their explosive diversification after the Cretaceous-Paleogene (K-Pg) event. Continued genomic sampling of the bird tree of life will not just better reflect their evolutionary history but also shine new light onto the organization of phylogenetic signal and conflict across the genome. The comparatively simple architecture of avian genomes makes them a powerful system to study the molecular foundation of bird specific traits. Birds are on the verge of becoming an extremely resourceful system to study biodiversity from the nucleotide up.
Collapse
|
50
|
Griffin DK, Larkin DM, O'Connor RE. Time lapse: A glimpse into prehistoric genomics. Eur J Med Genet 2019; 63:103640. [PMID: 30922926 PMCID: PMC7026692 DOI: 10.1016/j.ejmg.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/10/2019] [Indexed: 11/28/2022]
Abstract
For the purpose of this review, ‘time-lapse’ refers to the reconstruction of ancestral (in this case dinosaur) karyotypes using genome assemblies of extant species. Such reconstructions are only usually possible when genomes are assembled to ‘chromosome level’ i.e. a complete representation of all the sequences, correctly ordered contiguously on each of the chromosomes. Recent paleontological evidence is very clear that birds are living dinosaurs, the latest example of dinosaurs emerging from a catastrophic extinction event. Non-avian dinosaurs (ever present in the public imagination through art, and broadcast media) emerged some 240 million years ago and have displayed incredible phenotypic diversity. Here we report on our recent studies to infer the overall karyotype of the Theropod dinosaur lineage from extant avian chromosome level genome assemblies. Our work first focused on determining the likely karyotype of the avian ancestor (most likely a chicken-sized, two-legged, feathered, land dinosaur from the Jurassic period) finding karyotypic similarity to the chicken. We then took the work further to determine the likely karyotype of the bird-lizard ancestor and the chromosomal changes (chiefly translocations and inversions) that occurred between then and modern birds. A combination of bioinformatics and cross-species fluorescence in situ hybridization (zoo-FISH) uncovered a considerable number of translocations and fissions from a ‘lizard-like’ genome structure of 2n = 36–46 to one similar to that of soft-shelled turtles (2n = 66) from 275 to 255 million years ago (mya). Remarkable karyotypic similarities between some soft-shelled turtles and chicken suggests that there were few translocations from the bird-turtle ancestor (plus ∼7 fissions) through the dawn of the dinosaurs and pterosaurs, through the theropod linage and on to most to modern birds. In other words, an avian-like karyotype was in place about 240mya when the dinosaurs and pterosaurs first emerged. We mapped 49 chromosome inversions from then to the present day, uncovering some gene ontology enrichment in evolutionary breakpoint regions. This avian-like karyotype with its many (micro)chromosomes provides the basis for variation (the driver of natural selection) through increased random segregation and recombination. It may therefore contribute to the ability of dinosaurs to survive multiple extinction events, emerging each time as speciose and diverse.
Collapse
Affiliation(s)
- Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU, UK.
| | - Rebecca E O'Connor
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK. R.O'
| |
Collapse
|