1
|
Lei L, Chen C, Zhu J, Wang Y, Liu X, Liu H, Geng L, Su J, Li W, Zhu X. Transcriptome analysis reveals key genes and pathways related to sex differentiation in the Chinese soft-shelled turtle (Pelodiscus sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100986. [PMID: 35447559 DOI: 10.1016/j.cbd.2022.100986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Most vertebrates exhibit sexual dimorphisms in size, colour, behaviour, physiology and many others. The Chinese soft-shelled turtle (Pelodiscus sinensis) male individuals reach a larger size than females which produce significant economic implications in aquaculture. However, the mechanisms of sex determination and plastic patterns of sex differentiation in P. sinensis remain unclear. Here, comparative transcriptome analysis on male and female embryonic gonads prior to gonad formation and stages mediated gonadal differentiation of P. sinensis were performed to characterize the potential sex-related genes and their molecular pathways in P. sinensis. A total of 6369 differentially expressed genes (DEGs) were identified from day 9 and day 16 and assigned to 626 GO pathways and 161 KEGG signalling pathways, including ovarian steroidogenesis pathway, steroid hormone biosynthesis pathways, and the GnRH signalling pathway (P < 0.05). Moreover, protein interaction network analyses revealed that Akr1c3, Sult2b1, Sts, Cyp3a, Cyp1b1, Sox30 and Lhx9 might be key candidate genes for sex differentiation in P. sinensis. These data provide a genomic rationale for the sex differentiation of P. sinensis and enrich the candidate gene pool for sex differentiation.
Collapse
Affiliation(s)
- Luo Lei
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Junxian Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Haiyang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Lulu Geng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China
| | - Junyu Su
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China.
| | - Xinping Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China.
| |
Collapse
|
2
|
Vitak N, Hume DA, Chappell KJ, Sester DP, Stacey KJ. Induction of interferon and cell death in response to cytosolic DNA in chicken macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 59:145-152. [PMID: 26828392 DOI: 10.1016/j.dci.2016.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Responses to cytosolic DNA can protect against both infectious organisms and the mutagenic effect of DNA integration. Recognition of invading DNA is likely to be fundamental to eukaryotic cellular life, but has been described only in mammals. Introduction of DNA into chicken macrophages induced type I interferon mRNA via a pathway conserved with mammals, requiring the receptor cGAS and the signalling protein STING. A second pathway of cytosolic DNA recognition in mammalian macrophages, initiated by absent in melanoma 2 (AIM2), results in rapid inflammasome-mediated pyroptotic cell death. AIM2 is restricted to mammals. Nevertheless, chicken macrophages underwent lytic cell death within 15 min of DNA transfection. The mouse AIM2-mediated response requires double stranded DNA, but chicken cell death was maintained with denatured DNA. This appears to be a novel form of rapid necrotic cell death, which we propose is an ancient response rendered redundant in mammalian macrophages by the appearance of the AIM2 inflammasome. The retention of these cytosolic DNA responses through evolution, with both conserved and non-conserved mechanisms, suggests a fundamental importance in cellular defence.
Collapse
Affiliation(s)
- Nazarii Vitak
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Qld 4072, Australia
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Keith J Chappell
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Qld 4072, Australia
| | - David P Sester
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Qld 4072, Australia.
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
3
|
Garcia-Morales C, Nandi S, Zhao D, Sauter KA, Vervelde L, McBride D, Sang HM, Clinton M, Hume DA. Cell-autonomous sex differences in gene expression in chicken bone marrow-derived macrophages. THE JOURNAL OF IMMUNOLOGY 2015; 194:2338-44. [PMID: 25637020 PMCID: PMC4337484 DOI: 10.4049/jimmunol.1401982] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have identified differences in gene expression in macrophages grown from the bone marrow of male and female chickens in recombinant chicken M-CSF (CSF1). Cells were profiled with or without treatment with bacterial LPS for 24 h. Approximately 600 transcripts were induced by prolonged LPS stimulation to an equal extent in the male and female macrophages. Many transcripts encoded on the Z chromosome were expressed ∼1.6-fold higher in males, reflecting a lack of dosage compensation in the homogametic sex. A smaller set of W chromosome–specific genes was expressed only in females. LPS signaling in mammals is associated with induction of type 1 IFN–responsive genes. Unexpectedly, because IFNs are encoded on the Z chromosome of chickens, unstimulated macrophages from the female birds expressed a set of known IFN-inducible genes at much higher levels than male cells under the same conditions. To confirm that these differences were not the consequence of the actions of gonadal hormones, we induced gonadal sex reversal to alter the hormonal environment of the developing chick and analyzed macrophages cultured from male, female, and female sex-reversed embryos. Gonadal sex reversal did not alter the sexually dimorphic expression of either sex-linked or IFN-responsive genes. We suggest that female birds compensate for the reduced dose of inducible IFN with a higher basal set point of IFN-responsive genes.
Collapse
Affiliation(s)
- Carla Garcia-Morales
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom
| | - Sunil Nandi
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom
| | - Debiao Zhao
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom
| | - Kristin A Sauter
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom
| | - Lonneke Vervelde
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom
| | - Derek McBride
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom
| | - Helen M Sang
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom
| | - Mike Clinton
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom
| | - David A Hume
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom
| |
Collapse
|
4
|
Goossens KE, Ward AC, Lowenthal JW, Bean AGD. Chicken interferons, their receptors and interferon-stimulated genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:370-376. [PMID: 23751330 DOI: 10.1016/j.dci.2013.05.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 06/02/2023]
Abstract
The prevalence of pathogenic viruses is a serious issue as they pose a constant threat to both the poultry industry and to human health. To prevent these viral infections an understanding of the host-virus response is critical, especially for the development of novel therapeutics. One approach in the control of viral infections would be to boost the immune response through administration of cytokines, such as interferons. However, the innate immune response in chickens is poorly characterised, particularly concerning the interferon pathway. This review will provide an overview of our current understanding of the interferon system of chickens, including their cognate receptors and known interferon-stimulated gene products.
Collapse
Affiliation(s)
- Kate E Goossens
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratories, Geelong, VIC, Australia
| | | | | | | |
Collapse
|
5
|
Stiglec R, Ezaz T, Graves JAM. A new look at the evolution of avian sex chromosomes. Cytogenet Genome Res 2007; 117:103-9. [PMID: 17675850 DOI: 10.1159/000103170] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 07/26/2006] [Indexed: 12/16/2022] Open
Abstract
Birds have a ubiquitous, female heterogametic, ZW sex chromosome system. The current model suggests that the Z chromosome and its degraded partner, the W chromosome, evolved from an ancestral pair of autosomes independently from the mammalian XY male heteromorphic sex chromosomes--which are similar in size, but not gene content (Graves, 1995; Fridolfsson et al., 1998). Furthermore the degradation of the W has been proposed to be progressive, with the basal clade of birds (the ratites) possessing virtually homomorphic sex chromosomes and the more recently derived birds (the carinates) possessing highly heteromorphic sex chromosomes (Ohno, 1967; Solari, 1993). Recent findings have suggested an alternative to independent evolution of bird and mammal chromosomes, in which an XY system took over directly from an ancestral ZW system. Here we examine recent research into avian sex chromosomes and offer alternative suggestions as to their evolution.
Collapse
Affiliation(s)
- R Stiglec
- Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, Canberra, Australia.
| | | | | |
Collapse
|
6
|
Stiglec R, Kohn M, Fong J, Ezaz T, Hameister H, Marshall Graves JA. Frequency of cancer genes on the chicken z chromosome and its human homologues: implications for sex chromosome evolution. Comp Funct Genomics 2007:43070. [PMID: 17538687 PMCID: PMC1876622 DOI: 10.1155/2007/43070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/27/2006] [Accepted: 11/19/2006] [Indexed: 12/01/2022] Open
Abstract
It has been suggested that there are special evolutionary forces that act on sex chromosomes. Hemizygosity of the X chromosome in male mammals has led to selection for male-advantage genes, and against genes posing extreme risks of tumor development. A similar bias against cancer genes should also apply to the Z chromosome that is present as a single copy in female birds. Using comparative database analysis, we found that there was no significant underrepresentation of cancer genes on the chicken Z, nor on the Z-orthologous regions of human chromosomes 5 and 9. This result does not support the hypothesis that genes involved in cancer are selected against on the sex chromosomes.
Collapse
Affiliation(s)
- Rami Stiglec
- Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200,
Australia
- *Rami Stiglec:
| | - Matthias Kohn
- Department of Human Genetics, University of Ulm, 89070 Ulm, Germany
| | - James Fong
- Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200,
Australia
| | - Tariq Ezaz
- Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200,
Australia
| | - Horst Hameister
- Department of Human Genetics, University of Ulm, 89070 Ulm, Germany
| | - Jennifer A. Marshall Graves
- Comparative Genomics Group, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200,
Australia
| |
Collapse
|
7
|
Kaiser P, Poh TY, Rothwell L, Avery S, Balu S, Pathania US, Hughes S, Goodchild M, Morrell S, Watson M, Bumstead N, Kaufman J, Young JR. A genomic analysis of chicken cytokines and chemokines. J Interferon Cytokine Res 2006; 25:467-84. [PMID: 16108730 DOI: 10.1089/jir.2005.25.467] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
As most mechanisms of adaptive immunity evolved during the divergence of vertebrates, the immune systems of extant vertebrates represent different successful variations on the themes initiated in their earliest common ancestors. The genes involved in elaborating these mechanisms have been subject to exceptional selective pressures in an arms race with highly adaptable pathogens, resulting in highly divergent sequences of orthologous genes and the gain and loss of members of gene families as different species find different solutions to the challenge of infection. Consequently, it has been difficult to transfer to the chicken detailed knowledge of the molecular mechanisms of the mammalian immune system and, thus, to enhance the already significant contribution of chickens toward understanding the evolution of immunity. The availability of the chicken genome sequence provides the opportunity to resolve outstanding questions concerning which molecular components of the immune system are shared between mammals and birds and which represent their unique evolutionary solutions. We have integrated genome data with existing knowledge to make a new comparative census of members of cytokine and chemokine gene families, distinguishing the core set of molecules likely to be common to all higher vertebrates from those particular to these 300 million-year-old lineages. Some differences can be explained by the different architectures of the mammalian and avian immune systems. Chickens lack lymph nodes and also the genes for the lymphotoxins and lymphotoxin receptors. The lack of functional eosinophils correlates with the absence of the eotaxin genes and our previously reported observation that interleukin- 5 (IL-5) is a pseudogene. To summarize, in the chicken genome, we can identify the genes for 23 ILs, 8 type I interferons (IFNs), IFN-gamma, 1 colony-stimulating factor (GM-CSF), 2 of the 3 known transforming growth factors (TGFs), 24 chemokines (1 XCL, 14 CCL, 8 CXCL, and 1 CX3CL), and 10 tumor necrosis factor superfamily (TNFSF) members. Receptor genes present in the genome suggest the likely presence of 2 other ILs, 1 other CSF, and 2 other TNFSF members.
Collapse
Affiliation(s)
- Pete Kaiser
- Institute for Animal Health, Compton, Berkshire RG20 7NN, U.K.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Krause CD, Pestka S. Evolution of the Class 2 cytokines and receptors, and discovery of new friends and relatives. Pharmacol Ther 2005; 106:299-346. [PMID: 15922016 DOI: 10.1016/j.pharmthera.2004.12.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 12/13/2004] [Accepted: 12/16/2004] [Indexed: 02/08/2023]
Abstract
The sequencing of a wide variety of genomes and their transcripts has allowed researchers to determine how proteins or protein families evolved and how strongly during evolution a protein has been conserved. In this report, we analyze the evolution of the Class 2 ligands and their cognate receptors by analyzing Class 2 ligand and receptor chain gene sequences from a variety of DNA sequence databases. Both the Class 2 cytokines and receptor chains appear to have developed during the evolution of the chordate phyla: distant homologues of type I interferon (IFN) receptors are the only Class 2 cytokine receptors identified in the Ciona genomes, while a wide variety of Class 2 ligands and receptor chains are encoded in the currently available genomes of bony vertebrates (teleost fish, amphibians, reptiles, birds, mammals). Phylogenetic trees of ligands and ligand-binding receptor chains demonstrate that proteins involved in conferring antiviral activity diverged before those involved in adaptive immunity. Genes encoding IFNs and IFN receptors duplicated multiple times during chordate evolution, suggesting that duplication of genes encoding IFN activity conveyed an evolutionary advantage. Altogether, these data support a model whereby the original Class 2 cytokines and receptors evolved and duplicated during the evolution of the chordate innate immune response system; new receptor and ligand duplications evolved into signaling molecules to fulfill communication requirements of a highly specialized and differentiated vertebrate immune system. In addition, the genomic analysis led to the discovery of some new members of this family.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
9
|
Abstract
Recombinant interferon-alpha (IFN-alpha) was approved by regulatory agencies in many countries in 1986. As the first biotherapeutic approved, IFN-alpha paved the way for the development of many other cytokines and growth factors. Nevertheless, understanding the functions of the multitude of human IFNs and IFN-like cytokines has just touched the surface. This review summarizes the history of the purification of human IFNs and the key aspects of our current state of knowledge of human IFN genes, proteins, and receptors. All the known IFNs and IFN-like cytokines are described [IFN-alpha, IFN-beta, IFN-epsilon, IFN-kappa, IFN-omega, IFN-delta, IFN-tau, IFN-gamma, limitin, interleukin-28A (IL-28A), IL-28B, and IL-29] as well as their receptors and signal transduction pathways. The biological activities and clinical applications of the proteins are discussed. An extensive section on the evolution of these molecules provides some new insights into the development of these proteins as major elements of innate immunity. The overall structure of the IFNs is put into perspective in relation to their receptors and functions.
Collapse
Affiliation(s)
- Sidney Pestka
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854-5635, USA.
| | | | | |
Collapse
|
10
|
Handley LJL, Ceplitis H, Ellegren H. Evolutionary strata on the chicken Z chromosome: implications for sex chromosome evolution. Genetics 2005; 167:367-76. [PMID: 15166161 PMCID: PMC1470863 DOI: 10.1534/genetics.167.1.367] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human X chromosome exhibits four "evolutionary strata," interpreted to represent distinct steps in the process whereby recombination became arrested between the proto X and proto Y. To test if this is a general feature of sex chromosome evolution, we studied the Z-W sex chromosomes of birds, which have female rather than male heterogamety and evolved from a different autosome pair than the mammalian X and Y. Here we analyze all five known gametologous Z-W gene pairs to investigate the "strata" hypothesis in birds. Comparisons of the rates of synonymous substitution and intronic divergence between Z and W gametologs reveal the presence of at least two evolutionary strata spread over the p and q arms of the chicken Z chromosome. A phylogenetic analysis of intronic sequence data from different avian lineages indicates that Z-W recombination ceased in the oldest stratum (on Zq; CHD1Z, HINTZ, and SPINZ) 102-170 million years ago (MYA), before the split of the Neoaves and Eoaves. However, recombination continued in the second stratum (on Zp; UBAP2Z and ATP5A1Z) until after the divergence of extant avian orders, with Z and W diverging 58-85 MYA. Our data suggest that progressive and stepwise cessation of recombination is a general feature behind sex chromosome evolution.
Collapse
Affiliation(s)
- Lori-Jayne Lawson Handley
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | | | | |
Collapse
|
11
|
Schultz U, Grgacic E, Nassal M. Duck hepatitis B virus: an invaluable model system for HBV infection. Adv Virus Res 2005; 63:1-70. [PMID: 15530560 DOI: 10.1016/s0065-3527(04)63001-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ursula Schultz
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106 Freiburg, Germany
| | | | | |
Collapse
|
12
|
Schwarz H, Harlin O, Ohnemus A, Kaspers B, Staeheli P. Synthesis of IFN-beta by virus-infected chicken embryo cells demonstrated with specific antisera and a new bioassay. J Interferon Cytokine Res 2004; 24:179-84. [PMID: 15035851 DOI: 10.1089/107999004322917025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcripts of interferon-alpha (IFN-alpha) and IFN-beta genes are present in virus-infected chicken cells, but because of a lack of appropriate assays and reagents, it was unclear if biologically active IFN-beta is secreted. We have established a nonviral bioassay for the sensitive detection of chicken IFN (ChIFN). This assay is based on a quail cell line that carries a luciferase gene that is controlled by the IFN-responsive chicken Mx promoter. Luciferase activity was strongly stimulated when the indicator cells were incubated with ChIFN-alpha, ChIFN-beta, or ChIFN-gamma but not with chicken interleukin-1beta (ChIL-1beta). Unlike the classic antiviral assay that preferentially detects ChIFN-alpha, the Mx-luciferase assay detected ChIFN-alpha and ChIFN-beta with similar sensitivity. With the help of this novel assay and with rabbit antisera specific for either IFN-alpha or IFN-beta, we analyzed the composition of IFN in supernatants of virus-infected chicken embryo cells. Virtually all IFN produced in response to Newcastle disease virus (NDV) was IFN-alpha. However, IFN produced in response to influenza A or vaccinia virus (VV) was a mixture of usually more than 80% IFN-alpha and up to 20% IFN-beta. Thus, IFN-alpha and IFN-beta both contribute to the cytokine activity in supernatants of virus-infected chicken cells. Furthermore, the infecting virus appears to determine the IFN subtype composition.
Collapse
Affiliation(s)
- Heike Schwarz
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
13
|
Zhang YY, Zhang BH, Theele D, Litwin S, Toll E, Summers J. Single-cell analysis of covalently closed circular DNA copy numbers in a hepadnavirus-infected liver. Proc Natl Acad Sci U S A 2003; 100:12372-7. [PMID: 14528003 PMCID: PMC218765 DOI: 10.1073/pnas.2033898100] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (hepadnavirus) infections are maintained by the presence of a small and regulated number of episomal viral genomes [covalently closed circular DNA (cccDNA)] in the nuclei of infected cells. Although a number of studies have measured the mean copy number of cccDNA molecules in hepadnaviral-infected cells, the distribution of individual copy numbers have not been reported. Using a PCR-based assay, we examined the number of cccDNA molecules of the duck hepatitis B virus in single nuclei isolated from the liver of a chronically infected duck over the course of 131 days of infection. Nuclei were isolated from frozen serial biopsies and individually deposited into PCR microplates by flow sorting. Each nucleus was assayed by nested PCR for cccDNA and for cellular IFN-alpha genes as an internal control. We found that 90% of the nuclei assayed contained between 1 and 17 cccDNA molecules, with the remaining 10% containing more (90% confidence), and that differences in the mean number of copies and distribution of copy numbers occurred within the same animal at different times postinfection. Overall, the data suggest (i) that the number of cccDNA molecules per cell may fluctuate over time, and (ii) that, according to these fluctuations, a substantial fraction of cells may contain only one or a few copies. We infer from the results that infected hepatocytes express virus at different levels and that during cell division it is possible to segregate cells containing no cccDNA.
Collapse
Affiliation(s)
- Yong-Yuan Zhang
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud Northeast, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
14
|
Koike Y, Mita K, Suzuki MG, Maeda S, Abe H, Osoegawa K, deJong PJ, Shimada T. Genomic sequence of a 320-kb segment of the Z chromosome of Bombyx mori containing a kettin ortholog. Mol Genet Genomics 2003; 269:137-49. [PMID: 12715162 DOI: 10.1007/s00438-003-0822-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2002] [Accepted: 01/17/2003] [Indexed: 10/25/2022]
Abstract
The sex chromosome constitution of the silkworm, Bombyx mori, is ZW in the female and ZZ in the male. Very little molecular information is available about the Z chromosome in Lepidoptera, although the topic is interesting because of the absence of gene dosage compensation in this chromosome. We constructed a 320-kb BAC contig around the Bmkettin gene on the Z chromosome in Bombyx and determined its nucleotide sequence by the shotgun method. We found 13 novel protein-coding sequences in addition to Bmkettin. All the transposable elements detected in the region were truncated, and no LTR retrotransposons were found, in stark contrast to the situation on the W chromosome. In this 320-kb region, four genes for muscle proteins (Bmkettin, Bmtitin1, Bmtitin2, and Bmprojectin) are clustered, together with another gene (Bmmiple) on the Z chromosome in B. mori; their orthologs are also closely linked on chromosome 3 in Drosophila, suggesting a partial synteny. Real-time RT-PCR experiments demonstrated that transcripts of 13 genes of the 14 Z-linked genes found accumulated in larger amounts in males than in female moths, indicating the absence of gene dosage compensation. The implications of these findings for the evolution and function of the Z chromosome in Lepidoptera are discussed.
Collapse
Affiliation(s)
- Y Koike
- Department of Agricultural and Environmental Biology, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, 113-8657 Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Baco LD, Palmquistt D. Chicken lines differ in production of interferon-like activity by peripheral white blood cells stimulated with phytohemagglutinin. Poult Sci 2002; 81:1629-36. [PMID: 12455587 DOI: 10.1093/ps/81.11.1629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interferon (INF) activity was evaluated in the supernatants from peripheral white blood cells (WBC) of chickens from six lines. The WBC were cultured in flasks or 24-well plates with medium or medium and phytohemagglutinin (PHA). After 2 to 5 d, duplicate supernatant samples were tested for INF activity, i.e., the log2 titer inhibiting 50% destruction of the cytopathic effect of vesicular stomatitis virus on primary chick embryo fibroblasts. Also triplicate WBC samples were tested for proliferation by [H3]-thymidine labeling and scintillation counting. In the absence of PHA, INF was significant for only two lines, i.e., 7(2) (two trials) and C (one trial). With PHA the level of INF produced was similar if flasks were sampled daily or on successive days. The INF levels were highest using 10 or 20 microg/mL PHA, but line differences were best distinguished using 5 or 10 microg/mL. In three trials there was a low correlation between PHA-stimulated WBC proliferation and INF titer (r > or = 0.30; P < 0.05). It was concluded that supernatants from chicken WBC stimulated with 10 microg/mL PHA contain INF, and inbred Lines 72 and C repeatedly produce more INF than inbred Lines 63 and 15I(5). This is the first evidence for line differences in INF production in chickens, and these lines may be useful for characterization of the relevant genes and their importance in immune response(s) and disease resistance.
Collapse
Affiliation(s)
- L D Baco
- USDA-Agricultural Research Service, Avian Disease and Oncology Laboratory, 3606 East Mount Hope Road, East Lansing, Michigan 48823, USA.
| | | |
Collapse
|
16
|
Staeheli P, Puehler F, Schneider K, Göbel TW, Kaspers B. Cytokines of birds: conserved functions--a largely different look. J Interferon Cytokine Res 2001; 21:993-1010. [PMID: 11798457 DOI: 10.1089/107999001317205123] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Targeted disruptions of the mouse genes for cytokines, cytokine receptors, or components of cytokine signaling cascades convincingly revealed the important roles of these molecules in immunologic processes. Cytokines are used at present as drugs to fight chronic microbial infections and cancer in humans, and they are being evaluated as immune response modifiers to improve vaccines. Until recently, only a few avian cytokines have been characterized, and potential applications thus have remained limited to mammals. Classic approaches to identify cytokine genes in birds proved difficult because sequence conservation is generally low. As new technology and high throughput sequencing became available, this situation changed quickly. We review here recent work that led to the identification of genes for the avian homologs of interferon-alpha/beta (IFN-alpha/beta) and IFN-gamma, various interleukins (IL), and several chemokines. From the initial data on the biochemical properties of these molecules, a picture is emerging that shows that avian and mammalian cytokines may perform similar tasks, although their primary structures in most cases are remarkably different.
Collapse
Affiliation(s)
- P Staeheli
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Pask A, Graves JA. Sex chromosomes and sex-determining genes: insights from marsupials and monotremes. EXS 2001:71-95. [PMID: 11301601 DOI: 10.1007/978-3-0348-7781-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Comparative studies of the genes involved in sex determination in the three extant classes of mammals, and other vertebrates, has allowed us to identify genes that are highly conserved in vertebrate sex determination and those that have recently evolved roles in one lineage. Analysis of the conservation and function of candidate sex determining genes in marsupials and monotremes has been crucial to our understanding of their function and positioning in a conserved mammalian sex-determining pathway, as well as their evolution. Here we review comparisons between genes in the sex-determining pathway in different vertebrates, and ask how these comparisons affect our views on the role of each gene in vertebrate sex determination.
Collapse
Affiliation(s)
- A Pask
- Department of Zoology, University of Melbourne, Parkville, Vic. 3052, Australia
| | | |
Collapse
|
18
|
Nanda I, Shan Z, Schartl M, Burt DW, Koehler M, Nothwang H, Grützner F, Paton IR, Windsor D, Dunn I, Engel W, Staeheli P, Mizuno S, Haaf T, Schmid M. 300 million years of conserved synteny between chicken Z and human chromosome 9. Nat Genet 1999; 21:258-9. [PMID: 10080173 DOI: 10.1038/6769] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|