1
|
Hegde C, Shekhar R, Paul PM, Pathak C. A review on forensic analysis of bio fluids (blood, semen, vaginal fluid, menstrual blood, urine, saliva): Spectroscopic and non-spectroscopic technique. Forensic Sci Int 2024; 367:112343. [PMID: 39708707 DOI: 10.1016/j.forsciint.2024.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/30/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
The accurate detection, identification, and analysis of biofluids at crime scenes play a critical role in forensic investigations. Various biofluids, such as blood, semen, vaginal fluid, menstrual blood, urine, and saliva, can be crucial evidence. In a murder case involving a knife attack, for instance, bloodstains from both the victim and perpetrator might be present. Sexual assault cases often involve the analysis of semen and vaginal secretions. Biofluid analysis employs a two-tiered approach: presumptive tests for initial identification and confirmatory tests for definitive analysis. This review article focuses on six key biofluids and their forensic significance. In this review, we comprehensively explore the relevant analytical techniques, including non-spectroscopic methods like immunoassays, spot tests, and cytokine profiling, alongside spectroscopic techniques such as Infrared (IR) spectroscopy, Mass Spectrometry (MS), and Raman Spectroscopy (RS).
Collapse
Affiliation(s)
- Chitrakara Hegde
- Department of Science, Alliance University, Bengaluru 562106, India.
| | - R Shekhar
- CoE Intel-High performance Computing, Alliance University, Bengaluru 562106, India
| | - P Mano Paul
- Department of Computer Science Engineering, Alliance University, Bengaluru 562106, India
| | - Chandni Pathak
- Department of Science, Alliance University, Bengaluru 562106, India
| |
Collapse
|
2
|
Nagesh D, Nagarajamurthy B. Estimation of Time-Since-Deposition of bloodstains on different surfaces using ATR-FTIR Spectroscopy and Chemometrics. Forensic Sci Med Pathol 2024:10.1007/s12024-024-00849-w. [PMID: 39023692 DOI: 10.1007/s12024-024-00849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Blood is commonly discovered at crime scenes in various forms, including stains, dried residue, pools, and fingerprints on assorted surfaces. Estimating the age of bloodstains is a crucial aspect of reconstructing crime scenes. This research aimed to investigate how the nature of different surfaces affects the estimation of bloodstain age, utilizing a reliable and non-destructive approach. The study employed ATR-FTIR spectroscopy in conjunction with Chemometric techniques such as PCA (Principal Component Analysis) and OPLSR (Orthogonal Signal Correction Partial Least Square Regression Analysis) to analyze spectral data and develop regression models for estimating bloodstain age on cement, metal, and wooden surfaces for up to eleven days. The chemometric models for bloodstains on all three substrates demonstrated strong performance, with predictive Root Mean Square Error (RMSE) values ranging from 1.1 to 1.43 and R2 values from 0.84 to 0.89. Notably, the model developed for metal surfaces was found to be the most accurate with minimal prediction error. The findings of the study showed that the porosity of the substrates upon which bloodstains were found had a discernible influence on the age-related transformations observed in bloodstains; the majority of which occured within the spectral range of 2800 cm- 1 to 3500 cm- 1.
Collapse
Affiliation(s)
- Deepthi Nagesh
- Department of Studies in Criminology and Forensic Science, Maharaja's College, University of Mysore, Mysuru, Karnataka, India.
| | - B Nagarajamurthy
- Department of Studies in Criminology and Forensic Science, Maharaja's College, University of Mysore, Mysuru, Karnataka, India
| |
Collapse
|
3
|
Al-Sharji D, Amin MO, Lednev IK, Al-Hetlani E. Detection of Oral Fluid Stains on Common Substrates Using SEM and ATR-FTIR Spectroscopy for Forensic Purposes. ACS OMEGA 2024; 9:30142-30150. [PMID: 39035940 PMCID: PMC11256315 DOI: 10.1021/acsomega.3c09358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/11/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024]
Abstract
Attenuated total reflectance (ATR) Fourier-transform infrared (FTIR) spectroscopy has been pursued as a novel approach to detect and differentiate biological materials with high specificity owing to its ability to record unique spectral patterns corresponding to the biochemical composition of a specimen. This study expands the application of ATR-FTIR for detecting oral fluid (OF) stains on various common substrates, including four porous and six nonporous substrates. For nonporous substrates, the spectral contribution from the substrate was minimal, and no background subtraction from the substrate bands was required (except for mirrors). For porous substrates, the contribution from the surface was pronounced and was addressed via background subtraction. The results indicated that major OF bands were detected on all the surfaces, even six months after OF deposition. Furthermore, scanning electron microscopy (SEM) was used to probe the morphologies of OF stains on various substrates. SEM micrographs revealed characteristic salt crystals and protein aggregates formed by the dried OF, which were observed for fresh samples and samples after six months post-deposition. Overall, this study demonstrated the great potential of SEM and ATR-FTIR spectroscopy for detecting OF traces on porous and nonporous substrates for up to six months for forensic purposes.
Collapse
Affiliation(s)
- Dalal Al-Sharji
- Faculty
of Science, Forensic Science Program, Kuwait
University, P.O. Box 5969, Safat 13060, Kuwait
| | - Mohamed O. Amin
- Department
of Chemistry, Faculty of Science, Kuwait
University, P.O. Box 5969, Safat 13060, Kuwait
| | - Igor K. Lednev
- Department
of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Entesar Al-Hetlani
- Department
of Chemistry, Faculty of Science, Kuwait
University, P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
4
|
Weber A, Wójtowicz A, Wietecha-Posłuszny R, Lednev IK. Raman Spectroscopy for the Time since Deposition Estimation of a Menstrual Bloodstain. SENSORS (BASEL, SWITZERLAND) 2024; 24:3262. [PMID: 38894054 PMCID: PMC11174499 DOI: 10.3390/s24113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Forensic chemistry plays a crucial role in aiding law enforcement investigations by applying analytical techniques for the analysis of evidence. While bloodstains are frequently encountered at crime scenes, distinguishing between peripheral and menstrual bloodstains presents a challenge. This is due to their similar appearance post-drying. Raman spectroscopy has emerged as a promising technique capable of discriminating between the two types of bloodstains, offering invaluable probative information. Moreover, estimating the time since deposition (TSD) of bloodstains aids in crime scene reconstruction and prioritizing what evidence to collect. Despite extensive research focusing on TSD estimations, primarily in peripheral bloodstains, a crucial gap exists in determining the TSD of menstrual bloodstains. This study demonstrates how Raman spectroscopy effectively analyzes biological samples like menstrual blood, showing similar aging patterns to those of peripheral blood and provides proof-of-concept models for determining the TSD of menstrual blood. While this work shows promising results for creating a universal model for bloodstain age determination, further testing with more donors needs to be conducted before the implementation of this method into forensic practice.
Collapse
Affiliation(s)
- Alexis Weber
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA;
| | - Anna Wójtowicz
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland; (A.W.); (R.W.-P.)
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland; (A.W.); (R.W.-P.)
| | - Igor K. Lednev
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA;
| |
Collapse
|
5
|
Cano-Trujillo C, García-Ruiz C, Ortega-Ojeda FE, Romolo F, Montalvo G. Forensic analysis of biological fluid stains on substrates by spectroscopic approaches and chemometrics: A review. Anal Chim Acta 2023; 1282:341841. [PMID: 37923402 DOI: 10.1016/j.aca.2023.341841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Bodily fluid stains are one of the most relevant evidence that can be found at the crime scene as it provides a wealth of information to the investigators. They help to report on the individuals involved in the crime, to check alibis, or to determine the type of crime that has been committed. They appear as stains in different types of substrates, some of them porous, which can interfere in the analysis. The spectroscopy techniques combined with chemometrics are showing increasing potential for their use in the analysis of such samples due to them being fast, sensitive, and non-destructive. FINDINGS This is a comprehensive review of the studies that used different spectroscopic techniques followed by chemometrics for analysing biological fluid stains on several surfaces, and under various conditions. It focuses on the bodily fluid stains and the most suitable spectroscopic techniques to study forensic scientific problems such as the substrate's characteristics, the influence of ambient conditions, the aging process of the bodily fluids, the presence of animal bodily fluids and non-biological fluids (interfering substances), and the bodily fluid mixtures. The most widely used techniques were Raman spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR). Nonetheless, other non-destructive techniques have been also used, like near infrared hyperspectral imaging (HSI-NIR) or surface enhanced Raman spectroscopy (SERS), among others. This work provides the criteria for the selection of the most promising non-destructive techniques for the effective in situ detection of biological fluid stains at crime scene investigations. SIGNIFICANCE AND NOVELTY The use of the proper spectroscopic and chemometric approaches on the crime scene is expected to improve the support of forensic sciences to criminal investigations. Evidence may be analysed in a non-destructive manner and kept intact for further analysis. They will also speed up forensic investigations by allowing the selection of relevant samples from occupational ones.
Collapse
Affiliation(s)
- Cristina Cano-Trujillo
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871, Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain
| | - Carmen García-Ruiz
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871, Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain
| | - Fernando E Ortega-Ojeda
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871, Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, Departamento de Ciencias de la Computación, Ctra. Madrid-Barcelona km 33,6, 28871, Alcalá de Henares, Madrid, Spain
| | - Francesco Romolo
- Università degli Studi di Bergamo, Dipartimento di Giurisprudenza, Via Moroni 255, 24127, Bergamo, Italy
| | - Gemma Montalvo
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871, Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales, Libreros 27, 28801, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
6
|
Wohlfahrt D, Tan-Torres AL, Green R, Brim K, Bradley N, Brand A, Abshier E, Nogales F, Babcock K, Brooks J, Seashols-Williams S, Singh B. A bacterial signature-based method for the identification of seven forensically relevant human body fluids. Forensic Sci Int Genet 2023; 65:102865. [PMID: 37004371 DOI: 10.1016/j.fsigen.2023.102865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Detection and identification of body fluids plays a crucial role in criminal investigation, as it provides information on the source of the DNA as well as corroborative evidence regarding the crime committed, scene, and/or association with persons of interest. Historically, forensic serological methods have been chemical, immunological, catalytic, spectroscopic, and/or microscopic in nature. However, most of these methods are presumptive, with few robust confirmatory exceptions. In recent years several new molecular methods (mRNA, miRNA, DNA methylation, etc.) have been proposed; although promising, these methods require high quality human DNA or RNA. Additional steps are required in RNA based methods. Additionally, RNA based methods cannot be used for old cases where only DNA extracts remain to sample from. In this study, a novel non-human DNA (microbiome) based method was developed for the identification of the majority of forensically relevant human biological samples. Eight hundred and twelve (n = 812) biological samples (semen, vaginal fluid, menstrual blood, saliva, feces, urine, and blood) were collected and preserved using methods commonly used in forensic laboratories for evidence collection. Variable region four (V4) of 16 S ribosomal DNA (16 S rDNA) was amplified using a dual-indexing strategy and then sequenced on the MiSeq FGx sequencing platform using the MiSeq Reagent Kit v2 (500 cycles) and following the manufacturer's protocol. Machine learning prediction models were used to assess the classification accuracy of the newly developed method. As there was no significant difference in bacterial communities between vaginal fluid, menstrual blood, and female urine, these were combined as female intimate samples. Except in urine, the bacterial structures associated with male and female body fluid samples were not significantly different from one another. The newly developed method accurately identified human body fluid samples with an overall accuracy of more than 88%. This newly developed bacterial signature-based method is fast (no additional steps are needed as the same DNA can be used for both body fluid identification and STR typing), efficient (consume less sample as a single test can identify all major body fluids), sensitive (needs only 5 pg of bacterial DNA), accurate, and can be easily added into a forensic high throughput sequencing (HTS) panel.
Collapse
|
7
|
Cano-Trujillo C, García-Ruiz C, Ortega-Ojeda FE, Montalvo G. Differentiation of blood and environmental interfering stains on substrates by Chemometrics-Assisted ATR FTIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122409. [PMID: 36720190 DOI: 10.1016/j.saa.2023.122409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/23/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Blood is the most common and relevant bodily fluid that can be found in crime scenes. It is critical to correctly identify it, and to be able to differentiate it from other substances that may also appear at the crime scene. In this work, several stains of blood, chocolate, ketchup, and tomato sauce on five different substrates (plywood, metal, gauze, denim, and glass) were analysed by ATR FTIR spectroscopy assisted with orthogonal partial least square-discriminant analysis (OPLS-DA) models. It was possible to differentiate blood from the environmental interfering substances independently of the substrate they were on, and to differentiate bloodstains according to the substrate they were deposited on. These results represent a proof-of-concept that open new horizons to differentiate bloodstains from other interfering substances on common substrates present in crime scenes.
Collapse
Affiliation(s)
- Cristina Cano-Trujillo
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871 Alcalá de Henares, Madrid, España; Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), Calle Libreros 27, 28801 Alcalá de Henares, Madrid, España
| | - Carmen García-Ruiz
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871 Alcalá de Henares, Madrid, España; Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), Calle Libreros 27, 28801 Alcalá de Henares, Madrid, España
| | - Fernando E Ortega-Ojeda
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871 Alcalá de Henares, Madrid, España; Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), Calle Libreros 27, 28801 Alcalá de Henares, Madrid, España; Universidad de Alcalá, Departamento de Ciencias de la Computación, Ctra. Madrid-Barcelona km 33,6, 28871 Alcalá de Henares, Madrid, España
| | - Gemma Montalvo
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871 Alcalá de Henares, Madrid, España; Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), Calle Libreros 27, 28801 Alcalá de Henares, Madrid, España.
| |
Collapse
|
8
|
Yildirim MŞ, Akçan R, Aras S, Tamer U, Evran E, Taştekin B, Aydogan C, Boyaci İH. Overcoming obstacles: Analysis of blood and semen stains washed with different chemicals with ATR-FTIR. Forensic Sci Int 2023; 344:111607. [PMID: 36801543 DOI: 10.1016/j.forsciint.2023.111607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
INTRODUCTION Blood and semen stains are the most common biological stains encountered at crime scenes. The washing of biological stains is a common application that perpetrators use to spoil the crime scene. With a structured experiment approach, this study aims to investigate the effects of washing with various chemicals on the ATR-FTIR detection of blood and semen stains on cotton. MATERIALS AND METHODS On cotton pieces, a total of 78 blood and 78 semen stains were applied, and each group of six stains was immersed or mechanically cleaned in water, 40% methanol, 5% sodium hypochlorite solution, 5% hypochlorous acid solution, 5 g/L soap dissolved pure water, and 5 g/L dishwashing detergent dissolved water. ATR-FTIR spectra gathered from all stains and analyzed with chemometric tools. RESULTS AND DISCUSSION According to performance parameters of developed models, PLS-DA is a powerful tool for discrimination of washing chemical for both washed blood and semen stains. Results from this study show that FTIR is promising for use in detecting blood and semen stains that have become invisible to the naked eye due to washing of the findings. CONCLUSION Our approach allows blood and semen to be detected on cotton pieces using FTIR combined with chemometrics, even though it is not visible to the naked eye. Washing chemicals also can be distinguished via FTIR spectra of stains.
Collapse
Affiliation(s)
- Mahmut Şerif Yildirim
- Department of Forensic Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | - Ramazan Akçan
- Department of Forensic Medicine, Hacettepe University, Ankara, Turkey
| | - Sümer Aras
- Department of Biotechnology, Ankara University, Ankara, Turkey
| | - Uğur Tamer
- Department of Analytical Chemistry, Gazi University, Ankara, Turkey
| | - Eylül Evran
- Department of Food Engineering, Hacettepe University, Ankara, Turkey
| | - Burak Taştekin
- Department of Forensic Medicine, Ankara City Hospital, Ankara, Turkey
| | - Canberk Aydogan
- Department of Forensic Medicine, Gülhane Research and Training Hospital, Ankara, Turkey
| | | |
Collapse
|
9
|
Application of ATR-FTIR spectroscopy and chemometrics to the forensic examination of duct tapes. Forensic Chem 2022. [DOI: 10.1016/j.forc.2022.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Aparna R, Iyer R, Das T, Sharma K, Sharma A, Srivastava A. Detection,discrimination and aging of human tears stains using ATR-FTIR spectroscopy for forensic purposes. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2022. [DOI: 10.1016/j.fsir.2022.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Alkhuder K. Attenuated total reflection-Fourier transform infrared spectroscopy: a universal analytical technique with promising applications in forensic analyses. Int J Legal Med 2022; 136:1717-1736. [PMID: 36050421 PMCID: PMC9436726 DOI: 10.1007/s00414-022-02882-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Contemporary criminal investigations are based on the statements made by the victim and the eyewitnesses. They also rely on the physical evidences found in the crime scene. These evidences, and more particularly biological ones, have a great judicial value in the courtroom. They are usually used to revoke the suspect's allegations and confirm or refute the statements made by the victim and the witnesses. Stains of body fluids are biological evidences highly sought by forensic investigators. In many criminal cases, the success of the investigation relies on the correct identification and classification of these stains. Therefore, the adoption of reliable and accurate forensic analytical methods seems to be of vital importance to attain this objective. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) is a modern and universal analytical technique capable of fingerprint recognition of the analyte using minimal amount of the test sample. The current systematic review aims to through light on the fundamentals of this technique and to illustrate its wide range of applications in forensic investigations. ATR-FTIR is a nondestructive technique which has demonstrated an exceptional efficiency in detecting, identifying and discriminating between stains of various types of body fluids usually encountered in crime scenes. The ATR-FTIR spectral data generated from bloodstains can be used to deduce a wealth of information related to the donor species, age, gender, and race. These data can also be exploited to discriminate between stains of different types of bloods including menstrual and peripheral bloods. In addition, ATR-FTIR has a great utility in the postmortem investigations. More particularly, in estimating the postmortem interval and diagnosing death caused by extreme weather conditions. It is also useful in diagnosing some ambiguous death causes such as fatal anaphylactic shock and diabetic ketoacidosis.
Collapse
Affiliation(s)
- Khaled Alkhuder
- Division of Microbial Disease, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London, WC1X 8LD, UK.
| |
Collapse
|
12
|
Unlocking the potential of forensic traces: Analytical approaches to generate investigative leads. Sci Justice 2022; 62:310-326. [PMID: 35598924 DOI: 10.1016/j.scijus.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/21/2022]
Abstract
Forensic investigation involves gathering the information necessary to understand the criminal events as well as linking objects or individuals to an item, location or other individual(s) for investigative purposes. For years techniques such as presumptive chemical tests, DNA profiling or fingermark analysis have been of great value to this process. However, these techniques have their limitations, whether it is a lack of confidence in the results obtained due to cross-reactivity, subjectivity and low sensitivity; or because they are dependent on holding reference samples in a pre-existing database. There is currently a need to devise new ways to gather as much information as possible from a single trace, particularly from biological traces commonly encountered in forensic casework. This review outlines the most recent advancements in the forensic analysis of biological fluids, fingermarks and hair. Special emphasis is placed on analytical methods that can expand the information obtained from the trace beyond what is achieved in the usual practices. Special attention is paid to those methods that accurately determine the nature of the sample, as well as how long it has been at the crime scene, along with individualising information regarding the donor source of the trace.
Collapse
|
13
|
Fonseca ACS, Pereira JFQ, Honorato RS, Bro R, Pimentel MF. Hierarchical classification models and Handheld NIR spectrometer to human blood stains identification on different floor tiles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120533. [PMID: 34749108 DOI: 10.1016/j.saa.2021.120533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
One of the most important types of evidence in certain criminal investigations is traces of human blood. For a detailed investigation, blood samples must be identified and collected at the crime scene. The present study aimed to evaluate the potential of the identification of human blood in stains deposited on different types of floor tiles (five types of ceramics and four types of porcelain tiles) using a portable NIR instrument. Hierarchical models were developed by combining multivariate analysis techniques capable of identifying traces of human blood (HB), animal blood (AB) and common false positives (CFP). The spectra of the dried stains were obtained using a portable MicroNIR spectrometer (Viavi). The hierarchical models used two decision rules, the first to separate CFP and the second to discriminate HB from AB. The first decision rule, used to separate the CFP, was based on the Q-Residual criterion considering a PCA model. For the second rule, used to discriminate HB and AB, the Q-Residual criterion were tested as obtained from a PCA model, a One-Class SIMCA model, and a PLS-DA model. The best results of sensitivity and specificity, both equal to 100%, were obtained when a PLS-DA model was employed as the second decision rule. The hierarchical classification models built for these same training sets using a PCA or SIMCA model also obtained excellent sensitivity results for HB classification, with values above 94% and 78% of specificity. No CFP samples were misclassified. Hierarchical models represent a significant advance as a methodology for the identification of human blood stains at crime scenes.
Collapse
Affiliation(s)
- Aline C S Fonseca
- Federal University of Pernambuco, Department of Fundamental Chemistry, Av, Jornalista Aníbal Fernandes, 50.740-560, Cidade Universitária, Recife, Brazil
| | - José F Q Pereira
- Federal University of Pernambuco, Department of Fundamental Chemistry, Av, Jornalista Aníbal Fernandes, 50.740-560, Cidade Universitária, Recife, Brazil; State University of Campinas, Institute of Chemistry, Campinas, P.O. Box 6154, 13083-970, Brazil.
| | | | - Rasmus Bro
- University of Copenhagen, Department of Food Science, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Maria Fernanda Pimentel
- Federal University of Pernambuco, Department of Chemical Engineering, Av. dos Economistas, Cidade Universitária, s/n, 50.740-590, Recife, PE, Brazil
| |
Collapse
|
14
|
Nimi C, Chophi R, Singh R. Discrimination of electrical tapes using ATR-FTIR spectroscopy and chemometrics. J Forensic Sci 2022; 67:911-926. [PMID: 35103307 DOI: 10.1111/1556-4029.14998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/29/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022]
Abstract
Electrical tapes are recovered during criminal investigations as physical evidence in cases of rape, kidnapping, and explosion incidents. The analysis of such evidence can provide an evidentiary link between the suspect, the victim, object, or the crime scene. In the present study, 25 brands of electrical tapes have been analyzed using ATR-FTIR (attenuated total reflectance Fourier transform infrared) spectroscopy. Samples (1 cm2 ) were analyzed in the mid IR (Infrared) region from 4000-600 cm-1 , and the functional groups of various components have been profiled. Chemometric methods-PCA (principal component analysis) and PCA-LDA (linear discriminant analysis) have been employed to interpret the data and classify the samples into its respective classes. Preliminary assessment of sample clustering due to similar chemical composition was visualized using PCA. PCA-LDA applied for classification purpose yielded classification accuracy (calibration) of 92.98% for the adhesive side and 88% for the backing side. The validation results showed classification accuracy of 89.47% for the adhesive side and 84% for the backing side. Blind validation study was carried out using 5 samples, and classification accuracy of 100% and 80% was obtained for the adhesive and the backing side, respectively. In the current study, a preliminary substrate study was carried out, and the results showed that the backing samples could be more accurately matched to their correct source of origin than the adhesive side.
Collapse
Affiliation(s)
- Chongtham Nimi
- Department of Forensic Science, Punjabi University, Patiala, Punjab, India
| | - Rito Chophi
- Department of Forensic Science, Punjabi University, Patiala, Punjab, India
| | - Rajinder Singh
- Department of Forensic Science, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
15
|
Sharma S, Kaur H, Singh R. Sex discrimination from urine traces for forensic purposes using attenuated total reflectance Fourier transform infrared spectroscopy and multivariate data analysis. Int J Legal Med 2022; 136:1755-1765. [PMID: 35083508 DOI: 10.1007/s00414-022-02782-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
The characteristics of ATR FT-IR spectroscopy are extremely attractive and escalating popularity in the field of body fluid analysis owing to its non-destructive, rapid, and reliable nature. Herein, the present study establishes that how ATR FT-IR spectroscopy could be utilized as a non-destructive, non-invasive, and confirmatory technique for sex discrimination from dry urine traces. Traces of body fluids are of paramount importance to criminal investigations as a major source of individualization by DNA profiling. However, the significance of DNA profiling from urine traces is highly diminished due to the small amount of DNA in urine traces. For that reason, the sex discrimination between the male and female donors is sorely desirable. In this study, ATR FT-IR spectroscopy in combination with partial least squares-discriminant analysis (PLS-DA) model unequivocally demonstrated the successful sex discrimination of an individual from dry traces of urine with 95.3% accuracy. PCA-Linear Discriminant Analysis (LDA) approach provided 85.2% of accuracy; however, PCA could not provide the sufficient findings for the discrimination of male and female urine spectra. The validation study was conducted and obtained 0% rates of false-positive and negative assignments. Additionally, this study also attended to assess the influence of substrates on the analysis of urine traces and results have been discussed.
Collapse
Affiliation(s)
- Sweety Sharma
- School of Forensic Science LNJN NICFS, National Forensic Science University, Delhi campus, Delhi, 110085, India
| | - Harpreet Kaur
- Department of Forensic Science, Punjabi University, Patiala, Punjab, 147002, India
| | - Rajinder Singh
- School of Forensic Science LNJN NICFS, National Forensic Science University, Delhi campus, Delhi, 110085, India
| |
Collapse
|
16
|
Takamura A, Ozawa T. Recent advances of vibrational spectroscopy and chemometrics for forensic biological analysis. Analyst 2021; 146:7431-7449. [PMID: 34813634 DOI: 10.1039/d1an01637g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biological materials found at a crime scene are crucially important evidence for forensic investigation because they provide contextual information about a crime and can be linked to the donor-individuals through combination with DNA analysis. Applications of vibrational spectroscopy to forensic biological analysis have been emerging because of its advantageous characteristics such as the non-destructivity, rapid measurement, and quantitative evaluation, compared to most current methods based on histological observation or biochemical techniques. This review presents an overview of recent developments in vibrational spectroscopy for forensic biological analysis. We also emphasize chemometric techniques, which can elicit reliable and advanced analytical outputs from highly complex spectral data from forensic biological materials. The analytical subjects addressed herein include body fluids, hair, soft tissue, bones, and bioagents. Promising applications for various analytical purposes in forensic biology are presented. Simultaneously, future avenues of study requiring further investigation are discussed.
Collapse
Affiliation(s)
- Ayari Takamura
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. .,RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Takeaki Ozawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
17
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
18
|
Lee LC, Jemain AA. On overview of PCA application strategy in processing high dimensionality forensic data. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106608] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Reese T, Suarez C, Premasiri WR, Shaine ML, Ingraham H, Brodeur AN, Ziegler LD. Surface enhanced Raman scattering specificity for detection and identification of dried bloodstains. Forensic Sci Int 2021; 328:111000. [PMID: 34564021 DOI: 10.1016/j.forsciint.2021.111000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 01/20/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) provides highly specific vibrational signatures identifying dried blood for a variety of forensic applications. SERS spectra on Au nanoparticle substrates excited at 785 nm are found to identify dried stains of human and nonhuman blood from seven animals, and distinguish stains due to menstrual and peripheral blood. In addition, the unique SERS bloodstain spectrum is distinct from the SERS spectra of thirty red-brown stains of potential household substances that could be visually mistaken for bloodstains and from food stains that have been shown to give positive results with presumptive colorimetric blood tests. Finally, a SERS swab procedure has been developed and demonstrates that the substrates that a blood sample dried on does not offer any Raman or fluorescence interference for the SERS identification of dried blood. Such bloodstains on porous and nonporous materials are all identical and exclusively due to the heme moiety of hemoglobin. Optimized selection of the extraction solvent is found to control the chemical composition of molecular components appearing in the SERS spectrum of complex, multicomponent biological mixtures, such as body fluids.
Collapse
Affiliation(s)
- T Reese
- Program in Biomedical Forensic Sciences, Boston University School of Medicine, Boston, MA 02118, USA
| | - C Suarez
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA
| | - W R Premasiri
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Photonics Center, Boston University, 15 Saint Mary's St., Boston, MA 02215, USA
| | - M L Shaine
- Program in Biomedical Forensic Sciences, Boston University School of Medicine, Boston, MA 02118, USA
| | - H Ingraham
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Photonics Center, Boston University, 15 Saint Mary's St., Boston, MA 02215, USA
| | - A N Brodeur
- Program in Biomedical Forensic Sciences, Boston University School of Medicine, Boston, MA 02118, USA
| | - L D Ziegler
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; Photonics Center, Boston University, 15 Saint Mary's St., Boston, MA 02215, USA.
| |
Collapse
|
20
|
Weber A, Wójtowicz A, Lednev IK. Post deposition aging of bloodstains probed by steady-state fluorescence spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112251. [PMID: 34229147 DOI: 10.1016/j.jphotobiol.2021.112251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/19/2021] [Accepted: 06/26/2021] [Indexed: 01/20/2023]
Abstract
Blood is one of the most common body fluids discovered at crime scenes involving violent actions. It is one of the most important types of forensic evidence since it allows for the identification of the individual providing that there is a match with a known DNA profile. Determining the time since deposition (TSD) can assist investigators in establishing when the crime occurred or if a bloodstain present is actually related to the investigated event. To develop a forensically sound method for determining the TSD of a bloodstain, it is necessary to understand the underlying biochemical mechanisms occurring during aging. As biochemical processes occurring in blood are necessary for the continued survival of living organisms, they are important subjects of human biology and biomedicine and are well understood. However, the biochemistry of bloodstain aging ex vivo is primarily of interest to forensic scientists and has not yet been thoroughly researched. This preliminary study utilizes steady-state fluorescence spectroscopy to probe the changes in fluorescence properties of peripheral and menstrual blood up to 24-h post deposition. Peripheral and menstrual blood exhibited similar kinetic changes over time, assigned to the presence of the fluorophores: tryptophan, nicotinamide adenine dinucleotide (NADH), and flavins in both biological fluids. The biochemical mechanism of blood aging ex vivo is discussed.
Collapse
Affiliation(s)
- Alexis Weber
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Anna Wójtowicz
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA; Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland
| | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA; Laboratory of Laser Molecular Imaging and Machine Learning (LM&ML), Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russian Federation.
| |
Collapse
|
21
|
Lucchi J, Gluck D, Rials S, Tang L, Baudelet M. Tire Classification by Elemental Signatures Using Laser-Induced Breakdown Spectroscopy. APPLIED SPECTROSCOPY 2021; 75:747-752. [PMID: 33543647 DOI: 10.1177/0003702821995585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tire evidence is a form of trace evidence that is often overlooked in today's forensics, while frequently found at crime or accident scenes, usually in the form of skid marks. The pattern of the tire skid mark has been used before to link a tire or car to a scene, but the widespread use of anti-lock braking systems makes this an almost impossible and abandoned route of analysis. With this in mind, using the chemical profile of a tire has potential to link a car or tire back to a scene in which its trace material is found. This study shows the successful use of the elemental profile of tire rubber to classify 32 different samples using laser-induced breakdown spectroscopy, analyzed by principal component analysis combined with linear discriminant analysis. A classification accuracy close to 99% shows the ever-growing use of laser-induced breakdown spectroscopy as a technique of choice for forensic analysis of tire rubber, opening the path for its use as a forensic evidence.
Collapse
Affiliation(s)
- John Lucchi
- National Center for Forensic Science, 6243University of Central Florida, Orlando, FL, USA
- Chemistry Department, 6243University of Central Florida, Orlando, FL, USA
| | - Dan Gluck
- National Center for Forensic Science, 6243University of Central Florida, Orlando, FL, USA
- Department of Statistics and Data Science, Orlando, FL, USA
| | - Sidney Rials
- Chemistry Department, 6243University of Central Florida, Orlando, FL, USA
| | - Larry Tang
- National Center for Forensic Science, 6243University of Central Florida, Orlando, FL, USA
- Department of Statistics and Data Science, Orlando, FL, USA
| | - Matthieu Baudelet
- National Center for Forensic Science, 6243University of Central Florida, Orlando, FL, USA
- Chemistry Department, 6243University of Central Florida, Orlando, FL, USA
- CREOL - The College of Optics and Photonics, 6243University of Central Florida, Orlando, FL, USA
| |
Collapse
|
22
|
Sauzier G, van Bronswijk W, Lewis SW. Chemometrics in forensic science: approaches and applications. Analyst 2021; 146:2415-2448. [PMID: 33729240 DOI: 10.1039/d1an00082a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Forensic investigations are often reliant on physical evidence to reconstruct events surrounding a crime. However, there remains a need for more objective approaches to evidential interpretation, along with rigorously validated procedures for handling, storage and analysis. Chemometrics has been recognised as a powerful tool within forensic science for interpretation and optimisation of analytical procedures. However, careful consideration must be given to factors such as sampling, validation and underpinning study design. This tutorial review aims to provide an accessible overview of chemometric methods within the context of forensic science. The review begins with an overview of selected chemometric techniques, followed by a broad review of studies demonstrating the utility of chemometrics across various forensic disciplines. The tutorial review ends with the discussion of the challenges and emerging trends in this rapidly growing field.
Collapse
Affiliation(s)
- Georgina Sauzier
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| | - Wilhelm van Bronswijk
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| | - Simon W Lewis
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| |
Collapse
|
23
|
A fast and non-destructive approach to identify the heavy mineral oil trace evidence based on spectral fusion treatment and chemometrics. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Mistek-Morabito E, Lednev IK. Discrimination of menstrual and peripheral blood traces using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy and chemometrics for forensic purposes. Anal Bioanal Chem 2021; 413:2513-2522. [PMID: 33580831 DOI: 10.1007/s00216-021-03206-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/23/2020] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
Body fluid traces can provide highly valuable clues in forensic investigations. In particular, bloodstains are a common occurrence in criminal investigation, and the discrimination of menstrual and peripheral blood is a crucial step for casework involving rape and sexual assault. Most of the current protocols require the detection of characteristic menstrual blood components using sophisticated procedures that need to be performed in a laboratory. The present study uses attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy as a nondestructive technique for discriminating menstrual and peripheral blood traces. This method incorporates statistical analysis and was evaluated by internal and external validation testing. A partial least squares discriminant analysis (PLSDA) classification model was created for differentiating the two types of blood in a binary manner. Excellent separation between menstrual and peripheral blood samples was achieved during internal validation. External validation resulted in 100% accuracy for predicting a sample as peripheral or menstrual blood. This study demonstrates that ATR FT-IR spectroscopy combined with chemometrics is a reliable approach for rapid and nondestructive discrimination of menstrual and peripheral bloodstains. It offers a significant advantage to forensic science due to the availability of portable instruments and the potential for bloodstain analysis at a crime scene. Graphical abstract.
Collapse
Affiliation(s)
- Ewelina Mistek-Morabito
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Igor K Lednev
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
25
|
Chophi R, Sharma S, Singh R. Discrimination of vermilion (sindoor) using attenuated total reflectance fourier transform infrared spectroscopy in combination with PCA and PCA-LDA. J Forensic Sci 2020; 66:594-607. [PMID: 33137213 DOI: 10.1111/1556-4029.14609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
Vermilion (sindoor) is considered sacred in the Hindu religion, and it is used routinely throughout the world by married Hindu women along the line of hair parting during marriage ceremonies, religious rituals, and festivals. Owing to its esthetic appeal, it is sometimes illegally used as a food additive; leading to potential health risks. Therefore, due to the aforementioned reasons, vermilion can likely be encountered as trace evidentiary material during crime investigations, particularly in cases of sexual and physical offenses against women. Analysis of such evidence can provide a link between the criminal, the victim, and the crime scene and thereby be utilized as associative evidence in the court of law. In the present study, ATR-FTIR spectroscopy has been used for the examination of 37 different manufacturers of vermilion. Chemometric methods such as principal component analysis (PCA) and PCA-LDA were performed on the obtained spectra for objective interpretation of results. PCA delivered 99.06% discrimination of samples while PCA-LDA employed for classification purpose delivered 95.25% calibration accuracy and 88% validation accuracy. Afterward, the validity of the chemometric methods employed was tested by blind testing of samples. A preliminary study on the effect of selected substrates (cotton cloth, tissue paper, glass, and plastic) on sample analysis indicates that while sample stain on substrates could be linked to its parent source even after a month, linking an aged samples (after 8 months) could be hindered due to evaporation of components present in vermilion. Overall, the current methodology utilized has a potential prospect in future forensic-casework.
Collapse
Affiliation(s)
- Rito Chophi
- Department of Forensic Science, Punjabi University Patiala, Punjab, India
| | - Sweety Sharma
- Department of Forensic Science, Punjabi University Patiala, Punjab, India
| | - Rajinder Singh
- Department of Forensic Science, Punjabi University Patiala, Punjab, India
| |
Collapse
|
26
|
Wei C, Wang J. A rapid and nondestructive approach for forensic identification of car bumper splinters using attenuated total reflectance Fourier transform infrared spectroscopy and chemometrics. J Forensic Sci 2020; 66:583-593. [PMID: 33113238 DOI: 10.1111/1556-4029.14606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 11/27/2022]
Abstract
The proper identification of car bumper splinters at hit-and-run crime scenes is imperative to forensic investigations, as splinters yield crucial pieces of vehicle information that can lead to subsequent investigation resolution and criminal justice. A method based on attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) combined with Fisher discriminant analysis (FDA) and support vector machine (SVM) is reported to classify car bumper splinters. The FDA and SVM models were constructed based on full spectrum, fingerprint spectrum, and characteristic spectrum data from 156 car bumper splinter samples. The characteristic spectrum data were extracted by principal component analysis. The classification results for different types of data were compared, and the classification models were analyzed. In the FDA, the model based on the spectral data of the characteristic spectrum yielded the highest classification accuracy, and the classification accuracy based on 10 brands was 88.5%. For polypropylene type; polypropylene, talcum powder, and calcium carbonate type; and polypropylene and talcum powder type bumper samples, the classification accuracy rate reached 97.4%. The classification results were ideal for the SVM, for 10 brands and 3 types of samples, the classification accuracy of the model constructed based on both full spectrum and characteristic spectrum data reached 100%. The results suggest that the SVM model is superior to the FDA model. The SVM model is also suitable for the classification of high-dimensional data. ATR-FTIR combined with the chemometrics methods of FDA and SVM is a rapid, nondestructive, and accurate method for the differentiation of car bumper splinters.
Collapse
Affiliation(s)
- Chenjie Wei
- School of Investigation, People's Public Security University of China, Beijing, China
| | - Jifen Wang
- School of Investigation, People's Public Security University of China, Beijing, China
| |
Collapse
|
27
|
Hackshaw KV, Miller JS, Aykas DP, Rodriguez-Saona L. Vibrational Spectroscopy for Identification of Metabolites in Biologic Samples. Molecules 2020; 25:E4725. [PMID: 33076318 PMCID: PMC7587585 DOI: 10.3390/molecules25204725] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Vibrational spectroscopy (mid-infrared (IR) and Raman) and its fingerprinting capabilities offer rapid, high-throughput, and non-destructive analysis of a wide range of sample types producing a characteristic chemical "fingerprint" with a unique signature profile. Nuclear magnetic resonance (NMR) spectroscopy and an array of mass spectrometry (MS) techniques provide selectivity and specificity for screening metabolites, but demand costly instrumentation, complex sample pretreatment, are labor-intensive, require well-trained technicians to operate the instrumentation, and are less amenable for implementation in clinics. The potential for vibration spectroscopy techniques to be brought to the bedside gives hope for huge cost savings and potential revolutionary advances in diagnostics in the clinic. We discuss the utilization of current vibrational spectroscopy methodologies on biologic samples as an avenue towards rapid cost saving diagnostics.
Collapse
Affiliation(s)
- Kevin V. Hackshaw
- Department of Internal Medicine, Division of Rheumatology, Dell Medical School, The University of Texas, 1601 Trinity St, Austin, TX 78712, USA
| | - Joseph S. Miller
- Department of Medicine, Ohio University Heritage College of Osteopathic Medicine, Dublin, OH 43016, USA;
| | - Didem P. Aykas
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA; (D.P.A.); (L.R.-S.)
- Department of Food Engineering, Faculty of Engineering, Adnan Menderes University, Aydin 09100, Turkey
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA; (D.P.A.); (L.R.-S.)
| |
Collapse
|
28
|
Detection of vaginal fluid stains on common substrates via ATR FT-IR spectroscopy. Int J Legal Med 2020; 134:1591-1602. [DOI: 10.1007/s00414-020-02333-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
|
29
|
Sharma S, Singh R. Detection and discrimination of seminal fluid using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy combined with chemometrics. Int J Legal Med 2019; 134:411-432. [PMID: 31814056 DOI: 10.1007/s00414-019-02222-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
Abstract
Semen is most frequently encountered body fluid in forensic cases apart from blood especially in sexual assault cases. The presence and absence of semen can help in conviction or exoneration of a suspect by either confirming or refuting the claims put forward by the suspect and the victim. However, in the wake of limited studies on non-destructive and rapid analysis of semen, it is fairly difficult. Therefore, it is an increasing demand to pioneer the application of available analytical methods in such manner that non-destructive, automated, rapid, and reliable identification and discrimination of body fluids can be established. In the present study, such a methodological application of attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy has been put forward as one of the initial steps towards the identification and discrimination/classification of seminal fluid from vaginal fluid and other human biological as well as non-biological look-alike semen substances using chemometric tools which are principal component analysis (PCA), partial least square regression (PLSR), and linear discriminant analysis (LDA). Effect of other simulated factors such as substrate interference, mixing with other body fluids, dilutions, and washing and chemical treatments to the samples has been studied. PCA resulted in 98.8% of accuracy for the discrimination of seminal fluid from vaginal fluid whilst 100% accuracy was obtained using LDA method. One hundred percent discrimination was achieved to discriminate semen from other biological fluids using PLSR and LDA, and from non-biological substances using PCA-LDA models. Furthermore, results of the effect of substrates, chemical treatment, mixing with vaginal secretions, and dilution have also been described.
Collapse
Affiliation(s)
- Sweety Sharma
- Department of Forensic Science, Punjabi University, Patiala, Punjab, 147002, India
| | - Rajinder Singh
- Department of Forensic Science, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|