1
|
Amiri M, Gerami R, Shekarchi B, Azimi A, Asadi B, Bagheri H. Changes in diffusion tensor imaging indices in basal ganglia and thalamus of patients with Relapsing-Remitting Multiple Sclerosis and relation with clinical conditions: A case-control study. Eur J Radiol Open 2022; 10:100465. [PMID: 36578906 PMCID: PMC9791126 DOI: 10.1016/j.ejro.2022.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background Multiple sclerosis (MS) is recognized as the most prevalent autoimmune abnormality of the CNS. T1WI, T2WI, and FLAIR are limited in the quantification of tissue damage and detection of tissue alterations in white and grey matter in MS. This study aimed to the evaluation of changes in DTI indices in these patients at the thalamus and basal ganglia. Methods 30 relapsing-remitting MS (RRMS) cases and 30 normal individuals were included. Conventional MRI (T2, FLAIR) was acquired to confirm NAGM in MS patients. A T1 MPRAGE protocol was used to normalize DTI images. FSL, SPM, and Explore DTI software were employed to reach Mean Diffusivities (MD), Axial Diffusivities (AD), Fractional anisotropy (FA), and Radial Diffusivity (RD) at the thalamus and the basal ganglia. Results The FA and RD of the thalamus were decreased in healthy controls compared to MS cases (0.319 vs. 0.296 and 0.0009 vs. 0.0006, respectively) (P < 0.05). The AD value in the thalamus and the FA value in the caudate nucleus were significantly lower in MS cases than in controls (0.0009 vs. 0.0011 and 0.16 vs. 0.18, respectively) (P < 0.05). MD values in the thalamus or basal ganglia were not significantly different between groups. Conclusions DTI measures including FA, RD, and AD have a good diagnostic performance in detecting microstructural changes in the normal-appearing thalamus in cases with RRMS while they had no significant relationship with clinical signs in terms of EDSS. Availability of data and material Not applicable.
Collapse
Affiliation(s)
- Mohammad Amiri
- Faculty of Medicine, Aja University of Medical Science, Tehran, Iran
| | - Reza Gerami
- Department of Radiology, Faculty of Medicine, Aja University of Medical Science, Tehran, Iran,Corresponding author.
| | - Babak Shekarchi
- Department of Radiology, Faculty of Medicine, Aja University of Medical Science, Tehran, Iran
| | - Amirreza Azimi
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahador Asadi
- Department of Radiology, Faculty of Medicine, Aja University of Medical Science, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center, Aja University of Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Hosseinpour Z, Jonkman L, Oladosu O, Pridham G, Pike GB, Inglese M, Geurts JJ, Zhang Y. Texture analysis in brain T2 and diffusion MRI differentiates histology-verified grey and white matter pathology types in multiple sclerosis. J Neurosci Methods 2022; 379:109671. [PMID: 35820450 DOI: 10.1016/j.jneumeth.2022.109671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/19/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a co mplex disease of the central nervous system involving several types of brain pathology that are difficult to characterize using conventional imaging methods. NEW METHOD We originated novel texture analysis and machine learning approaches for classifying MS pathology subtypes as compared with 2 common advanced MRI measures: magnetization transfer ratio (MTR) and fractional anisotropy (FA). Texture analysis used an optimized grey level co-occurrence matrix method with histology-informed 7T T2-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) from 15 MS and 12 control brain specimens. DTI analysis took an innovative approach that assessed the texture across diffusion directions upsampled from 30 to 90. Tissue types included de- and re-myelinated lesions and normal-appearing areas in both grey and white matter, and diffusely abnormal white matter. Data analyses were stepwise, including: (1) group-wise classification using random forest algorithms based on all or individual imaging parameters; (2) parameter importance ranking; and (3) pairwise analysis using top-ranked features. RESULTS Texture analysis performed better than MTR and FA, with T2 texture performed the best. T2 texture measures ranked the highest in classifying most grey and white matter tissue types, including de- versus re-myelinated lesions and among grey matter lesion subtypes (accuracy=0.86-0.59; kappa=0.60-0.41). Diffusion texture best differentiated normal appearing and control white matter. COMPARISON WITH EXISTING METHODS There is no established method in imaging for differentiating MS pathology subtypes. In combined texture analysis and machine learning studies, there is also no direct evidence comparing conventional with advanced MRI measures for assessing MS pathology. Further, this study is unique in conducting innovative texture analysis with DTI following data-augmentation using robust methods. CONCLUSIONS T2 and diffusion MRI texture analysis integrated with machine learning may be valuable approaches for characterizing MS pathology.
Collapse
Affiliation(s)
- Zahra Hosseinpour
- Biomedical Engineering Graduate Program, University of Calgary, Alberta T2N 4N, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada
| | - Laura Jonkman
- Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Olayinka Oladosu
- Department of Neuroscience, University of Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada
| | - Glen Pridham
- Department of Clinical Neurosciences, University of Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada
| | - G Bruce Pike
- Department of Clinical Neurosciences, University of Calgary, Alberta T2N 4N1, Canada; Department of Radiology, University of Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA 10029; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Jeroen J Geurts
- Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Yunyan Zhang
- Department of Clinical Neurosciences, University of Calgary, Alberta T2N 4N1, Canada; Department of Radiology, University of Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
3
|
Huitema MJD, Strijbis EMM, Luchicchi A, Bol JGJM, Plemel JR, Geurts JJG, Schenk GJ. Myelin Quantification in White Matter Pathology of Progressive Multiple Sclerosis Post-Mortem Brain Samples: A New Approach for Quantifying Remyelination. Int J Mol Sci 2021; 22:ijms222312634. [PMID: 34884445 PMCID: PMC8657470 DOI: 10.3390/ijms222312634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/14/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease of the central nervous system (CNS). Repair through remyelination can be extensive, but quantification of remyelination remains challenging. To date, no method for standardized digital quantification of remyelination of MS lesions exists. This methodological study aims to present and validate a novel standardized method for myelin quantification in progressive MS brains to study myelin content more precisely. Fifty-five MS lesions in 32 tissue blocks from 14 progressive MS cases and five tissue blocks from 5 non-neurological controls were sampled. MS lesions were selected by macroscopic investigation of WM by standard histopathological methods. Tissue sections were stained for myelin with luxol fast blue (LFB) and histological assessment of de- or remyelination was performed by light microscopy. The myelin quantity was estimated with a novel myelin quantification method (MQM) in ImageJ. Three independent raters applied the MQM and the inter-rater reliability was calculated. We extended the method to diffusely appearing white matter (DAWM) and encephalitis to test potential wider applicability of the method. Inter-rater agreement was excellent (ICC = 0.96) and there was a high reliability with a lower- and upper limit of agreement up to −5.93% to 18.43% variation in myelin quantity. This study builds on the established concepts of histopathological semi-quantitative assessment of myelin and adds a novel, reliable and accurate quantitative measurement tool for the assessment of myelination in human post-mortem samples.
Collapse
Affiliation(s)
- Marije J. D. Huitema
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands; (M.J.D.H.); (A.L.); (J.G.J.M.B.); (J.J.G.G.)
| | - Eva M. M. Strijbis
- Department of Neurology, MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands;
| | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands; (M.J.D.H.); (A.L.); (J.G.J.M.B.); (J.J.G.G.)
| | - John G. J. M. Bol
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands; (M.J.D.H.); (A.L.); (J.G.J.M.B.); (J.J.G.G.)
| | - Jason R. Plemel
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada;
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jeroen J. G. Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands; (M.J.D.H.); (A.L.); (J.G.J.M.B.); (J.J.G.G.)
| | - Geert J. Schenk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands; (M.J.D.H.); (A.L.); (J.G.J.M.B.); (J.J.G.G.)
- Correspondence:
| |
Collapse
|
4
|
Cairns J, Vavasour IM, Traboulsee A, Carruthers R, Kolind SH, Li DKB, Moore GRW, Laule C. Diffusely abnormal white matter in multiple sclerosis. J Neuroimaging 2021; 32:5-16. [PMID: 34752664 DOI: 10.1111/jon.12945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
MRI enables detailed in vivo depiction of multiple sclerosis (MS) pathology. Localized areas of MS damage, commonly referred to as lesions, or plaques, have been a focus of clinical and research MRI studies for over four decades. A nonplaque MRI abnormality which is present in at least 25% of MS patients but has received far less attention is diffusely abnormal white matter (DAWM). DAWM has poorly defined boundaries and a signal intensity that is between normal-appearing white matter and classic lesions on proton density and T2 -weighted images. All clinical phenotypes of MS demonstrate DAWM, including clinically isolated syndrome, where DAWM is associated with higher lesion volume, reduced brain volume, and earlier conversion to MS. Advanced MRI metric abnormalities in DAWM tend to be greater than those in NAWM, but not as severe as focal lesions, with myelin, axons, and water-related changes commonly reported. Histological studies demonstrate a primary lipid abnormality in DAWM, with some axonal damage and lesser involvement of myelin proteins. This review provides an overview of DAWM identification, summarizes in vivo and postmortem observations, and comments on potential pathophysiological mechanisms, which may underlie DAWM in MS. Given the prevalence and potential clinical impact of DAWM, the number of imaging studies focusing on DAWM is insufficient. Characterization of DAWM significance and microstructure would benefit from larger longitudinal and additional quantitative imaging efforts. Revisiting data from previous studies that included proton density and T2 imaging would enable retrospective DAWM identification and analysis.
Collapse
Affiliation(s)
- James Cairns
- Department of Medicine (Neurology), University of British Columbia, British Columbia, Vancouver, Canada.,Department of Radiology, University of British Columbia, British Columbia, Vancouver, Canada
| | - Irene M Vavasour
- Department of Radiology, University of British Columbia, British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia, British Columbia, Vancouver, Canada
| | - Anthony Traboulsee
- Department of Medicine (Neurology), University of British Columbia, British Columbia, Vancouver, Canada
| | - Robert Carruthers
- Department of Medicine (Neurology), University of British Columbia, British Columbia, Vancouver, Canada
| | - Shannon H Kolind
- Department of Medicine (Neurology), University of British Columbia, British Columbia, Vancouver, Canada.,Department of Radiology, University of British Columbia, British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia, British Columbia, Vancouver, Canada.,Department of Physics & Astronomy, University of British Columbia, British Columbia, Vancouver, Canada
| | - David K B Li
- Department of Medicine (Neurology), University of British Columbia, British Columbia, Vancouver, Canada.,Department of Radiology, University of British Columbia, British Columbia, Vancouver, Canada
| | - G R Wayne Moore
- Department of Medicine (Neurology), University of British Columbia, British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia, British Columbia, Vancouver, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, British Columbia, Vancouver, Canada
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia, British Columbia, Vancouver, Canada.,Department of Physics & Astronomy, University of British Columbia, British Columbia, Vancouver, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Holmes RD, Vavasour IM, Greenfield J, Zhao G, Lee JS, Moore GRW, Tam R, Metz LM, Trablousee A, Li DKB, Laule C. Nonlesional diffusely abnormal appearing white matter in clinically isolated syndrome: Prevalence, association with clinical and MRI features, and risk for conversion to multiple sclerosis. J Neuroimaging 2021; 31:981-994. [PMID: 34128576 DOI: 10.1111/jon.12900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE While diffusely abnormal white matter (DAWM) is a nonlesional MRI abnormality identified in ∼25% of patients with multiple sclerosis (MS), it has yet to be investigated in patients at an earlier disease stage, namely clinically isolated syndrome (CIS). The goals of this study were to (1) determine the prevalence of DAWM in patients with a CIS suggestive of MS, (2) evaluate the association between DAWM and demographic, clinical, and MRI features, and (3) evaluate the prognostic significance of DAWM on conversion from CIS to MS. METHODS One hundred and forty-two CIS participants were categorized into DAWM and non-DAWM groups at baseline and followed for up to 24 months or until MS diagnosis. The primary outcome was conversion to MS (2005 McDonald criteria) within 6 months. RESULTS DAWM was present in 27.5% of participants, and was positively associated with brainstem symptom onset, receiving corticosteroids, dissemination in space, and T2 lesion volume. DAWM was associated with an increased risk of conversion to MS over 6 months after adjustment for age and disability (hazard ratio [HR] = 2.24, p = 0.004). This association remained at a trend-level after adjustment for high-risk imaging features (HR = 1.68, p = 0.10). CONCLUSIONS DAWM is present in a similar proportion of patients with CIS and clinically definite MS, and it is associated with increased risk of conversion to MS over 6 months.
Collapse
Affiliation(s)
- R Davis Holmes
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Irene M Vavasour
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jamie Greenfield
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Guojun Zhao
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MS/MRI Research Group, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jimmy S Lee
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - G R Wayne Moore
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Roger Tam
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MS/MRI Research Group, University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luanne M Metz
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anthony Trablousee
- UBC MS/MRI Research Group, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine (Neurology), University of British Columbia, Vancouver, British Columbia, Canada
| | - David K B Li
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MS/MRI Research Group, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine (Neurology), University of British Columbia, Vancouver, British Columbia, Canada
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Papadaki E, Mastorodemos V, Panou T, Pouli S, Spyridaki E, Kavroulakis E, Kalaitzakis G, Maris TG, Simos P. T2 Relaxometry Evidence of Microstructural Changes in Diffusely Abnormal White Matter in Relapsing-Remitting Multiple Sclerosis and Clinically Isolated Syndrome: Impact on Visuomotor Performance. J Magn Reson Imaging 2021; 54:1077-1087. [PMID: 33960066 DOI: 10.1002/jmri.27661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although diffusely abnormal white matter (DAWM) is commonly seen in multiple sclerosis (MS), it is rarely considered in clinical/imaging studies. PURPOSE To evaluate quantitative markers of microstructural changes in DAWM of patients with clinically isolated syndrome (CIS) and relapsing-remitting MS (RR-MS) in relation to MS lesions and degree of neurocognitive impairment, by using a multi-echo spin echo (MESE) Proton Density PD-to-T2 sequence. STUDY TYPE Prospective, cross-sectional. POPULATION Thirty-seven RR-MS patients, 33 CIS patients, and 52 healthy controls. FIELD STRENGTH/SEQUENCE 1.5 T/T1-, T2-weighted, fluid-attenuated inversion recovery, and MESE sequences. ASSESSMENT Long T2, short T2, and myelin water fraction (MWF) values were estimated as indices of intra/extracellular water content and myelin content, respectively, in DAWM, posterior periventricular normal appearing white matter (NAWM), and focal MS lesions, classified according to their signal intensity on T1 sequences. Patients were, also, administered a battery of neuropsychological tests. STATISTICAL TESTS Comparisons of T2 and MWF values in DAWM, NAWM, and MS lesions were examined, using two-way mixed analyses of variance. Associations of Grooved Pegboard performance with T2 and MWF values in DAWM and NAWM were assessed using Pearson correlation coefficients. RESULTS T2 and MWF values of DAWM were intermediate between the respective values of NAWM and T1 hypointense focal lesions, while there was no difference between the respective values of DAWM and T1-isointense lesions. T2 values in DAWM were strongly associated with visuomotor performance in CIS patients. DATA CONCLUSION Intra/extracellular water and myelin water content of DAWM are similar to those of T1-isointense lesions and predict visuomotor performance in CIS patients. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Efrosini Papadaki
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
- Institute of Computer Science, Foundation of Research and Technology-Hellas, Heraklion, Greece
| | - Vasileios Mastorodemos
- Department of Neurology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Theodora Panou
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Styliani Pouli
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Eirini Spyridaki
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Eleftherios Kavroulakis
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Georgios Kalaitzakis
- Department of Medical Physics, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Thomas G Maris
- Institute of Computer Science, Foundation of Research and Technology-Hellas, Heraklion, Greece
- Department of Medical Physics, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| | - Panagiotis Simos
- Institute of Computer Science, Foundation of Research and Technology-Hellas, Heraklion, Greece
- Department of Psychiatry, School of Medicine, University of Crete, University Hospital of Heraklion, Crete, Greece
| |
Collapse
|
7
|
Sacco S, Caverzasi E, Papinutto N, Cordano C, Bischof A, Gundel T, Cheng S, Asteggiano C, Kirkish G, Mallott J, Stern WA, Bastianello S, Bove RM, Gelfand JM, Goodin DS, Green AJ, Waubant E, Wilson MR, Zamvil SS, Cree BA, Hauser SL, Henry RG. Neurite Orientation Dispersion and Density Imaging for Assessing Acute Inflammation and Lesion Evolution in MS. AJNR Am J Neuroradiol 2020; 41:2219-2226. [PMID: 33154077 DOI: 10.3174/ajnr.a6862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/29/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND PURPOSE MR imaging is essential for MS diagnosis and management, yet it has limitations in assessing axonal damage and remyelination. Gadolinium-based contrast agents add value by pinpointing acute inflammation and blood-brain barrier leakage, but with drawbacks in safety and cost. Neurite orientation dispersion and density imaging (NODDI) assesses microstructural features of neurites contributing to diffusion imaging signals. This approach may resolve the components of MS pathology, overcoming conventional MR imaging limitations. MATERIALS AND METHODS Twenty-one subjects with MS underwent serial enhanced MRIs (12.6 ± 9 months apart) including NODDI, whose key metrics are the neurite density and orientation dispersion index. Twenty-one age- and sex-matched healthy controls underwent unenhanced MR imaging with the same protocol. Fifty-eight gadolinium-enhancing and non-gadolinium-enhancing lesions were semiautomatically segmented at baseline and follow-up. Normal-appearing WM masks were generated by subtracting lesions and dirty-appearing WM from the whole WM. RESULTS The orientation dispersion index was higher in gadolinium-enhancing compared with non-gadolinium-enhancing lesions; logistic regression indicated discrimination, with an area under the curve of 0.73. At follow-up, in the 58 previously enhancing lesions, we identified 2 subgroups based on the neurite density index change across time: Type 1 lesions showed increased neurite density values, whereas type 2 lesions showed decreased values. Type 1 lesions showed greater reduction in size with time compared with type 2 lesions. CONCLUSIONS NODDI is a promising tool with the potential to detect acute MS inflammation. The observed heterogeneity among lesions may correspond to gradients in severity and clinical recovery after the acute phase.
Collapse
Affiliation(s)
- S Sacco
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California.,Institute of Radiology (S.S., C.A.), Department of Clinical Surgical Diagnostic and Pediatric Sciences
| | - E Caverzasi
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - N Papinutto
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - C Cordano
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - A Bischof
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - T Gundel
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - S Cheng
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - C Asteggiano
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California.,Institute of Radiology (S.S., C.A.), Department of Clinical Surgical Diagnostic and Pediatric Sciences
| | - G Kirkish
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - J Mallott
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - W A Stern
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - S Bastianello
- Department of Brain and Behavioral Sciences (S.B.), University of Pavia, Pavia, Italy.,Neuroradiology Department (S.B.), Istituto Di Ricovero e Cura a Carattere Scientifico Mondino Foundation, Pavia, Italy
| | - R M Bove
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - J M Gelfand
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - D S Goodin
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - A J Green
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - E Waubant
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - M R Wilson
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - S S Zamvil
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - B A Cree
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - S L Hauser
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | - R G Henry
- From the Department of Neurology (S.S., E.C., N.P., C.C., A.B., T.G., S.C., C.A., G.K., J.M., W.A.S., R.M.B., J.M.G., D.S.G., A.J.G., E.W., M.R.W., S.S.Z, B.A.C., S.L.H., and R.G.H.), University of California, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, California
| | | |
Collapse
|
8
|
Lee J, Hyun JW, Lee J, Choi EJ, Shin HG, Min K, Nam Y, Kim HJ, Oh SH. So You Want to Image Myelin Using MRI: An Overview and Practical Guide for Myelin Water Imaging. J Magn Reson Imaging 2020; 53:360-373. [PMID: 32009271 DOI: 10.1002/jmri.27059] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
Myelin water imaging (MWI) is an MRI imaging biomarker for myelin. This method can generate an in vivo whole-brain myelin water fraction map in approximately 10 minutes. It has been applied in various applications including neurodegenerative disease, neurodevelopmental, and neuroplasticity studies. In this review we start with a brief introduction of myelin biology and discuss the contributions of myelin in conventional MRI contrasts. Then the MRI properties of myelin water and four different MWI methods, which are categorized as T2 -, T2 *-, T1 -, and steady-state-based MWI, are summarized. After that, we cover more practical issues such as availability, interpretation, and validation of these methods. To illustrate the utility of MWI as a clinical research tool, MWI studies for two diseases, multiple sclerosis and neuromyelitis optica, are introduced. Additional topics about imaging myelin in gray matter and non-MWI methods for myelin imaging are also included. Although technical and physiological limitations exist, MWI is a potent surrogate biomarker of myelin that carries valuable and useful information of myelin. Evidence Level: 5 Technical Efficacy: 1 J. MAGN. RESON. IMAGING 2021;53:360-373.
Collapse
Affiliation(s)
- Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang-si, Korea
| | - Jieun Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Eun-Jung Choi
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Hyeong-Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Kyeongseon Min
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Yoonho Nam
- Department of Radiology, Seoul Saint Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang-si, Korea
| | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Korea.,Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
9
|
Lassmann H. Pathogenic Mechanisms Associated With Different Clinical Courses of Multiple Sclerosis. Front Immunol 2019; 9:3116. [PMID: 30687321 PMCID: PMC6335289 DOI: 10.3389/fimmu.2018.03116] [Citation(s) in RCA: 385] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 01/02/2023] Open
Abstract
In the majority of patients multiple sclerosis starts with a relapsing remitting course (RRMS), which may at later times transform into secondary progressive disease (SPMS). In a minority of patients the relapsing remitting disease is skipped and the patients show progression from the onset (primary progressive MS, PPMS). Evidence obtained so far indicate major differences between RRMS and progressive MS, but no essential differences between SPMS and PPMS, with the exception of a lower incidence in the global load of focal white matter lesions and in particular in the presence of classical active plaques in PPMS. We suggest that in MS patients two types of inflammation occur, which develop in parallel but partially independent from each other. The first is the focal bulk invasion of T- and B-lymphocytes with profound blood brain barrier leakage, which predominately affects the white matter, and which gives rise to classical active demyelinated plaques. The other type of inflammation is a slow accumulation of T-cells and B-cells in the absence of major blood brain barrier damage in the connective tissue spaces of the brain, such as the meninges and the large perivascular Virchow Robin spaces, where they may form aggregates or in most severe cases structures in part resembling tertiary lymph follicles. This type of inflammation is associated with the formation of subpial demyelinated lesions in the cerebral and cerebellar cortex, with slow expansion of pre-existing lesions in the white matter and with diffuse neurodegeneration in the normal appearing white or gray matter. The first type of inflammation dominates in acute and relapsing MS. The second type of inflammation is already present in early stages of MS, but gradually increases with disease duration and patient age. It is suggested that CD8+ T-lymphocytes remain in the brain and spinal cord as tissue resident cells, which may focally propagate neuroinflammation, when they re-encounter their cognate antigen. B-lymphocytes may propagate demyelination and neurodegeneration, most likely by producing soluble neurotoxic factors. Whether lymphocytes within the brain tissue of MS lesions have also regulatory functions is presently unknown. Key open questions in MS research are the identification of the target antigen recognized by tissue resident CD8+ T-cells and B-cells and the molecular nature of the soluble inflammatory mediators, which may trigger tissue damage.
Collapse
Affiliation(s)
- Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Vertinsky AT, Li DK, Vavasour IM, Miropolsky V, Zhao G, Zhao Y, Riddehough A, Moore GW, Traboulsee A, Laule C. Diffusely Abnormal White Matter, T2
Burden of Disease, and Brain Volume in Relapsing-Remitting Multiple Sclerosis. J Neuroimaging 2018; 29:151-159. [DOI: 10.1111/jon.12574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/09/2018] [Indexed: 11/27/2022] Open
Affiliation(s)
- Alexandra T. Vertinsky
- Department of Radiology; University of British Columbia; Vancouver British Columbia Canada
| | - David K.B. Li
- Department of Radiology; University of British Columbia; Vancouver British Columbia Canada
- UBC MS/MRI Research Group; University of British Columbia; Vancouver British Columbia Canada
- Department of Medicine (Neurology); University of British Columbia; Vancouver British Columbia Canada
| | - Irene M. Vavasour
- Department of Radiology; University of British Columbia; Vancouver British Columbia Canada
| | - Vladislav Miropolsky
- Department of Radiology; University of British Columbia; Vancouver British Columbia Canada
| | - Guojun Zhao
- Department of Radiology; University of British Columbia; Vancouver British Columbia Canada
- UBC MS/MRI Research Group; University of British Columbia; Vancouver British Columbia Canada
| | - Yinshan Zhao
- Department of Medicine (Neurology); University of British Columbia; Vancouver British Columbia Canada
| | - Andrew Riddehough
- UBC MS/MRI Research Group; University of British Columbia; Vancouver British Columbia Canada
| | - G.R. Wayne Moore
- Department of Medicine (Neurology); University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
- International Collaboration on Repair Discoveries (ICORD); University of British Columbia; Vancouver British Columbia Canada
| | - Anthony Traboulsee
- UBC MS/MRI Research Group; University of British Columbia; Vancouver British Columbia Canada
- Department of Medicine (Neurology); University of British Columbia; Vancouver British Columbia Canada
| | - Cornelia Laule
- Department of Radiology; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
- International Collaboration on Repair Discoveries (ICORD); University of British Columbia; Vancouver British Columbia Canada
- Department of Physics and Astronomy; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
11
|
Stankoff B, Poirion E, Tonietto M, Bodini B. Exploring the heterogeneity of MS lesions using positron emission tomography: a reappraisal of their contribution to disability. Brain Pathol 2018; 28:723-734. [PMID: 30020560 PMCID: PMC8099240 DOI: 10.1111/bpa.12641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
The biological mechanisms driving disability worsening in multiple sclerosis (MS) are only partly understood. Monitoring changes in lesion load on MRI has a limited predictive value on the progression of clinical disability, and there is an essential need for novel imaging markers specific for the main candidate mechanisms underlying neurodegeneration which include failing myelin repair, innate immune cell activation and gray matter neuronal damage. Positron Emission Tomography (PET) is an imaging technology based on the injection of radiotracers directed against specific molecular targets, which has recently allowed the selective quantification in-vivo of the key biological mechanisms relevant to MS pathophysiology. Pilot PET studies performed in patients with all forms of MS allowed to revisit the contribution of MS lesions to disability worsening and showed that the evolution of lesions toward chronic activation, together with their remyelination profile were relevant predictors of disability worsening. PET offers the opportunity to bridge a critical gap between neuropathology and in-vivo imaging. This technique provides an original approach to disentangle some of the most relevant pathological components driving MS progression, to follow-up their temporal evolution, to investigate their clinical relevance and to evaluate novel therapeutics aimed to prevent disease progression.
Collapse
Affiliation(s)
- Bruno Stankoff
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| | - Emilie Poirion
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Matteo Tonietto
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Benedetta Bodini
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| |
Collapse
|
12
|
Laule C, Moore GW. Myelin water imaging to detect demyelination and remyelination and its validation in pathology. Brain Pathol 2018; 28:750-764. [PMID: 30375119 PMCID: PMC8028667 DOI: 10.1111/bpa.12645] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Damage to myelin is a key feature of multiple sclerosis (MS) pathology. Magnetic resonance imaging (MRI) has revolutionized our ability to detect and monitor MS pathology in vivo. Proton density, T1 and T2 can provide qualitative contrast weightings that yield superb in vivo visualization of central nervous system tissue and have proved invaluable as diagnostic and patient management tools in MS. However, standard clinical MR methods are not specific to the types of tissue damage they visualize, and they cannot detect subtle abnormalities in tissue that appears otherwise normal on conventional MRIs. Myelin water imaging is an MR method that provides in vivo measurement of myelin. Histological validation work in both human brain and spinal cord tissue demonstrates a strong correlation between myelin water and staining for myelin, validating myelin water as a marker for myelin. Myelin water varies throughout the brain and spinal cord in healthy controls, and shows good intra- and inter-site reproducibility. MS plaques show variably decreased myelin water fraction, with older lesions demonstrating the greatest myelin loss. Longitudinal study of myelin water can provide insights into the dynamics of demyelination and remyelination in plaques. Normal appearing brain and spinal cord tissues show reduced myelin water, an abnormality which becomes progressively more evident over a timescale of years. Diffusely abnormal white matter, which is evident in 20%-25% of MS patients, also shows reduced myelin water both in vivo and postmortem, and appears to originate from a primary lipid abnormality with relative preservation of myelin proteins. Active research is ongoing in the quest to refine our ability to image myelin and its perturbations in MS and other disorders of the myelin sheath.
Collapse
Affiliation(s)
- Cornelia Laule
- RadiologyUniversity of British ColumbiaVancouverBCCanada
- Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Physics & AstronomyUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair Discoveries (ICORD)University of British ColumbiaVancouverBCCanada
| | - G.R. Wayne Moore
- Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair Discoveries (ICORD)University of British ColumbiaVancouverBCCanada
- Medicine (Neurology)University of British ColumbiaVancouverBCCanada
| |
Collapse
|
13
|
Abstract
This chapter provides a brief overview of studies that combine postmortem magnetic resonance imaging (MRI) and histopathology. We touch upon the logistics of setting up a protocol that limits unwanted postmortem delays and explain how combining postmortem MRI and histopathology can elucidate the histologic substrate of signal changes that appear on MRI. This is demonstrated by exemplary studies in multiple sclerosis, and includes various histopathologic techniques and a wide range of conventional and advanced MRI sequences at various field strengths. We cover topics such as how to visualize white-matter pathology and repair with conventional and advanced MRI sequences, describe the history of visualizing pathology of the gray matter (with newly developed MRI and immunohistopathology techniques), and how advanced methods have aided research in other neurologic diseases. We conclude with several suggestions for future development, such as bridging the gap between postmortem and in vivo research and the importance of collecting non-neurological control tissue.
Collapse
Affiliation(s)
- Laura E Jonkman
- Department of Anatomy and Neurosciences, VU Medical Center, Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Homos MD, Ali MT, Osman MF, Nabil DM. DTI metrics reflecting microstructural changes of normal appearing deep grey matter in multiple sclerosis. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2017. [DOI: 10.1016/j.ejrnm.2017.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Mahajan KR, Ontaneda D. The Role of Advanced Magnetic Resonance Imaging Techniques in Multiple Sclerosis Clinical Trials. Neurotherapeutics 2017; 14:905-923. [PMID: 28770481 PMCID: PMC5722766 DOI: 10.1007/s13311-017-0561-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging has been crucial in the development of anti-inflammatory disease-modifying treatments. The current landscape of multiple sclerosis clinical trials is currently expanding to include testing not only of anti-inflammatory agents, but also neuroprotective, remyelinating, neuromodulating, and restorative therapies. This is especially true of therapies targeting progressive forms of the disease where neurodegeneration is a prominent feature. Imaging techniques of the brain and spinal cord have rapidly evolved in the last decade to permit in vivo characterization of tissue microstructural changes, connectivity, metabolic changes, neuronal loss, glial activity, and demyelination. Advanced magnetic resonance imaging techniques hold significant promise for accelerating the development of different treatment modalities targeting a variety of pathways in MS.
Collapse
Affiliation(s)
- Kedar R Mahajan
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA.
| |
Collapse
|
16
|
Liu H, MacMillan EL, Jutzeler CR, Ljungberg E, MacKay AL, Kolind SH, Mädler B, Li DKB, Dvorak MF, Curt A, Laule C, Kramer JLK. Assessing structure and function of myelin in cervical spondylotic myelopathy: Evidence of demyelination. Neurology 2017; 89:602-610. [PMID: 28701500 PMCID: PMC5562959 DOI: 10.1212/wnl.0000000000004197] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/12/2017] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To assess the extent of demyelination in cervical spondylotic myelopathy (CSM) using myelin water imaging (MWI) and electrophysiologic techniques. METHODS Somatosensory evoked potentials (SSEPs) and MWI were acquired in 14 patients with CSM and 18 age-matched healthy controls. MWI was performed on a 3.0T whole body magnetic resonance scanner. Myelin water fraction (MWF) was extracted for the dorsal columns and whole cord. SSEPs and MWF were also compared with conventional MRI outcomes, including T2 signal intensity, compression ratio, maximum spinal cord compression (MSCC), and maximum canal compromise (MCC). RESULTS Group analysis showed marked differences in T2 signal intensity, compression ratio, MSCC, and MCC between healthy controls and patients with CSM. There were no group differences in MWF and SSEP latencies. However, patients with CSM with pathologic SSEPs exhibited reduction in MWF (p < 0.05). MWF was also correlated with SSEP latencies. CONCLUSION Our findings provide evidence of decreased myelin content in the spinal cord associated with impaired spinal cord conduction in patients with CSM. While conventional MRI are of great value to define the extent of cord compression, they show a limited correlation with functional deficits (i.e., delayed SSEPs). MWI provides independent and complementary readouts to spinal cord compression, with a high specificity to detect impaired conduction.
Collapse
Affiliation(s)
- Hanwen Liu
- From Physics and Astronomy (H.L., A.L.M., B.M.), ICORD (H.L., C.R.J., M.F.D., C.L., J.L.K.K.), Medicine (Neurology) (E.L.M., E.L., S.H.K., D.K.B.L.), Radiology (A.L.M., D.K.B.L., C.L.), Orthopaedics (M.F.D.), Pathology & Laboratory Medicine (C.L.), and School of Kinesiology (J.L.K.K.), University of British Columbia, Vancouver, Canada; Spinal Cord Injury Center (C.R.J., A.C.), University Hospital Balgrist, University of Zurich, Switzerland; and Philips Healthcare (B.M.), Hamburg, Germany.
| | - Erin L MacMillan
- From Physics and Astronomy (H.L., A.L.M., B.M.), ICORD (H.L., C.R.J., M.F.D., C.L., J.L.K.K.), Medicine (Neurology) (E.L.M., E.L., S.H.K., D.K.B.L.), Radiology (A.L.M., D.K.B.L., C.L.), Orthopaedics (M.F.D.), Pathology & Laboratory Medicine (C.L.), and School of Kinesiology (J.L.K.K.), University of British Columbia, Vancouver, Canada; Spinal Cord Injury Center (C.R.J., A.C.), University Hospital Balgrist, University of Zurich, Switzerland; and Philips Healthcare (B.M.), Hamburg, Germany
| | - Catherine R Jutzeler
- From Physics and Astronomy (H.L., A.L.M., B.M.), ICORD (H.L., C.R.J., M.F.D., C.L., J.L.K.K.), Medicine (Neurology) (E.L.M., E.L., S.H.K., D.K.B.L.), Radiology (A.L.M., D.K.B.L., C.L.), Orthopaedics (M.F.D.), Pathology & Laboratory Medicine (C.L.), and School of Kinesiology (J.L.K.K.), University of British Columbia, Vancouver, Canada; Spinal Cord Injury Center (C.R.J., A.C.), University Hospital Balgrist, University of Zurich, Switzerland; and Philips Healthcare (B.M.), Hamburg, Germany
| | - Emil Ljungberg
- From Physics and Astronomy (H.L., A.L.M., B.M.), ICORD (H.L., C.R.J., M.F.D., C.L., J.L.K.K.), Medicine (Neurology) (E.L.M., E.L., S.H.K., D.K.B.L.), Radiology (A.L.M., D.K.B.L., C.L.), Orthopaedics (M.F.D.), Pathology & Laboratory Medicine (C.L.), and School of Kinesiology (J.L.K.K.), University of British Columbia, Vancouver, Canada; Spinal Cord Injury Center (C.R.J., A.C.), University Hospital Balgrist, University of Zurich, Switzerland; and Philips Healthcare (B.M.), Hamburg, Germany
| | - Alex L MacKay
- From Physics and Astronomy (H.L., A.L.M., B.M.), ICORD (H.L., C.R.J., M.F.D., C.L., J.L.K.K.), Medicine (Neurology) (E.L.M., E.L., S.H.K., D.K.B.L.), Radiology (A.L.M., D.K.B.L., C.L.), Orthopaedics (M.F.D.), Pathology & Laboratory Medicine (C.L.), and School of Kinesiology (J.L.K.K.), University of British Columbia, Vancouver, Canada; Spinal Cord Injury Center (C.R.J., A.C.), University Hospital Balgrist, University of Zurich, Switzerland; and Philips Healthcare (B.M.), Hamburg, Germany
| | - Shannon H Kolind
- From Physics and Astronomy (H.L., A.L.M., B.M.), ICORD (H.L., C.R.J., M.F.D., C.L., J.L.K.K.), Medicine (Neurology) (E.L.M., E.L., S.H.K., D.K.B.L.), Radiology (A.L.M., D.K.B.L., C.L.), Orthopaedics (M.F.D.), Pathology & Laboratory Medicine (C.L.), and School of Kinesiology (J.L.K.K.), University of British Columbia, Vancouver, Canada; Spinal Cord Injury Center (C.R.J., A.C.), University Hospital Balgrist, University of Zurich, Switzerland; and Philips Healthcare (B.M.), Hamburg, Germany
| | - Burkhard Mädler
- From Physics and Astronomy (H.L., A.L.M., B.M.), ICORD (H.L., C.R.J., M.F.D., C.L., J.L.K.K.), Medicine (Neurology) (E.L.M., E.L., S.H.K., D.K.B.L.), Radiology (A.L.M., D.K.B.L., C.L.), Orthopaedics (M.F.D.), Pathology & Laboratory Medicine (C.L.), and School of Kinesiology (J.L.K.K.), University of British Columbia, Vancouver, Canada; Spinal Cord Injury Center (C.R.J., A.C.), University Hospital Balgrist, University of Zurich, Switzerland; and Philips Healthcare (B.M.), Hamburg, Germany
| | - David K B Li
- From Physics and Astronomy (H.L., A.L.M., B.M.), ICORD (H.L., C.R.J., M.F.D., C.L., J.L.K.K.), Medicine (Neurology) (E.L.M., E.L., S.H.K., D.K.B.L.), Radiology (A.L.M., D.K.B.L., C.L.), Orthopaedics (M.F.D.), Pathology & Laboratory Medicine (C.L.), and School of Kinesiology (J.L.K.K.), University of British Columbia, Vancouver, Canada; Spinal Cord Injury Center (C.R.J., A.C.), University Hospital Balgrist, University of Zurich, Switzerland; and Philips Healthcare (B.M.), Hamburg, Germany
| | - Marcel F Dvorak
- From Physics and Astronomy (H.L., A.L.M., B.M.), ICORD (H.L., C.R.J., M.F.D., C.L., J.L.K.K.), Medicine (Neurology) (E.L.M., E.L., S.H.K., D.K.B.L.), Radiology (A.L.M., D.K.B.L., C.L.), Orthopaedics (M.F.D.), Pathology & Laboratory Medicine (C.L.), and School of Kinesiology (J.L.K.K.), University of British Columbia, Vancouver, Canada; Spinal Cord Injury Center (C.R.J., A.C.), University Hospital Balgrist, University of Zurich, Switzerland; and Philips Healthcare (B.M.), Hamburg, Germany
| | - Armin Curt
- From Physics and Astronomy (H.L., A.L.M., B.M.), ICORD (H.L., C.R.J., M.F.D., C.L., J.L.K.K.), Medicine (Neurology) (E.L.M., E.L., S.H.K., D.K.B.L.), Radiology (A.L.M., D.K.B.L., C.L.), Orthopaedics (M.F.D.), Pathology & Laboratory Medicine (C.L.), and School of Kinesiology (J.L.K.K.), University of British Columbia, Vancouver, Canada; Spinal Cord Injury Center (C.R.J., A.C.), University Hospital Balgrist, University of Zurich, Switzerland; and Philips Healthcare (B.M.), Hamburg, Germany
| | - Cornelia Laule
- From Physics and Astronomy (H.L., A.L.M., B.M.), ICORD (H.L., C.R.J., M.F.D., C.L., J.L.K.K.), Medicine (Neurology) (E.L.M., E.L., S.H.K., D.K.B.L.), Radiology (A.L.M., D.K.B.L., C.L.), Orthopaedics (M.F.D.), Pathology & Laboratory Medicine (C.L.), and School of Kinesiology (J.L.K.K.), University of British Columbia, Vancouver, Canada; Spinal Cord Injury Center (C.R.J., A.C.), University Hospital Balgrist, University of Zurich, Switzerland; and Philips Healthcare (B.M.), Hamburg, Germany
| | - John L K Kramer
- From Physics and Astronomy (H.L., A.L.M., B.M.), ICORD (H.L., C.R.J., M.F.D., C.L., J.L.K.K.), Medicine (Neurology) (E.L.M., E.L., S.H.K., D.K.B.L.), Radiology (A.L.M., D.K.B.L., C.L.), Orthopaedics (M.F.D.), Pathology & Laboratory Medicine (C.L.), and School of Kinesiology (J.L.K.K.), University of British Columbia, Vancouver, Canada; Spinal Cord Injury Center (C.R.J., A.C.), University Hospital Balgrist, University of Zurich, Switzerland; and Philips Healthcare (B.M.), Hamburg, Germany
| |
Collapse
|
17
|
Dayan M, Hurtado Rúa SM, Monohan E, Fujimoto K, Pandya S, LoCastro EM, Vartanian T, Nguyen TD, Raj A, Gauthier SA. MRI Analysis of White Matter Myelin Water Content in Multiple Sclerosis: A Novel Approach Applied to Finding Correlates of Cortical Thinning. Front Neurosci 2017; 11:284. [PMID: 28603479 PMCID: PMC5445177 DOI: 10.3389/fnins.2017.00284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
A novel lesion-mask free method based on a gamma mixture model was applied to myelin water fraction (MWF) maps to estimate the association between cortical thickness and myelin content, and how it differs between relapsing-remitting (RRMS) and secondary-progressive multiple sclerosis (SPMS) groups (135 and 23 patients, respectively). It was compared to an approach based on lesion masks. The gamma mixture distribution of whole brain, white matter (WM) MWF was characterized with three variables: the mode (most frequent value) m1 of the gamma component shown to relate to lesion, the mode m2 of the component shown to be associated with normal appearing (NA) WM, and the mixing ratio (λ) between the two distributions. The lesion-mask approach relied on the mean MWF within lesion and within NAWM. A multivariate regression analysis was carried out to find the best predictors of cortical thickness for each group and for each approach. The gamma-mixture method was shown to outperform the lesion-mask approach in terms of adjusted R2, both for the RRMS and SPMS groups. The predictors of the final gamma-mixture models were found to be m1 (β = 1.56, p < 0.005), λ (β = −0.30, p < 0.0005) and age (β = −0.0031, p < 0.005) for the RRMS group (adjusted R2 = 0.16), and m2 (β = 4.72, p < 0.0005) for the SPMS group (adjusted R2 = 0.45). Further, a DICE coefficient analysis demonstrated that the lesion mask had more overlap to an ROI associated with m1, than to an ROI associated with m2 (p < 0.00001), and vice versa for the NAWM mask (p < 0.00001). These results suggest that during the relapsing phase, focal WM damage is associated with cortical thinning, yet in SPMS patients, global WM deterioration has a much stronger influence on secondary degeneration. Through these findings, we demonstrate the potential contribution of myelin loss on neuronal degeneration at different disease stages and the usefulness of our statistical reduction technique which is not affected by the typical bias associated with approaches based on lesion masks.
Collapse
Affiliation(s)
- Michael Dayan
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States.,Pattern Analysis and Computer Vision, Istituto Italiano di TecnologiaGenova, Italy
| | - Sandra M Hurtado Rúa
- Department of Mathematics, Cleveland State UniversityCleveland, OH, United States
| | - Elizabeth Monohan
- Department of Neurology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Kyoko Fujimoto
- Department of Neurology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Sneha Pandya
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Eve M LoCastro
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Tim Vartanian
- Department of Neurology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States.,Brain and Mind Institute, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Ashish Raj
- Department of Radiology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States.,Brain and Mind Institute, Weill Cornell Graduate School of Medical SciencesNew York, NY, United States
| |
Collapse
|
18
|
Geraldes R, Esiri MM, DeLuca GC, Palace J. Age-related small vessel disease: a potential contributor to neurodegeneration in multiple sclerosis. Brain Pathol 2017; 27:707-722. [PMID: 27864848 DOI: 10.1111/bpa.12460] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disorder of the central nervous system wherein, after an initial phase of transient neurological defects, slow neurological deterioration due to progressive neuronal loss ensues. Age is a major determinant of MS progression onset and disability. Over the past years, several mechanisms have been proposed to explain the key drivers of neurodegeneration and disability accumulation in MS. However, the effect of commonly encountered age-related cerebral vessel disease, namely small vessel disease (SVD), has been largely neglected and constitutes the aim of this review. SVD shares some features with MS, that is, white matter demyelination and brain atrophy, and has been shown to contribute to the neuronal damage seen in vascular cognitive impairment. Several lines of evidence suggest that an interaction between MS and SVD may influence MS-related neurodegeneration. SVD may contribute to hypoperfusion, reduced vascular reactivity and tissue hypoxia, features seen in MS. Venule and endothelium abnormalities have been documented in MS but the role of arterioles and of other neurovascular unit structures, such as the pericyte, has not been explored. Vascular risk factors (VRF) have recently been associated with faster progression in MS, though the mechanisms are unclear since very few studies have addressed the impact of VRF and SVD on MS imaging and pathology outcomes. Therapeutic agents targeting the microvasculature and the neurovascular unit may impact both SVD and MS and may benefit patients with dual pathology.
Collapse
Affiliation(s)
- Ruth Geraldes
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Margaret M Esiri
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
19
|
Bodini B, Stankoff B. Imaging Central Nervous System Demyelination and Remyelination by Positron-Emission Tomography. Brain Plast 2016; 2:93-98. [PMID: 29765850 PMCID: PMC5928544 DOI: 10.3233/bpl-160042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Positron Emission Tomography (PET), an imaging technique based on the injection of radiotracers directed against specific biological targets within brain tissues, within brain tissues, is a specific and sensitive technique which offers the unique opportunity to quantify myelin dynamics in the central nervous system. Several stilbene and benzothiazole derivatives have been repurposed to image myelin by PET. In demyelinating and dysmyelinating models, selected radiotracers were shown to reliably quantify demyelination and remyelination, allowing a translational approach in humans. A pilot study in subjects with active relapsing MS using PET and the most available benzothiazole derivative, [11C]PIB, supported the hypothesis that this technique is able to quantify myelin content in multiple sclerosis (MS) lesions and to capture dynamic demyelination and remyelination over time. This study highlighted for the first time in vivo the prognostic value of individual profiles of remyelination on the disease course. In future, the clinical application of myelin PET will be pushed forward thanks to the availability of novel fluorinated tracers for myelin, together with the setting up of non invasive quantification procedures and the use of powerful PET-MR systems. This will enable to address in vivo critical unanswered questions about the pathogenesis of remyelination, and to measure the efficacy of emerging promyelinating drugs in early-phase therapeutic trials.
Collapse
Affiliation(s)
- Benedetta Bodini
- Sorbonne Université, UPMC Paris 06, Institut du Cerveau et de la Moelle épiniére, ICM, Hôpital de la Pitié Salpêtriére, Inserm UMR S 1127, CNRS UMR 7225, Paris, France.,APHP, Assistance Publique des Hôpitaux de Paris, Hôpitaux Saint Antoine and Pitié-Salpêtriére, Paris, France
| | - Bruno Stankoff
- Sorbonne Université, UPMC Paris 06, Institut du Cerveau et de la Moelle épiniére, ICM, Hôpital de la Pitié Salpêtriére, Inserm UMR S 1127, CNRS UMR 7225, Paris, France.,APHP, Assistance Publique des Hôpitaux de Paris, Hôpitaux Saint Antoine and Pitié-Salpêtriére, Paris, France
| |
Collapse
|
20
|
Abstract
Myelin is critical for healthy brain function. An accurate in vivo measure of myelin content has important implications for understanding brain plasticity and neurodegenerative diseases. Myelin water imaging is a magnetic resonance imaging method which can be used to visualize myelination in the brain and spinal cord in vivo. This review presents an overview of myelin water imaging data acquisition and analysis, post-mortem validation work, findings in both animal and human studies and a brief discussion about other MR techniques purported to provide in vivo myelin content. Multi-echo T2 relaxation approaches continue to undergo development and whole-brain imaging time now takes less than 10 minutes; the standard analysis method for this type of data acquisition is a non-negative least squares approach. Alternate methods including the multi-flip angle gradient echo mcDESPOT are also being used for myelin water imaging. Histological validation studies in animal and human brain and spinal cord tissue demonstrate high specificity of myelin water imaging for myelin. Potential confounding factors for in vivo myelin water fraction measurement include the presence of myelin debris and magnetization exchange processes. Myelin water imaging has successfully been used to study animal models of injury, applied in healthy human controls and can be used to assess damage and injury in conditions such as multiple sclerosis, neuromyelitis optica, schizophrenia, phenylketonuria, neurofibromatosis, niemann pick’s disease, stroke and concussion. Other quantitative magnetic resonance approaches that are sensitive to, but not specific for, myelin exist including magnetization transfer, diffusion tensor imaging and T1 weighted imaging.
Collapse
Affiliation(s)
- Alex L MacKay
- Department of Radiology, University of British Columbia, Vancouver, Canada.,Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| |
Collapse
|
21
|
Bodini B, Veronese M, García‐Lorenzo D, Battaglini M, Poirion E, Chardain A, Freeman L, Louapre C, Tchikviladze M, Papeix C, Dollé F, Zalc B, Lubetzki C, Bottlaender M, Turkheimer F, Stankoff B. Dynamic Imaging of Individual Remyelination Profiles in Multiple Sclerosis. Ann Neurol 2016; 79:726-738. [PMID: 26891452 PMCID: PMC5006855 DOI: 10.1002/ana.24620] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/12/2022]
Abstract
Background Quantitative in vivo imaging of myelin loss and repair in patients with multiple sclerosis (MS) is essential to understand the pathogenesis of the disease and to evaluate promyelinating therapies. Selectively binding myelin in the central nervous system white matter, Pittsburgh compound B ([11C]PiB) can be used as a positron emission tomography (PET) tracer to explore myelin dynamics in MS. Methods Patients with active relapsing‐remitting MS (n = 20) and healthy controls (n = 8) were included in a longitudinal trial combining PET with [11C]PiB and magnetic resonance imaging. Voxel‐wise maps of [11C]PiB distribution volume ratio, reflecting myelin content, were derived. Three dynamic indices were calculated for each patient: the global index of myelin content change; the index of demyelination; and the index of remyelination. Results At baseline, there was a progressive reduction in [11C]PiB binding from the normal‐appearing white matter to MS lesions, reflecting a decline in myelin content. White matter lesions were characterized by a centripetal decrease in the tracer binding at the voxel level. During follow‐up, high between‐patient variability was found for all indices of myelin content change. Dynamic remyelination was inversely correlated with clinical disability (p = 0.006 and beta‐coefficient = –0.67 with the Expanded Disability Status Scale; p = 0.003 and beta‐coefficient = –0.68 with the MS Severity Scale), whereas no significant clinical correlation was found for the demyelination index. Interpretation [11C]PiB PET allows quantification of myelin dynamics in MS and enables stratification of patients depending on their individual remyelination potential, which significantly correlates with clinical disability. This technique should be considered to assess novel promyelinating drugs. Ann Neurol 2016;79:726–738
Collapse
Affiliation(s)
- Benedetta Bodini
- Sorbonne UniversitésUPMC University Paris 06UMR S 1127, and CNRS UMR 7225, and ICMF‐75013ParisFrance
- Department of Neuroimaging, Institute of PsychiatryKing's College LondonLondonUnited Kingdom
- Service Hospitalier Fréderic Joliot, SHFJ, I2BM‐DSVCEAOrsayFrance
| | - Mattia Veronese
- Department of Neuroimaging, Institute of PsychiatryKing's College LondonLondonUnited Kingdom
| | - Daniel García‐Lorenzo
- Sorbonne UniversitésUPMC University Paris 06UMR S 1127, and CNRS UMR 7225, and ICMF‐75013ParisFrance
| | - Marco Battaglini
- Department of Behavioral and Neurological SciencesUniversity of SienaSienaItaly
| | - Emilie Poirion
- Sorbonne UniversitésUPMC University Paris 06UMR S 1127, and CNRS UMR 7225, and ICMF‐75013ParisFrance
| | - Audrey Chardain
- Service Hospitalier Fréderic Joliot, SHFJ, I2BM‐DSVCEAOrsayFrance
- APHP Hôpital Saint‐AntoineParisFrance
| | - Léorah Freeman
- Sorbonne UniversitésUPMC University Paris 06UMR S 1127, and CNRS UMR 7225, and ICMF‐75013ParisFrance
- Service Hospitalier Fréderic Joliot, SHFJ, I2BM‐DSVCEAOrsayFrance
- APHPHopital Pitié-SalpetrièreParisFrance
| | - Céline Louapre
- Sorbonne UniversitésUPMC University Paris 06UMR S 1127, and CNRS UMR 7225, and ICMF‐75013ParisFrance
| | | | | | - Frédéric Dollé
- Service Hospitalier Fréderic Joliot, SHFJ, I2BM‐DSVCEAOrsayFrance
| | - Bernard Zalc
- Sorbonne UniversitésUPMC University Paris 06UMR S 1127, and CNRS UMR 7225, and ICMF‐75013ParisFrance
| | - Catherine Lubetzki
- Sorbonne UniversitésUPMC University Paris 06UMR S 1127, and CNRS UMR 7225, and ICMF‐75013ParisFrance
- APHPHopital Pitié-SalpetrièreParisFrance
| | | | - Federico Turkheimer
- Department of Neuroimaging, Institute of PsychiatryKing's College LondonLondonUnited Kingdom
| | - Bruno Stankoff
- Sorbonne UniversitésUPMC University Paris 06UMR S 1127, and CNRS UMR 7225, and ICMF‐75013ParisFrance
- Service Hospitalier Fréderic Joliot, SHFJ, I2BM‐DSVCEAOrsayFrance
- APHP Hôpital Saint‐AntoineParisFrance
| |
Collapse
|
22
|
Valdés Hernández MDC, González-Castro V, Ghandour DT, Wang X, Doubal F, Muñoz Maniega S, Armitage PA, Wardlaw JM. On the computational assessment of white matter hyperintensity progression: difficulties in method selection and bias field correction performance on images with significant white matter pathology. Neuroradiology 2016; 58:475-85. [PMID: 26833053 PMCID: PMC4846712 DOI: 10.1007/s00234-016-1648-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Subtle inhomogeneities in the scanner's magnetic fields (B0 and B1) alter the intensity levels of the structural magnetic resonance imaging (MRI) affecting the volumetric assessment of WMH changes. Here, we investigate the influence that (1) correcting the images for the B1 inhomogeneities (i.e. bias field correction (BFC)) and (2) selection of the WMH change assessment method can have on longitudinal analyses of WMH progression and discuss possible solutions. METHODS We used brain structural MRI from 46 mild stroke patients scanned at stroke onset and 3 years later. We tested three BFC approaches: FSL-FAST, N4 and exponentially entropy-driven homomorphic unsharp masking (E(2)D-HUM) and analysed their effect on the measured WMH change. Separately, we tested two methods to assess WMH changes: measuring WMH volumes independently at both time points semi-automatically (MCMxxxVI) and subtracting intensity-normalised FLAIR images at both time points following image gamma correction. We then combined the BFC with the computational method that performed best across the whole sample to assess WMH changes. RESULTS Analysis of the difference in the variance-to-mean intensity ratio in normal tissue between BFC and uncorrected images and visual inspection showed that all BFC methods altered the WMH appearance and distribution, but FSL-FAST in general performed more consistently across the sample and MRI modalities. The WMH volume change over 3 years obtained with MCMxxxVI with vs. without FSL-FAST BFC did not significantly differ (medians(IQR)(with BFC) = 3.2(6.3) vs. 2.9(7.4)ml (without BFC), p = 0.5), but both differed significantly from the WMH volume change obtained from subtracting post-processed FLAIR images (without BFC)(7.6(8.2)ml, p < 0.001). This latter method considerably inflated the WMH volume change as subtle WMH at baseline that became more intense at follow-up were counted as increase in the volumetric change. CONCLUSIONS Measurement of WMH volume change remains challenging. Although the overall volumetric change was not significantly affected by the application of BFC, these methods distorted the image intensity distribution affecting subtle WMH. Subtracting the FLAIR images at both time points following gamma correction seems a promising technique but is adversely affected by subtle WMH. It is important to take into account not only the changes in volume but also in the signal intensity.
Collapse
Affiliation(s)
- Maria Del C Valdés Hernández
- Department of Neuroimaging Sciences, Centre for Clinical Brian Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Victor González-Castro
- Department of Neuroimaging Sciences, Centre for Clinical Brian Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Dina T Ghandour
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Xin Wang
- Department of Neuroimaging Sciences, Centre for Clinical Brian Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Fergus Doubal
- Department of Neuroimaging Sciences, Centre for Clinical Brian Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Susana Muñoz Maniega
- Department of Neuroimaging Sciences, Centre for Clinical Brian Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Paul A Armitage
- Department of Cardiovascular Sciences, University of Sheffield, Sheffield, UK
| | - Joanna M Wardlaw
- Department of Neuroimaging Sciences, Centre for Clinical Brian Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| |
Collapse
|
23
|
Blood pressure and sodium: Association with MRI markers in cerebral small vessel disease. J Cereb Blood Flow Metab 2016; 36:264-74. [PMID: 25899292 PMCID: PMC4758556 DOI: 10.1038/jcbfm.2015.64] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 12/13/2022]
Abstract
Dietary salt intake and hypertension are associated with increased risk of cardiovascular disease including stroke. We aimed to explore the influence of these factors, together with plasma sodium concentration, in cerebral small vessel disease (SVD). In all, 264 patients with nondisabling cortical or lacunar stroke were recruited. Patients were questioned about their salt intake and plasma sodium concentration was measured; brain tissue volume and white-matter hyperintensity (WMH) load were measured using structural magnetic resonance imaging (MRI) while diffusion tensor MRI and dynamic contrast-enhanced MRI were acquired to assess underlying tissue integrity. An index of added salt intake (P = 0.021), pulse pressure (P = 0.036), and diagnosis of hypertension (P = 0.0093) were positively associated with increased WMH, while plasma sodium concentration was associated with brain volume (P = 0.019) but not with WMH volume. These results are consistent with previous findings that raised blood pressure is associated with WMH burden and raise the possibility of an independent role for dietary salt in the development of cerebral SVD.
Collapse
|
24
|
Weinshenker BG. Tumefactive demyelinating lesions: Characteristics of individual lesions, individual patients, or a unique disease entity? Mult Scler 2015; 21:1746-7. [DOI: 10.1177/1352458515603801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 11/16/2022]
Abstract
Whether or not recurrent tumefactive demyelinating lesions are a unique form of CNS demyelinating disease or part of the continuum of multiple sclerosis is a question raised by the case report on which this commentary is based. Detailed review and immunopathologic study of biopsy material may not only confirm or refute a diagnosis of demyelinating disease, but potentially uncover unique features that may assist in understanding pathophysiology and nosology of rare cases with recurrent tumefactive demyelination.
Collapse
|
25
|
Tomas-Fernandez X, Warfield SK. A Model of Population and Subject (MOPS) Intensities With Application to Multiple Sclerosis Lesion Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1349-61. [PMID: 25616008 PMCID: PMC4506921 DOI: 10.1109/tmi.2015.2393853] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
White matter (WM) lesions are thought to play an important role in multiple sclerosis (MS) disease burden. Recent work in the automated segmentation of white matter lesions from magnetic resonance imaging has utilized a model in which lesions are outliers in the distribution of tissue signal intensities across the entire brain of each patient. However, the sensitivity and specificity of lesion detection and segmentation with these approaches have been inadequate. In our analysis, we determined this is due to the substantial overlap between the whole brain signal intensity distribution of lesions and normal tissue. Inspired by the ability of experts to detect lesions based on their local signal intensity characteristics, we propose a new algorithm that achieves lesion and brain tissue segmentation through simultaneous estimation of a spatially global within-the-subject intensity distribution and a spatially local intensity distribution derived from a healthy reference population. We demonstrate that MS lesions can be segmented as outliers from this intensity model of population and subject. We carried out extensive experiments with both synthetic and clinical data, and compared the performance of our new algorithm to those of state-of-the art techniques. We found this new approach leads to a substantial improvement in the sensitivity and specificity of lesion detection and segmentation.
Collapse
|
26
|
Beggs CB, Magnano C, Shepherd SJ, Belov P, Ramasamy DP, Hagemeier J, Zivadinov R. Dirty-Appearing White Matter in the Brain is Associated with Altered Cerebrospinal Fluid Pulsatility and Hypertension in Individuals without Neurologic Disease. J Neuroimaging 2015; 26:136-43. [DOI: 10.1111/jon.12249] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/04/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Clive B. Beggs
- Centre for Infection Control and Biophysics; University of Bradford; Bradford UK
- Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo NY
| | - Christopher Magnano
- Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo NY
- MRI Clinical Translational Research Center, School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo NY
| | - Simon J. Shepherd
- Centre for Infection Control and Biophysics; University of Bradford; Bradford UK
| | - Pavel Belov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo NY
| | - Deepa P. Ramasamy
- Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo NY
- MRI Clinical Translational Research Center, School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo NY
| | - Jesper Hagemeier
- Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo NY
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo NY
- MRI Clinical Translational Research Center, School of Medicine and Biomedical Sciences; University at Buffalo; Buffalo NY
| |
Collapse
|
27
|
DeLuca GC, Yates RL, Beale H, Morrow SA. Cognitive impairment in multiple sclerosis: clinical, radiologic and pathologic insights. Brain Pathol 2015; 25:79-98. [PMID: 25521179 PMCID: PMC8029470 DOI: 10.1111/bpa.12220] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/15/2014] [Indexed: 01/18/2023] Open
Abstract
Cognitive impairment is a common and debilitating feature of multiple sclerosis (MS) that has only recent gained considerable attention. Clinical neuropsychological studies have made apparent the multifaceted nature of cognitive troubles often encountered in MS and continue to broaden our understanding of its complexity. Radiographic studies have started to decipher the neuroanatomic substrate of MS-related cognitive impairment and have shed light onto its pathogenesis. Where radiographic studies have been limited by inadequate resolution or non-specificity, pathological studies have come to the fore. This review aims to provide an overview of the nature of cognitive impairment typically seen in MS and to explore the literature on imaging and pathological studies relevant to its evolution. In particular, the relative contributions of gray (i.e., cerebral cortex, hippocampus, thalamus and basal ganglia) and white matter to MS-related cognitive impairment will be discussed and the importance of interconnectivity between structures highlighted. The pressing need for longitudinal studies combining standardized neuropsychometric, paraclinical and radiographic outcomes obtained during life with post-mortem tissue analysis after death is presented.
Collapse
Affiliation(s)
- Gabriele C. DeLuca
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Richard L. Yates
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Harry Beale
- Oxford Medical SchoolUniversity of OxfordOxfordUK
| | - Sarah A. Morrow
- Department of Clinical Neurological SciencesThe University of Western OntarioLondonCanada
| |
Collapse
|
28
|
Pathology of multiple sclerosis and related inflammatory demyelinating diseases. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:15-58. [PMID: 24507512 DOI: 10.1016/b978-0-444-52001-2.00002-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article provides a comprehensive overview of the pathology of multiple sclerosis (MS), including recent insights into its molecular neuropathology and immunology. It shows that all clinical manifestations of relapsing and progressive MS display the same basic features of pathology, such as chronic inflammation, demyelination in the white and gray matter, and diffuse neurodegeneration within the entire central nervous system. However, the individual components of the pathological spectrum vary quantitatively between early relapsing and late progressive MS. Widespread confluent and plaque-like demyelination with oligodendrocyte destruction is the unique pathological hallmark of the disease, but axonal injury and neurodegeneration are additionally present and in part extensive. Remyelination of existing lesions may occur in MS brains; it is extensive in a subset of patients, while it fails in others. Active tissue injury in MS is always associated with inflammation, consistent with T-cell and macrophage infiltration and microglia activation. Recent data suggest that oxidative injury and subsequent mitochondrial damage play a major pathogenetic role in neurodegeneration. Finally we discuss similarities and differences of the pathology between classical MS and other inflammatory demyelinating diseases, such as neuromyelitis optica, concentric sclerosis, or acute disseminated encephalomyelitis.
Collapse
|
29
|
Lieury A, Chanal M, Androdias G, Reynolds R, Cavagna S, Giraudon P, Confavreux C, Nataf S. Tissue remodeling in periplaque regions of multiple sclerosis spinal cord lesions. Glia 2014; 62:1645-58. [DOI: 10.1002/glia.22705] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Alice Lieury
- INSERM U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Neuro-Oncology and Neuro-Inflammation Team; Lyon France
- University Lyon 1; Lyon France
| | - Marie Chanal
- INSERM U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Neuro-Oncology and Neuro-Inflammation Team; Lyon France
- University Lyon 1; Lyon France
| | - Géraldine Androdias
- INSERM U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Neuro-Oncology and Neuro-Inflammation Team; Lyon France
- University Lyon 1; Lyon France
- Service de Neurologie A and Eugène Devic Foundation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon (Lyon University Hospital); Bron France
| | - Richard Reynolds
- Wolfson Neuroscience Laboratories, Hammersmith Hospital Campus, Imperial College Faculty of Medicine; London United Kingdom
| | - Sylvie Cavagna
- INSERM U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Neuro-Oncology and Neuro-Inflammation Team; Lyon France
| | - Pascale Giraudon
- INSERM U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Neuro-Oncology and Neuro-Inflammation Team; Lyon France
| | - Christian Confavreux
- INSERM U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Neuro-Oncology and Neuro-Inflammation Team; Lyon France
- University Lyon 1; Lyon France
- Service de Neurologie A and Eugène Devic Foundation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon (Lyon University Hospital); Bron France
| | - Serge Nataf
- INSERM U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Neuro-Oncology and Neuro-Inflammation Team; Lyon France
- University Lyon 1; Lyon France
- Banque de Cellules et de Tissus, Hôpital Edouard Herriot, Hospices Civils de Lyon (Lyon University Hospital); Lyon France
| |
Collapse
|
30
|
West J, Aalto A, Tisell A, Leinhard OD, Landtblom AM, Smedby Ö, Lundberg P. Normal appearing and diffusely abnormal white matter in patients with multiple sclerosis assessed with quantitative MR. PLoS One 2014; 9:e95161. [PMID: 24747946 PMCID: PMC3991609 DOI: 10.1371/journal.pone.0095161] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/24/2014] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Magnetic Resonance Imaging is a sensitive technique for detecting white matter (WM) MS lesions, but the relation with clinical disability is low. Because of this, changes in both 'normal appearing white matter' (NAWM) and 'diffusely abnormal white matter' (DAWM) have been of interest in recent years. MR techniques, including quantitative magnetic resonance imaging (qMRI) and quantitative magnetic resonance spectroscopy (qMRS), have been developed in order to detect and quantify such changes. In this study, qMRI and qMRS were used to investigate NAWM and DAWM in typical MS patients and in MS patients with low number of WM lesions. Patient data were compared to 'normal white matter' (NWM) in healthy controls. METHODS QMRI and qMRS measurements were performed on a 1.5 T Philips MR-scanner. 35 patients with clinically definite MS and 20 healthy controls were included. Twenty of the patients fulfilled the 'Barkhof-Tintoré criteria' for MS, ('MRIpos'), whereas 15 showed radiologically atypical findings with few WM lesions ('MRIneg'). QMRI properties were determined in ROIs of NAWM, DAWM and lesions in the MS groups and of NWM in controls. Descriptive statistical analysis and comparisons were performed. Correlations were calculated between qMRI measurements and (1) clinical parameters and (2) WM metabolite concentrations. Regression analyses were performed with brain parenchyma fraction and MSSS. RESULTS NAWM in the MRIneg group was significantly different from NAWM in the MRIpos group and NWM. In addition, R1 and R2 of NAWM in the MRIpos group correlated negatively with EDSS and MSSS. DAWM was significantly different from NWM, but similar in the MS groups. N-acetyl aspartate correlated negatively with R1 and R2 in MRIneg. R2 of DAWM was associated with BPF. CONCLUSIONS Changes in NAWM and DAWM are independent pathological entities in the disease. The correlation between qMRI and clinical status may shed new light on the clinicoradiological paradox.
Collapse
Affiliation(s)
- Janne West
- Radiation Physics, Department of Medicine and Health, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Anne Aalto
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Radiological Sciences, Department of Medicine and Health, Linköping University, Department of Radiation Physics, UHL County Council of Östergötland, Linköping, Sweden
| | - Anders Tisell
- Radiation Physics, Department of Medicine and Health, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Radiation Physics, Department of Medicine and Health, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Anne-Marie Landtblom
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Neurology, Linköping University, and Neurology, UHL and LiM County Council of Östergötland, Linköping, Sweden
| | - Örjan Smedby
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Radiology, Department of Medicine and Health, Linköping University, Department of Radiology, UHL County Council of Östergötland, Linköping, Sweden
| | - Peter Lundberg
- Radiation Physics, Department of Medicine and Health, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Radiological Sciences, Department of Medicine and Health, Linköping University, Department of Radiation Physics, UHL County Council of Östergötland, Linköping, Sweden
| |
Collapse
|
31
|
DeLuca GC, Kimball SM, Kolasinski J, Ramagopalan SV, Ebers GC. Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol 2014; 39:458-84. [PMID: 23336971 DOI: 10.1111/nan.12020] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022]
Abstract
Vitamin D and its metabolites have pleomorphic roles in both nervous system health and disease. Animal models have been paramount in contributing to our knowledge and understanding of the consequences of vitamin D deficiency on brain development and its implications for adult psychiatric and neurological diseases. The conflation of in vitro, ex vivo, and animal model data provide compelling evidence that vitamin D has a crucial role in proliferation, differentiation, neurotrophism, neuroprotection, neurotransmission, and neuroplasticity. Vitamin D exerts its biological function not only by influencing cellular processes directly, but also by influencing gene expression through vitamin D response elements. This review highlights the epidemiological, neuropathological, experimental and molecular genetic evidence implicating vitamin D as a candidate in influencing susceptibility to a number of psychiatric and neurological diseases. The strength of evidence varies for schizophrenia, autism, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, and is especially strong for multiple sclerosis.
Collapse
Affiliation(s)
- G C DeLuca
- Nuffield Department of Clinical Neurosciences (Clinical Neurology), University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
32
|
Valdés Hernández MC, Piper RJ, Bastin ME, Royle NA, Maniega SM, Aribisala BS, Murray C, Deary IJ, Wardlaw JM. Morphologic, distributional, volumetric, and intensity characterization of periventricular hyperintensities. AJNR Am J Neuroradiol 2013; 35:55-62. [PMID: 23811980 DOI: 10.3174/ajnr.a3612] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE White matter hyperintensities are characteristic of old age and identifiable on FLAIR and T2-weighted MR imaging. They are typically separated into periventricular or deep categories. It is unclear whether the innermost segment of periventricular white matter hyperintensities is truly abnormal or is imaging artifacts. MATERIALS AND METHODS We used FLAIR MR imaging from 665 community-dwelling subjects 72-73 years of age without dementia. Periventricular white matter hyperintensities were visually allocated into 4 categories: 1) thin white line; 2) thick rim; 3) penetrating toward or confluent with deep white matter hyperintensities; and 4) diffuse ill-defined, labeled as "subtle extended periventricular white matter hyperintensities." We measured the maximum intensity and width of the periventricular white matter hyperintensities, mapped all white matter hyperintensities in 3D, and investigated associations between each category and hypertension, stroke, diabetes, hypercholesterolemia, cardiovascular disease, and total white matter hyperintensity volume. RESULTS The intensity patterns and morphologic features were different for each periventricular white matter hyperintensity category. Both the widths (r = 0.61, P < .001) and intensities (r = 0.51, P < .001) correlated with total white matter hyperintensity volume and with each other (r = 0.55, P < .001) for all categories with the exception of subtle extended periventricular white matter hyperintensities, largely characterized by evidence of erratic, ill-defined, and fragmented pale white matter hyperintensities (width: r = 0.02, P = .11; intensity: r = 0.02, P = .84). The prevalence of hypertension, hypercholesterolemia, and neuroradiologic evidence of stroke increased from periventricular white matter hyperintensity categories 1 to 3. The mean periventricular white matter hyperintensity width was significantly larger in subjects with hypertension (mean difference = 0.5 mm, P = .029) or evidence of stroke (mean difference = 1 mm, P < .001). 3D mapping revealed that periventricular white matter hyperintensities were discontinuous with deep white matter hyperintensities in all categories, except only in particular regions in brains with category 3. CONCLUSIONS Periventricular white matter hyperintensity intensity levels, distribution, and association with risk factors and disease suggest that in old age, these are true tissue abnormalities and therefore should not be dismissed as artifacts. Dichotomizing periventricular and deep white matter hyperintensities by continuity from the ventricle edge toward the deep white matter is possible.
Collapse
|
33
|
Diffusely abnormal white matter in multiple sclerosis: further histologic studies provide evidence for a primary lipid abnormality with neurodegeneration. J Neuropathol Exp Neurol 2013; 72:42-52. [PMID: 23242281 DOI: 10.1097/nen.0b013e31827bced3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although multiple sclerosis (MS) lesions have been studied extensively using histology and magnetic resonance imaging (MRI), little is known about diffusely abnormal white matter (DAWM). Diffusely abnormal white matter, regions with reduced mild MRI hyperintensity and ill-defined boundaries, show reduced myelin water fraction, and decreased Luxol fast blue staining of myelin phospholipids, with relative preservation of myelin basic protein and 2',3'-cyclic-nucleotide 3'-phosphohydrolase. Because DAWM may be important in MS disability and progression, further histologic characterization is warranted. The MRI data were collected on 14 formalin-fixed MS brain samples that were then stained for myelin phospholipids, myelin proteins, astrocytes and axons. Diffusely abnormal white matter showed reduced myelin water fraction (-30%, p < 0.05 for 13 samples). Myelin phospholipids showed the most dramatic and consistent histologic reductions in staining optical density (-29% Luxol fast blue and -24% Weil's, p < 0.05 for 13 and 14 samples,respectively) with lesser myelin protein involvement (-11% myelin-associated glycoprotein, -10% myelin basic protein, -8% myelin-oligodendrocyte glycoprotein, -7% proteolipid protein, -5% 2',3'-cyclic-nucleotide 3'-phosphohydrolase, p < 0.05 for 3, 3, 1, 2, and 3 samples, respectively). Axonal involvement was intermediate. Diffusely abnormal white matter lipid and protein reductions occurred independently. These findings suggest a primary lipid abnormality in DAWM that exceeds protein loss and is accompanied by axonal degeneration. These phenomena may be important in MS pathogenesis and disease progression, which is prominent in individuals with DAWM.
Collapse
|
34
|
Nagy SA, Aradi M, Orsi G, Perlaki G, Kamson DO, Mike A, Komaromy H, Schwarcz A, Kovacs A, Janszky J, Pfund Z, Illes Z, Bogner P. Bi-exponential diffusion signal decay in normal appearing white matter of multiple sclerosis. Magn Reson Imaging 2013; 31:286-95. [DOI: 10.1016/j.mri.2012.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/03/2012] [Accepted: 07/15/2012] [Indexed: 10/28/2022]
|
35
|
Yiannakas MC, Tozer DJ, Schmierer K, Chard DT, Anderson VM, Altmann DR, Miller DH, Wheeler-Kingshott CAM. ADvanced IMage Algebra (ADIMA): a novel method for depicting multiple sclerosis lesion heterogeneity, as demonstrated by quantitative MRI. Mult Scler 2012; 19:732-41. [PMID: 23037551 PMCID: PMC4103823 DOI: 10.1177/1352458512462074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND There are modest correlations between multiple sclerosis (MS) disability and white matter lesion (WML) volumes, as measured by T2-weighted (T2w) magnetic resonance imaging (MRI) scans (T2-WML). This may partly reflect pathological heterogeneity in WMLs, which is not apparent on T2w scans. OBJECTIVE To determine if ADvanced IMage Algebra (ADIMA), a novel MRI post-processing method, can reveal WML heterogeneity from proton-density weighted (PDw) and T2w images. METHODS We obtained conventional PDw and T2w images from 10 patients with relapsing-remitting MS (RRMS) and ADIMA images were calculated from these. We classified all WML into bright (ADIMA-b) and dark (ADIMA-d) sub-regions, which were segmented. We obtained conventional T2-WML and T1-WML volumes for comparison, as well as the following quantitative magnetic resonance parameters: magnetisation transfer ratio (MTR), T1 and T2. Also, we assessed the reproducibility of the segmentation for ADIMA-b, ADIMA-d and T2-WML. RESULTS Our study's ADIMA-derived volumes correlated with conventional lesion volumes (p < 0.05). ADIMA-b exhibited higher T1 and T2, and lower MTR than the T2-WML (p < 0.001). Despite the similarity in T1 values between ADIMA-b and T1-WML, these regions were only partly overlapping with each other. ADIMA-d exhibited quantitative characteristics similar to T2-WML; however, they were only partly overlapping. Mean intra- and inter-observer coefficients of variation for ADIMA-b, ADIMA-d and T2-WML volumes were all < 6 % and < 10 %, respectively. CONCLUSION ADIMA enabled the simple classification of WML into two groups having different quantitative magnetic resonance properties, which can be reproducibly distinguished.
Collapse
Affiliation(s)
- Marios C Yiannakas
- Department of Neuroinflammation, University College London, Institute of Neurology, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Neuropathologic Correlates of Magnetic Resonance Imaging in Multiple Sclerosis. J Neuropathol Exp Neurol 2012; 71:762-78. [DOI: 10.1097/nen.0b013e3182676388] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
37
|
Bendfeldt K, Blumhagen JO, Egger H, Loetscher P, Denier N, Kuster P, Traud S, Mueller-Lenke N, Naegelin Y, Gass A, Hirsch J, Kappos L, Nichols TE, Radue EW, Borgwardt SJ. Spatiotemporal distribution pattern of white matter lesion volumes and their association with regional grey matter volume reductions in relapsing-remitting multiple sclerosis. Hum Brain Mapp 2011; 31:1542-55. [PMID: 20108225 DOI: 10.1002/hbm.20951] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The association of white matter (WM) lesions and grey matter (GM) atrophy is a feature in relapsing-remitting multiple sclerosis (RRMS). The spatiotemporal distribution pattern of WM lesions, their relations to regional GM changes and the underlying dynamics are unclear. Here we combined parametric and non-parametric voxel-based morphometry (VBM) to clarify these issues. MRI data from RRMS patients with progressive (PLV, n = 45) and non-progressive WM lesion volumes (NPLV, n = 44) followed up for 12 months were analysed. Cross-sectionally, the spatial WM lesion distribution was compared using lesion probability maps (LPMs). Longitudinally, WM lesions and GM volumes were studied using FSL-VBM and SPM5-VBM, respectively. WM lesions clustered around the lateral ventricles and in the centrum semiovale with a more widespread pattern in the PLV than in the NPLV group. The maximum local probabilities were similar in both groups and higher for T2 lesions (PLV: 27%, NPLV: 25%) than for T1 lesions (PLV: 15%, NPLV 14%). Significant WM lesion changes accompanied by cortical GM volume reductions occurred in the corpus callosum and optic radiations (P = 0.01 corrected), and more liberally tested (uncorrected P < 0.01) in the inferior fronto-occipital and longitudinal fasciculi, and corona radiata in the PLV group. Not any WM or GM changes were found in the NPLV group. In the PLV group, WM lesion distribution and development in fibres, was associated with regional GM volume loss. The different spatiotemporal distribution patterns of patients with progressive compared to patients with non-progressive WM lesions suggest differences in the dynamics of pathogenesis.
Collapse
Affiliation(s)
- Kerstin Bendfeldt
- Medical Image Analysis Center, University Hospital Basel, CH-4031 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
This review explores the principle features of the immunopathology of multiple sclerosis (MS), particularly relapsing-remitting MS. It highlights the emerging concepts in the pathogenesis of MS in the context of known features of pathology, including the characterization of cytokine networks promoting inflammatory damage of the central nervous system, B-cell involvement, and inflammatory damage of axons and neurons. This article preferentially focuses on MS rather than animal models of the disease, such as experimental autoimmune encephalomyelitis.
Collapse
|
39
|
When to initiate disease-modifying drugs for relapsing remitting multiple sclerosis in adults? Mult Scler Int 2011; 2011:724871. [PMID: 22096641 PMCID: PMC3195775 DOI: 10.1155/2011/724871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/27/2011] [Indexed: 12/23/2022] Open
Abstract
For patients with Relapsing Remitting Multiple Scierosis Beta Interfaerons and Glatiramer Acetate were the first to be licensed for treatment. This review deals with one major question: when to initiate therapy? Through exploring the unique characteristics of the disease and treatement we suggest an approach that should be helpful in the process of decision-making.
Collapse
|
40
|
|
41
|
Current concepts in the neuropathology and pathogenesis of multiple sclerosis. Can J Neurol Sci 2011; 37 Suppl 2:S5-15. [PMID: 21246930 DOI: 10.1017/s0317167100022381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) has been classically regarded as an inflammatory demyelinating disease of the central nervous system. In recent years, the classification and pathogenesis of the disease have become controversial, particularly with respect to whether an individual patient demonstrates a single or multiple pathogenetic mechanisms in the establishment of the focal plaque of MS. It is also becoming increasingly apparent that there is a significant neurodegenerative component in the disease, involving not only plaques but the non-plaque parenchyma as well. Magnetic resonance imaging, together with histopathologic studies, will continue to shed light on the pathogenesis of these focal and diffuse abnormalities in MS.
Collapse
|
42
|
Laule C, Vavasour IM, Leung E, Li DKB, Kozlowski P, Traboulsee AL, Oger J, MacKay AL, Moore GRW. Pathological basis of diffusely abnormal white matter: insights from magnetic resonance imaging and histology. Mult Scler 2010; 17:144-50. [PMID: 20965961 DOI: 10.1177/1352458510384008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The pathological basis of diffusely abnormal white matter (DAWM) in multiple sclerosis (MS) has not been elucidated in detail, but may be an important element in disability and clinical progression. Methods: Fifty-three subjects with MS were examined with T1, multi-echo T2 and magnetization transfer (MT). Twenty-three samples of formalin-fixed MS brain tissue were examined with multi-echo T2 and subsequently stained for myelin phospholipids using luxol fast blue, for axons using Bielschowsky, immunohistochemically for the myelin proteins myelin basic protein (MBP) and 2′,3′-cyclic nucleotide 3′ phosphohydrolase (CNP) and for astrocytes using glial fibrillary acidic protein (GFAP). Regions of interest in DAWM were compared with normal appearing white matter. Results: Fourteen of 53 subjects with MS in the in vivo study showed the presence of DAWM. Subjects with DAWM were found to have a significantly lower Expanded Disability Status Scale (EDSS) and shorter disease duration (DD) when compared with subjects without DAWM (EDSS: 1.5 versus 3.0, p = 0.031; DD: 5.4 versus 10.3 years, p = 0.045). DAWM in vivo had reduced myelin water and MT ratio, and increased T2 and water content. Histological analysis suggests DAWM, which shows a reduction of the myelin water fraction, is characterized by selective reduction of myelin phospholipids, but with a relative preservation of myelin proteins and axons. Conclusions: These findings suggest that the primary abnormality in DAWM is a reduction or perturbation of myelin phospholipids that correlates with a reduction of the myelin water fraction.
Collapse
Affiliation(s)
- Cornelia Laule
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Radiology, University of British Columbia, Vancouver, Canada
- Physics & Astronomy, University of British Columbia, Vancouver, Canada
| | | | - Esther Leung
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - David KB Li
- Radiology, University of British Columbia, Vancouver, Canada
| | - Piotr Kozlowski
- Radiology, University of British Columbia, Vancouver, Canada
| | | | - Joel Oger
- Medicine (MS Clinic), University of British Columbia, Vancouver, Canada
| | - Alex L MacKay
- Radiology, University of British Columbia, Vancouver, Canada
- Physics & Astronomy, University of British Columbia, Vancouver, Canada
| | - GR Wayne Moore
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
43
|
Myelin water and T(2) relaxation measurements in the healthy cervical spinal cord at 3.0T: repeatability and changes with age. Neuroimage 2010; 54:1083-90. [PMID: 20832480 DOI: 10.1016/j.neuroimage.2010.08.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 08/22/2010] [Accepted: 08/31/2010] [Indexed: 11/23/2022] Open
Abstract
Multiecho T(2) relaxation measurements offer specific information about myelin content through the myelin water fraction (MWF), as well as about the water environments through the intra- and extra-cellular (IE), and global, geometric mean T(2) (GMT(2)) times. While these measurements have yielded new insights into brain development and pathologies, they have yet to be thoroughly investigated in the spinal cord. The goals of this study were: (1) to apply a new 3D multiecho T(2) relaxation measurement in the cervical spine with sufficient axial resolution to distinguish grey and white matter; (2) to perform a pilot reliability assessment of the resulting MWF and GMT(2) measures in a target population; and (3) to detect differences in these measures between a younger cohort (20-30 years of age) and an older cohort (50-75 years of age) of healthy adults. The results demonstrated that the MWF in younger healthy adults follows the known pattern of lower myelin content in grey matter (mean (95% confidence interval)) (0.049 (0.030-0.067)) as compared to white matter (0.296 (0.275-0.317), p<0.001). The reliability coefficients were 0.65 and 0.82 for the MWF in the dorsal (DC) and lateral column (LC) white matter, respectively; 0.79 and 0.52 for the IE GMT(2); and 0.74 and 0.73 for the global GMT(2). Significantly lower MWF were found in the older adults than in the younger adults (DC p=0.014; LC p=0.012), as well as lower IE GMT(2) times (DC p=0.008; LC p=0.042), however, the global GMT(2) times did not show any differences. These changes in MWF and IE GMT(2) times, but not in global GMT(2) times, indicate that multiecho T(2) relaxation measures are sensitive to changes in myelin integrity and cell morphology that may not be apparent on conventional T(2) weighted images.
Collapse
|
44
|
Löhmann C, Schachmann E, Dandekar T, Villmann C, Becker CM. Developmental profiling by mass spectrometry of phosphocholine containing phospholipids in the rat nervous system reveals temporo-spatial gradients. J Neurochem 2010; 114:1119-34. [PMID: 20524967 DOI: 10.1111/j.1471-4159.2010.06836.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phospholipids are important components of the nervous system, in particular of neuronal and glial membranes. Ontogenesis of the nervous system is associated with fundamental alterations in lipid patterns. Here, matrix-assisted-laser-desorption/ionization time-of-flight mass spectrometry and electro-spray-ionization mass spectrometry were combined to analyze phosphatidylcholines and sphingomyelins, allowing an assessment of individual molecular species. Analysis in eight different regions of the nervous system during development of the Wistar rat, from embryonic day 14 to adulthood, produced informative patterns of developmental and regional changes in lipid contents. Phospholipids containing long chain fatty acyl residues exhibited a characteristic patterning, with dramatic increases in the caudal parts of the nervous system 2 weeks after birth. In contrast, relative contents of short chain phosphatidylcholines were low in the perinatal CNS, decreasing even further during development. The relative amounts of sphingomyelins carrying the fatty acid residues 18:0, 22:0, 24:0, and 24:1 increased developmentally in the caudal nervous system. The rostro-caudal gradient of long chain lipid accumulation is matched by expression gradients of myelin structural and regulatory genes, as evident from bioinformatic analysis. These observations characterize the accumulation of individual lipid classes in the nervous system as a highly regulated process, with structurally related lipids showing a similar temporo-spatial distribution and developmental patterning.
Collapse
Affiliation(s)
- Christian Löhmann
- Emil-Fischer-Zentrum, Institut für Biochemie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
45
|
Abstract
The exquisite soft tissue contrast provided by magnetic resonance imaging arises principally from differences in the intrinsic relaxation properties, T1 and T2. Although the intricate relationships that link tissue microstructure and the longitudinal and transverse relaxation times remain to be firmly established, quantitative measurement of these parameters, also referred to as quantitative relaxometry, can be informative of disease-related tissue change, developmental plasticity, and other biological processes. Further, relaxometry studies potentially offer a more detailed characterization of tissue, compared with conventional qualitative or weighted imaging approaches.The purposes of this review were to briefly review the biophysical basis of relaxation, focusing specifically on the T1, T2, and T2* relaxation times, and to detail some of the more widely used and clinically feasible techniques for their in vivo measurement. We will focus on neuroimaging applications, although the methods described are equally well suited to cardiac, abdominal, and musculoskeletal imaging. Potential sources of error, and methods for their correction, are also touched on. Finally, the combination of relaxation time data with other complementary quantitative imaging data, including diffusion tensor imaging, is discussed, with the aim of more thoroughly characterizing brain tissue.
Collapse
Affiliation(s)
- Sean C L Deoni
- Centre for Neuroimaging Research, King's College London, Institute of Psychiatry, London, United Kingdom.
| |
Collapse
|
46
|
Filippi M, Rocca MA. Dirty-appearing white matter: a disregarded entity in multiple sclerosis. AJNR Am J Neuroradiol 2010; 31:390-1. [PMID: 19833799 DOI: 10.3174/ajnr.a1834] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Vrenken H, Seewann A, Knol DL, Polman CH, Barkhof F, Geurts JJG. Diffusely abnormal white matter in progressive multiple sclerosis: in vivo quantitative MR imaging characterization and comparison between disease types. AJNR Am J Neuroradiol 2009; 31:541-8. [PMID: 19850760 DOI: 10.3174/ajnr.a1839] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Recent postmortem studies in MS brain suggest that the severity of changes in DAWM can be measured by using quantitative MR imaging. This study aimed to characterize DAWM in vivo by using 4 quantitative MR imaging measures and to explore differences between MS disease types. MATERIALS AND METHODS In 17 patients with chronic MS (7 PP, 10 SP), quantitative MR imaging was performed at 1.5T, yielding whole-brain voxelwise maps of T1, MTR, ADC, and FA. ROIs were placed to obtain values for DAWM, NAWM, and WM lesions. A general linear mixed-model analysis was used to compare T1, MTR, ADC, and FA between tissue types and disease types. RESULTS Values of T1, MTR, ADC, and FA for DAWM were intermediate to those observed in NAWM and WM lesions. In patients with SPMS, DAWM was significantly different from both WM lesions and NAWM regarding all 4 measures, while in patients with PPMS, DAWM differed significantly from NAWM regarding T1, MTR, and FA and from lesions only regarding FA. Most interesting, DAWM differed between disease types: DAWM in patients with SPMS exhibited significantly higher T1 and lower MTR than did DAWM in patients with PPMS. CONCLUSIONS In vivo T1, MTR, ADC, and FA reflect the variable severity of pathologic changes in DAWM in MS. Moreover, these quantitative MR imaging measures suggest that DAWM may differ between PPMS and SPMS.
Collapse
Affiliation(s)
- H Vrenken
- Department of Radiology, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Is multiple sclerosis a generalized disease of the central nervous system? An MRI perspective. Curr Opin Neurol 2009; 22:214-8. [PMID: 19434770 DOI: 10.1097/wco.0b013e32832b4c62] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Is multiple sclerosis (MS) a generalized disease of the central nervous system? Or put another way, is MS pathology primarily focal with global consequences or global with focal consequences? Consideration of this question depends on how you view it both spatially and temporally. In this review, we address some of the main themes underlying this issue, drawing on evidence especially from MRI, but also from histopathological studies. RECENT FINDINGS Pathology in MS is not confined only to white matter lesions; apparently normal appearing tissues, including the grey matter, are also affected. Within what is classified as normal-appearing tissue, there may be variable degrees of demyelination, particularly in the grey matter, along with regions that will eventually become overtly lesion containing and areas of remyelination. It remains uncertain whether changes within the normal-appearing tissues are immediately associated with, or a direct consequence of, lesion formation. SUMMARY At present, it is not possible to determine whether lesion formation, or a more diffuse process, is the principal pathological event in MS.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Knowledge of the early pathological changes observed in multiple sclerosis (MS) has advanced by implementation of many improved pathological, biochemical and imaging techniques. This review highlights the accumulating evidence for early pathological changes we term 'preactive lesions', characterized by clusters of activated microglia in otherwise normal-appearing white matter. RECENT FINDINGS Compelling evidence is accumulating for pathological changes in normal-appearing white matter of MS patients, which occur before the actual development of the active demyelinating lesion. Focal disorder has been documented in normal-appearing white matter of MS months to years before the appearance of gadolinium-enhancing lesions. In these foci, clusters of activated microglia are found in the absence of demyelination and clear leukocyte infiltration, distinguishing them from the traditional demyelinating active and chronic active lesions. Although the events that give rise to preactive lesions are still to be identified, oligodendrocyte abnormalities appear to be crucially involved. Importantly, preactive lesions do not always develop into demyelinating lesions but often appear to resolve without subsequent disorder. SUMMARY Preactive lesions in MS represent early stages in the formation of destructive MS lesions. As many of them spontaneously resolve, they are expected to hold important clues to stop the inflammatory process in MS.
Collapse
|
50
|
Current World Literature. Curr Opin Neurol 2009; 22:321-9. [DOI: 10.1097/wco.0b013e32832cf9cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|