1
|
Liang R, Hu C, Li H, Tang X. Research trends of glioma-related epilepsy: A bibliometric analysis from 2004 to 2023. J Cent Nerv Syst Dis 2024; 16:11795735241286653. [PMID: 39420955 PMCID: PMC11483774 DOI: 10.1177/11795735241286653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
Glioma-related epilepsy (GRE) is a hotspot in recent years and there remains many urgent unsolved issues. This study aimed to conduct bibliometric analysis on GRE research over the past 2 decades. We collected scientific outputs relating to GRE on Web of Science Core Collection (WoSCC) from 2004 to 2023 and conducted visual analysis using VOSviewer and Microsoft Excel. A total of 2697 publications were retrieved with an increasing trend over the past 20 years. The USA ranked first in publication number, total citation and H-index. Institut National de la Sante et de la Recherche Medicale (Inserm) was the institution with the most publications. In the field of GRE, core journals were Journal of Neurosurgery, Epilepsia and Neurology. Duffau, Hugues was the author with the most papers and total citations, and the highest H-index. Co-occurrence analysis revealed that the latest research focus of GRE were awake craniotomy, immunotherapy, cognitive impairment, and basic research on pathogenesis, with particular emphasis on the IDH1 mutation. This study intended to gain a deeper understanding of the current global GRE research and identify hotspots, as well as to provide theoretical reference for further studies.
Collapse
Affiliation(s)
| | | | - Haiyu Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Stritzelberger J, Gesmann A, Fuhrmann I, Uhl M, Brandner S, Welte TM, Schembs L, Dörfler A, Coras R, Adler W, Schwab S, Putz F, Fietkau R, Distel L, Hamer H. The course of tumor-related epilepsy in glioblastoma patients: A retrospective analysis. Epilepsy Behav 2024; 158:109919. [PMID: 38941953 DOI: 10.1016/j.yebeh.2024.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
PURPOSE Many patients with glioblastoma suffer from tumor-related seizures. However, there is limited data on the characteristics of tumor-related epilepsy achieving seizure freedom. The aim of this study was to characterize the course of epilepsy in patients with glioblastoma and the factors that influence it. METHODS We retrospectively analyzed the medical records of glioblastoma patients treated at the University Hospital Erlangen between 01/2006 and 01/2020. RESULTS In the final cohort of patients with glioblastoma (n = 520), 292 patients (56.2 %) suffered from tumor-related epilepsy (persons with epilepsy, PWE). Levetiracetam was the most commonly used first-line antiseizure medication (n = 245, 83.9 % of PWE). The onset of epilepsy was preoperative in 154/292 patients (52.7 %). 136 PWE (46.6 %) experienced only one single seizure while 27/292 PWE (9.2 %) developed drug-resistant epilepsy. Status epilepticus occurred in 48/292 patients (16.4 %). Early postoperative onset (within 30 days of surgery) of epilepsy and total gross resection (compared with debulking) were independently associated with a lower risk of further seizures. We did not detect dose-dependent pro- or antiseizure effects of radiochemotherapy. CONCLUSION Tumor-related epilepsy occurred in more than 50% of our cohort, but drug-resistant epilepsy developed in less than 10% of cases. Epilepsy usually started before tumor surgery.
Collapse
Affiliation(s)
- Jenny Stritzelberger
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany, Full Member of ERN EpiCARE.
| | - Anna Gesmann
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany, Full Member of ERN EpiCARE
| | - Imke Fuhrmann
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany, Full Member of ERN EpiCARE
| | - Martin Uhl
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany, Full Member of ERN EpiCARE
| | - Sebastian Brandner
- Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Tamara-M Welte
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany, Full Member of ERN EpiCARE
| | - Leah Schembs
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Werner Adler
- Department of Biometry and Epidemiology and Department of Psychosomativ Medicine and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Stefan Schwab
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany, Full Member of ERN EpiCARE
| | - Florian Putz
- Department of Radiooncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiooncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Luitpold Distel
- Department of Radiooncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Hajo Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany, Full Member of ERN EpiCARE
| |
Collapse
|
3
|
Lim-Fat MJ, Iorgulescu JB, Rahman R, Bhave V, Muzikansky A, Woodward E, Whorral S, Allen M, Touat M, Li X, Xy G, Patel J, Gerstner ER, Kalpathy-Cramer J, Youssef G, Chukwueke U, McFaline-Figueroa JR, Nayak L, Lee EQ, Reardon DA, Beroukhim R, Huang RY, Bi WL, Ligon KL, Wen PY. Clinical and Genomic Predictors of Adverse Events in Newly Diagnosed Glioblastoma. Clin Cancer Res 2024; 30:1327-1337. [PMID: 38252427 DOI: 10.1158/1078-0432.ccr-23-3018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Adverse clinical events cause significant morbidity in patients with GBM (GBM). We examined whether genomic alterations were associated with AE (AE) in patients with GBM. EXPERIMENTAL DESIGN We identified adults with histologically confirmed IDH-wild-type GBM with targeted next-generation sequencing (OncoPanel) at Dana Farber Cancer Institute from 2013 to 2019. Seizure at presentation, lymphopenia, thromboembolic events, pseudoprogression, and early progression (within 6 months of diagnosis) were identified as AE. The biologic function of genetic variants was categorized as loss-of-function (LoF), no change in function, or gain-of-function (GoF) using a somatic tumor mutation knowledge base (OncoKB) and consensus protein function predictions. Associations between functional genomic alterations and AE were examined using univariate logistic regressions and multivariable regressions adjusted for additional clinical predictors. RESULTS Our study included 470 patients diagnosed with GBM who met the study criteria. We focused on 105 genes that had sequencing data available for ≥ 90% of the patients and were altered in ≥10% of the cohort. Following false-discovery rate (FDR) correction and multivariable adjustment, the TP53, RB1, IGF1R, and DIS3 LoF alterations were associated with lower odds of seizures, while EGFR, SMARCA4, GNA11, BRD4, and TCF3 GoF and SETD2 LoF alterations were associated with higher odds of seizures. For all other AE of interest, no significant associations were found with genomic alterations following FDR correction. CONCLUSIONS Genomic biomarkers based on functional variant analysis of a routine clinical panel may help identify AE in GBM, particularly seizures. Identifying these risk factors could improve the management of patients through better supportive care and consideration of prophylactic therapies.
Collapse
Affiliation(s)
- Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rifaquat Rahman
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Varun Bhave
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alona Muzikansky
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Eleanor Woodward
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sydney Whorral
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marie Allen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | | | | | - Jay Patel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth R Gerstner
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Gilbert Youssef
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ugonma Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - J Ricardo McFaline-Figueroa
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lakshmi Nayak
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rameen Beroukhim
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raymond Y Huang
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith L Ligon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Tran S, Lapidus A, Neal A, Peters KB, Gately L, Ameratunga M. A systematic review of the impact of brain tumours on risk of motor vehicle crashes. J Neurooncol 2024; 166:395-405. [PMID: 38321326 PMCID: PMC10876497 DOI: 10.1007/s11060-024-04586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE Brain tumours are associated with neurocognitive impairments that are important for safe driving. Driving is vital to maintaining patient autonomy, despite this there is limited research on driving capacity amongst patients with brain tumours. The purpose of this review is to examine MVC risk in patients with brain tumours to inform development of clearer driving guidelines. METHODS A systematic review was performed using Medline and EMBASE. Observational studies were included. The outcome of interest was MVC or measured risk of MVC in patients with benign or malignant brain tumours. Descriptive analysis and synthesis without meta-analysis were used to summarise findings. A narrative review of driving guidelines from Australia, United Kingdom and Canada was completed. RESULTS Three studies were included in this review. One cohort study, one cross-sectional study and one case-control study were included (19,135 participants) across United States and Finland. One study evaluated the incidence of MVC in brain tumour patients, revealing no difference in MVC rates. Two studies measured MVC risk using driving simulation and cognitive testing. Patients found at higher risk of MVC had greater degrees of memory and visual attention impairments. However, predictive patient and tumour characteristics of MVC risk were heterogeneous across studies. Overall, driving guidelines had clear recommendations on selected conditions like seizures but were vague surrounding neurocognitive deficits. CONCLUSION Limited data exists regarding driving behaviour and MVC incidence in brain tumour patients. Existing guidelines inadequately address neurocognitive complexities in this group. Future studies evaluating real-world data is required to inform development of more applicable driving guidelines. SYSTEMATIC REVIEW REGISTRATION NUMBER PROSPERO 2023 CRD42023434608.
Collapse
Affiliation(s)
- Sophie Tran
- Department of Medical Oncology, Alfred Health, Melbourne, VIC, Australia
| | - Adam Lapidus
- Department of Medical Oncology, Alfred Health, Melbourne, VIC, Australia
| | - Andrew Neal
- Department of Medical Oncology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | | | - Lucy Gately
- Department of Medical Oncology, Alfred Health, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute for Medical Research, The University of Melbourne, Melbourne, VIC, Australia
| | - Malaka Ameratunga
- Department of Medical Oncology, Alfred Health, Melbourne, VIC, Australia.
- Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Avila EK, Tobochnik S, Inati SK, Koekkoek JAF, McKhann GM, Riviello JJ, Rudà R, Schiff D, Tatum WO, Templer JW, Weller M, Wen PY. Brain tumor-related epilepsy management: A Society for Neuro-oncology (SNO) consensus review on current management. Neuro Oncol 2024; 26:7-24. [PMID: 37699031 PMCID: PMC10768995 DOI: 10.1093/neuonc/noad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Tumor-related epilepsy (TRE) is a frequent and major consequence of brain tumors. Management of TRE is required throughout the course of disease and a deep understanding of diagnosis and treatment is key to improving quality of life. Gross total resection is favored from both an oncologic and epilepsy perspective. Shared mechanisms of tumor growth and epilepsy exist, and emerging data will provide better targeted therapy options. Initial treatment with antiseizure medications (ASM) in conjunction with surgery and/or chemoradiotherapy is typical. The first choice of ASM is critical to optimize seizure control and tolerability considering the effects of the tumor itself. These agents carry a potential for drug-drug interactions and therefore knowledge of mechanisms of action and interactions is needed. A review of adverse effects is necessary to guide ASM adjustments and decision-making. This review highlights the essential aspects of diagnosis and treatment of TRE with ASMs, surgery, chemotherapy, and radiotherapy while indicating areas of uncertainty. Future studies should consider the use of a standardized method of seizure tracking and incorporating seizure outcomes as a primary endpoint of tumor treatment trials.
Collapse
Affiliation(s)
- Edward K Avila
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Neurology, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Sara K Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Guy M McKhann
- Department of Neurosurgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - James J Riviello
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Italy
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jessica W Templer
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Center, and Division of Neuro-Oncology, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Kitahara G, Higashisaka K, Nakamoto Y, Yamamoto R, Okuno W, Serizawa M, Sakahashi Y, Tsujino H, Haga Y, Tsutsumi Y. Valproic acid elevates HIF-1α-mediated CGB expression and suppresses glucose uptake in BeWo cells. J Toxicol Sci 2024; 49:69-77. [PMID: 38296531 DOI: 10.2131/jts.49.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Placental dysfunction can disrupt pregnancy. However, few studies have assessed the effects of chemical-induced toxicity on placental function. Here, we examined the effects of valproic acid (VPA) as a model chemical on production of hormones and on glucose uptake in human choriocarcinoma cell line BeWo. Cells were treated with forskolin to differentiate into syncytiotrophoblasts, which were then treated with VPA for 72 hr. Real-time RT-PCR analysis showed that VPA significantly increased the mRNA expression of chorionic gonadotropin β (CGB), a hormone that is produced by the placenta in the first trimester of pregnancy, relative to that in the forskolin-only group. It also suppressed the increase in intracellular glucose uptake and GLUT1 level observed in the forskolin-only group. RNA-seq analysis and pathway database analysis revealed that VPA consistently decreased the level of HIF-1α protein and expression of its downstream target genes HK2 and ADM in the hypoxia pathway. Cobalt chloride, a HIF-1α inducer, inhibited CGB upregulation in VPA-treated cells and rescued VPA-induced suppression of glucose uptake and GLUT1 level. Thus, HIF-1α-mediated elevation of CGB expression and suppression of glucose uptake by VPA is a novel mechanism of placental dysfunction.
Collapse
Affiliation(s)
- Go Kitahara
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kazuma Higashisaka
- Graduate School of Pharmaceutical Sciences, Osaka University
- Institute for Advanced Co-Creation Studies, Osaka University
| | - Yurina Nakamoto
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Rena Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Wakako Okuno
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Momoe Serizawa
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yuji Sakahashi
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University
- The Museum of Osaka University
| | - Yuya Haga
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University
- Global Center for Medical Engineering and Informatics, Osaka University
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University
| |
Collapse
|
7
|
Bushara O, Zhou G, Sharma A, Zelano C, Schuele SU, Tate MC, Gavvala JR, Templer JW. High-Frequency Oscillations in Tumor-Related Epilepsy. J Clin Neurophysiol 2023; 40:567-573. [PMID: 35344517 DOI: 10.1097/wnp.0000000000000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION To define the patient characteristics, tumor characteristics, and clinical course of patients with primary brain tumors with high-frequency oscillations (HFOs) recorded on electrocorticography. Furthermore, we evaluated whether the presence of HFOs portends a greater risk of postoperative tumor-related epilepsy and whether the resection of HFO-generating tissue reduces likelihood of postoperative tumor-related epilepsy. METHODS This was a retrospective study of 35 patients undergoing awake craniotomy for tumor resection, all of whom underwent intraoperative electrocorticography. Electrocorticography data were reviewed to assess the presence of HFOs and determine their contact locations. The data were analyzed to determine whether HFO-generating tissue was included in the resection and relationship to postoperative seizure outcome. RESULTS Seventeen patients (48.5%) were found to have HFOs. Very few patients (4 of 35, 11.4%) had sharp waves. Patients with and without HFOs did not significantly differ in demographics, presentation, tumor characteristics, or tumor molecular genetics. A history of seizures prior to resection was not associated with the presence of HFOs ( P = 0.62), although when patients had seizures during the same hospitalization as the resection, HFOs were more likely to be present ( P = 0.045). Extent of HFO resection was not associated with the likelihood of postoperative seizure freedom. CONCLUSIONS Approximately half (48.5%) of patients undergoing resection for a primary brain tumor had HFOs. Although HFO resection was not shown to lead to improved seizure freedom, this study was limited by a small sample size, and further investigation into HFO resection and patient outcomes in this population is warranted.
Collapse
Affiliation(s)
- Omar Bushara
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, U.S.A
| | - Guangyu Zhou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Arjun Sharma
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Stephan U Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Matthew C Tate
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A. ; and
| | - Jay R Gavvala
- Department of Neurology, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Jessica W Templer
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| |
Collapse
|
8
|
Perona M, Ibañez IL, Thomasz L, Villaverde MS, Oglio R, Rosemblit C, Grissi C, Campos-Haedo M, Dagrosa MA, Cremaschi G, Durán HA, Juvenal GJ. Valproic acid radiosensitizes anaplastic thyroid cells through a decrease of the DNA damage repair capacity. J Endocrinol Invest 2023; 46:2353-2365. [PMID: 37052871 DOI: 10.1007/s40618-023-02092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) represents a rare lethal human malignancy with poor prognosis. Multimodality treatment, including radiotherapy, is recommended to improve local control and survival. Valproic acid (VA) is a clinically available histone deacetylase inhibitor with a well-documented side effect profile. In this study, we aim to investigate the combined effect of VA with photon irradiation in vitro. METHODS Anaplastic thyroid cancer cells (8505c) were used to investigate the radiosensitizing effect of VA. RESULTS VA sensitized cells to photon irradiation. VA increased radiation-induced apoptosis and radiation-induced DNA damage measured by γH2AX foci induction. Furthermore, VA prolonged γH2AX foci disappearance over time in irradiated cells and decreased the radiation-induced levels of mRNA of key DNA damage repair proteins of the homologous recombination (HR) and the nonhomologous end joining (NHEJ) pathways. CONCLUSIONS VA at a clinically safe dose enhance the radiosensitivity of 8505c cells through an increase in radiation-induced apoptosis and a disruption in the molecular mechanism of HR and NHEJ DNA damage repair pathways.
Collapse
Affiliation(s)
- M Perona
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina.
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQD, CABA, Buenos Aires, Argentina.
| | - I L Ibañez
- Institute of Nanosciences and Nanotechnology (INN), CNEA-CONICET, Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina
| | - L Thomasz
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQD, CABA, Buenos Aires, Argentina
| | - M S Villaverde
- Gene Transfer Unit (UTG), Research Area, 'Ángel H. Roffo' Institute of Oncology of the University of Buenos Aires, Av. San Martín 5481, C1417DTB, CABA, Buenos Aires, Argentina
| | - R Oglio
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina
| | - C Rosemblit
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQD, CABA, Buenos Aires, Argentina
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - C Grissi
- Institute of Nanosciences and Nanotechnology (INN), CNEA-CONICET, Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina
| | - M Campos-Haedo
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQD, CABA, Buenos Aires, Argentina
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - M A Dagrosa
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQD, CABA, Buenos Aires, Argentina
| | - G Cremaschi
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQD, CABA, Buenos Aires, Argentina
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - H A Durán
- Institute of Nanosciences and Nanotechnology (INN), CNEA-CONICET, Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina
- School of Science and Technology, University of San Martín (UNSAM), 25 de Mayo y Francia, B1650KNA, Buenos Aires, Argentina
| | - G J Juvenal
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQD, CABA, Buenos Aires, Argentina
| |
Collapse
|
9
|
Sullivan JK, Fahey PP, Agho KE, Hurley SP, Feng Z, Day RO, Lim D. Valproic acid as a radio-sensitizer in glioma: A systematic review and meta-analysis. Neurooncol Pract 2023; 10:13-23. [PMID: 36659976 PMCID: PMC9837785 DOI: 10.1093/nop/npac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Histone deacetylase inhibitors (HDACi) including valproic acid (VPA) have the potential to improve radiotherapy (RT) efficacy and reduce treatment adverse events (AE) via epigenetic modification and radio-sensitization of neoplastic cells. This systematic review and meta-analysis aimed to assess the efficacy and AE associated with HDACi used as radio-sensitizers in adult solid organ malignancy patients. Methods A systematic review utilized electronic searches of MEDLINE(Ovid), Embase(Ovid), The Cochrane Library, and the International Clinical Trials Registry Platform to identify studies examining the efficacy and AEs associated with HDACi treatment in solid organ malignancy patients undergoing RT. Meta-analysis was performed with overall survival (OS) reported as hazard ratios (HR) as the primary outcome measure. OS reported as median survival difference, and AEs were secondary outcome measures. Results Ten studies reporting on the efficacy and/or AEs of HDACi in RT-treated solid organ malignancy patients met inclusion criteria. All included studies focused on HDACi valproic acid (VPA) in high-grade glioma patients, of which 9 studies (n = 6138) evaluated OS and 5 studies (n = 1055) examined AEs. The addition of VPA to RT treatment protocols resulted in improved OS (HR = 0.80, 95% CI 0.67-0.96). No studies focusing on non-glioma solid organ malignancy patients, or non-VPA HDACi met the inclusion criteria for this review. Conclusions This review suggests that glioma patients undergoing RT may experience prolonged survival due to HDACi VPA administration. Further randomized controlled trials are required to validate these findings. Additionally, more research into the use of HDACi radio-adjuvant treatment in non-glioma solid organ malignancies is warranted.
Collapse
Affiliation(s)
| | - Paul P Fahey
- School of Health Sciences, Western Sydney University, New South Wales, Australia
| | - Kinglsey E Agho
- School of Health Sciences, Western Sydney University, New South Wales, Australia
| | - Simon P Hurley
- School of Medicine, Flinders University, South Australia, Australia
| | - Zhihui Feng
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Richard O Day
- St Vincent’s Clinical Campus, University of New South Wales, New South Wales, Australia
| | - David Lim
- School of Medicine, Flinders University, South Australia, Australia
- School of Health Sciences, Western Sydney University, New South Wales, Australia
- Centre for Remote Health: A JBI Affiliated Centre, Alice Springs, Australia
| |
Collapse
|
10
|
Lee JH, Wee CW. Treatment of Adult Gliomas: A Current Update. BRAIN & NEUROREHABILITATION 2022; 15:e24. [PMID: 36742086 PMCID: PMC9833488 DOI: 10.12786/bn.2022.15.e24] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Gliomas are the most common type of primary brain tumor in adults. Glioma treatment requires a multidisciplinary approach involving surgery, radiotherapy, and chemotherapy. Multiple trials have been conducted to establish the appropriate choice of treatment to achieve long-term survival and better quality of life. This review provides up-to-date evidence regarding treatment strategies for gliomas.
Collapse
Affiliation(s)
- Joo Ho Lee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.,Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | - Chan Woo Wee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.,Department of Radiation Oncology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| |
Collapse
|
11
|
Sánchez-Villalobos JM, Aledo-Serrano Á, Villegas-Martínez I, Shaikh MF, Alcaraz M. Epilepsy treatment in neuro-oncology: A rationale for drug choice in common clinical scenarios. Front Pharmacol 2022; 13:991244. [PMID: 36278161 PMCID: PMC9583251 DOI: 10.3389/fphar.2022.991244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy represents a challenge in the management of patients with brain tumors. Epileptic seizures are one of the most frequent comorbidities in neuro-oncology and may be the debut symptom of a brain tumor or a complication during its evolution. Epileptogenic mechanisms of brain tumors are not yet fully elucidated, although new factors related to the underlying pathophysiological process with possible treatment implications have been described. In recent years, the development of new anti-seizure medications (ASM), with better pharmacokinetic profiles and fewer side effects, has become a paradigm shift in many clinical scenarios in neuro-oncology, being able, for instance, to adapt epilepsy treatment to specific features of each patient. This is crucial in several situations, such as patients with cognitive/psychiatric comorbidity, pregnancy, or advanced age, among others. In this narrative review, we provide a rationale for decision-making in ASM choice for neuro-oncologic patients, highlighting the strengths and weaknesses of each drug. In addition, according to current literature evidence, we try to answer some of the most frequent questions that arise in daily clinical practice in patients with epilepsy related to brain tumors, such as, which patients are the best candidates for ASM and when to start it, what is the best treatment option for each patient, and what are the major pitfalls to be aware of during follow-up.
Collapse
Affiliation(s)
- José Manuel Sánchez-Villalobos
- Department of Neurology, University Hospital Complex of Cartagena, Murcia, Spain
- Department of Cell Biology and Histology, School of Medicine, Regional Campus of International Excellence, “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Ángel Aledo-Serrano
- Epilepsy Program, Department of Neurology, Ruber International Hospital, Madrid, Spain
- *Correspondence: Ángel Aledo-Serrano,
| | | | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Miguel Alcaraz
- Department of Radiology and Physical Medicine, School of Medicine, Regional Campus of International Excellence, “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| |
Collapse
|
12
|
Mijderwijk HJ, Nieboer D, Incekara F, Berger K, Steyerberg EW, van den Bent MJ, Reifenberger G, Hänggi D, Smits M, Senft C, Rapp M, Sabel M, Voss M, Forster MT, Kamp MA. Development and external validation of a clinical prediction model for survival in patients with IDH wild-type glioblastoma. J Neurosurg 2022; 137:914-923. [PMID: 35171829 DOI: 10.3171/2021.10.jns211261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/14/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Prognostication of glioblastoma survival has become more refined due to the molecular reclassification of these tumors into isocitrate dehydrogenase (IDH) wild-type and IDH mutant. Since this molecular stratification, however, robust clinical prediction models relevant to the entire IDH wild-type glioblastoma patient population are lacking. This study aimed to provide an updated model that predicts individual survival prognosis in patients with IDH wild-type glioblastoma. METHODS Databases from Germany and the Netherlands provided data on 1036 newly diagnosed glioblastoma patients treated between 2012 and 2018. A clinical prediction model for all-cause mortality was developed with Cox proportional hazards regression. This model included recent glioblastoma-associated molecular markers in addition to well-known classic prognostic variables, which were updated and refined with additional categories. Model performance was evaluated according to calibration (using calibration plots and calibration slope) and discrimination (using a C-statistic) in a cross-validation procedure by country to assess external validity. RESULTS The German and Dutch patient cohorts consisted of 710 and 326 patients, respectively, of whom 511 (72%) and 308 (95%) had died. Three models were developed, each with increasing complexity. The final model considering age, sex, preoperative Karnofsky Performance Status, extent of resection, O6-methylguanine DNA methyltransferase (MGMT) promoter methylation status, and adjuvant therapeutic regimen showed an optimism-corrected C-statistic of 0.73 (95% confidence interval 0.71-0.75). Cross-validation between the national cohorts yielded comparable results. CONCLUSIONS This prediction model reliably predicts individual survival prognosis in patients with newly diagnosed IDH wild-type glioblastoma, although additional validation, especially for long-term survival, may be desired. The nomogram and web application of this model may support shared decision-making if used properly.
Collapse
Affiliation(s)
| | | | - Fatih Incekara
- 3Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam
- Departments of4Neurosurgery and
| | | | - Ewout W Steyerberg
- Departments of2Public Health and
- 5Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin J van den Bent
- 6Neurology, Brain Tumor Centre, Erasmus MC Cancer Institute, University Medical Center, Rotterdam
| | - Guido Reifenberger
- 7Neuropathology, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | | | - Marion Smits
- 3Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam
| | - Christian Senft
- 8Department of Neurosurgery, and
- 9Department of Neurosurgery, Friedrich Schiller University, Medical Faculty, Jena, Germany
| | | | | | - Martin Voss
- 10Dr. Senckenberg Institute of Neurooncology, Goethe University, Medical Faculty, Frankfurt; and
| | | | - Marcel A Kamp
- Departments of1Neurosurgery and
- 9Department of Neurosurgery, Friedrich Schiller University, Medical Faculty, Jena, Germany
| |
Collapse
|
13
|
van der Meer PB, Dirven L, Fiocco M, Vos MJ, Kouwenhoven MCM, van den Bent MJ, Taphoorn MJB, Koekkoek JAF. Effectiveness of Antiseizure Medication Duotherapies in Patients With Glioma: A Multicenter Observational Cohort Study. Neurology 2022; 99:e999-e1008. [PMID: 36219797 PMCID: PMC9519253 DOI: 10.1212/wnl.0000000000200807] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES About 30% of patients with glioma need an add-on antiseizure medication (ASM) due to uncontrolled seizures on ASM monotherapy. This study aimed to determine whether levetiracetam combined with valproic acid (LEV + VPA), a commonly prescribed duotherapy, is more effective than other duotherapy combinations including either LEV or VPA in patients with glioma. METHODS In this multicenter retrospective observational cohort study, treatment failure (i.e., replacement by, addition of, or withdrawal of an ASM) for any reason was the primary outcome. Secondary outcomes included (1) treatment failure due to uncontrolled seizures and (2) treatment failure due to adverse effects. Time to treatment failure was estimated from the moment of ASM duotherapy initiation. Multivariable cause-specific Cox proportional hazard models were estimated to study the association between risk factors and treatment failure. The maximum duration of follow-up was 36 months. RESULTS A total of 1,435 patients were treated with first-line monotherapy LEV or VPA, of which 355 patients received ASM duotherapy after they had treatment failure due to uncontrolled seizures on monotherapy. LEV + VPA was prescribed in 66% (236/355) and other ASM duotherapy combinations including LEV or VPA in 34% (119/355) of patients. Patients using other duotherapy vs LEV + VPA had a higher risk of treatment failure for any reason (cause-specific adjusted hazard ratio [aHR] 1.50 [95% CI 1.07-2.12], p = 0.020), due to uncontrolled seizures (cause-specific aHR 1.73 [95% CI 1.10-2.73], p = 0.018), but not due to adverse effects (cause-specific aHR 0.88 [95% CI 0.47-1.67], p = 0.703). DISCUSSION This observational cohort study suggests that LEV + VPA has better efficacy than other ASM combinations. Similar toxicities were experienced in the 2 groups. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that for patients with glioma with uncontrolled seizures on ASM monotherapy, LEV + VPA has better efficacy than other ASM combinations.
Collapse
Affiliation(s)
- Pim B van der Meer
- From the Department of Neurology (P.M., L.D., M.J.B.T., J.A.F.K.), Leiden University Medical Center; Department of Neurology (L.D., M.J.V., M.J.B.T., J.A.F.K.), Haaglanden Medical Center, The Hague; Department of Biomedical Data Sciences (M.F.), Medical Statistics, Leiden University Medical Center; Mathematical Institute (M.F.), Leiden University; Department of Neurology (M.C.M.K.), Amsterdam University Medical Centers, location VUmc; and Brain Tumor Center at Erasmus Medical Center Cancer Institute (M.J.B.), Rotterdam, the Netherlands.
| | - Linda Dirven
- From the Department of Neurology (P.M., L.D., M.J.B.T., J.A.F.K.), Leiden University Medical Center; Department of Neurology (L.D., M.J.V., M.J.B.T., J.A.F.K.), Haaglanden Medical Center, The Hague; Department of Biomedical Data Sciences (M.F.), Medical Statistics, Leiden University Medical Center; Mathematical Institute (M.F.), Leiden University; Department of Neurology (M.C.M.K.), Amsterdam University Medical Centers, location VUmc; and Brain Tumor Center at Erasmus Medical Center Cancer Institute (M.J.B.), Rotterdam, the Netherlands
| | - Marta Fiocco
- From the Department of Neurology (P.M., L.D., M.J.B.T., J.A.F.K.), Leiden University Medical Center; Department of Neurology (L.D., M.J.V., M.J.B.T., J.A.F.K.), Haaglanden Medical Center, The Hague; Department of Biomedical Data Sciences (M.F.), Medical Statistics, Leiden University Medical Center; Mathematical Institute (M.F.), Leiden University; Department of Neurology (M.C.M.K.), Amsterdam University Medical Centers, location VUmc; and Brain Tumor Center at Erasmus Medical Center Cancer Institute (M.J.B.), Rotterdam, the Netherlands
| | - Maaike J Vos
- From the Department of Neurology (P.M., L.D., M.J.B.T., J.A.F.K.), Leiden University Medical Center; Department of Neurology (L.D., M.J.V., M.J.B.T., J.A.F.K.), Haaglanden Medical Center, The Hague; Department of Biomedical Data Sciences (M.F.), Medical Statistics, Leiden University Medical Center; Mathematical Institute (M.F.), Leiden University; Department of Neurology (M.C.M.K.), Amsterdam University Medical Centers, location VUmc; and Brain Tumor Center at Erasmus Medical Center Cancer Institute (M.J.B.), Rotterdam, the Netherlands
| | - Mathilde C M Kouwenhoven
- From the Department of Neurology (P.M., L.D., M.J.B.T., J.A.F.K.), Leiden University Medical Center; Department of Neurology (L.D., M.J.V., M.J.B.T., J.A.F.K.), Haaglanden Medical Center, The Hague; Department of Biomedical Data Sciences (M.F.), Medical Statistics, Leiden University Medical Center; Mathematical Institute (M.F.), Leiden University; Department of Neurology (M.C.M.K.), Amsterdam University Medical Centers, location VUmc; and Brain Tumor Center at Erasmus Medical Center Cancer Institute (M.J.B.), Rotterdam, the Netherlands
| | - Martin J van den Bent
- From the Department of Neurology (P.M., L.D., M.J.B.T., J.A.F.K.), Leiden University Medical Center; Department of Neurology (L.D., M.J.V., M.J.B.T., J.A.F.K.), Haaglanden Medical Center, The Hague; Department of Biomedical Data Sciences (M.F.), Medical Statistics, Leiden University Medical Center; Mathematical Institute (M.F.), Leiden University; Department of Neurology (M.C.M.K.), Amsterdam University Medical Centers, location VUmc; and Brain Tumor Center at Erasmus Medical Center Cancer Institute (M.J.B.), Rotterdam, the Netherlands
| | - Martin J B Taphoorn
- From the Department of Neurology (P.M., L.D., M.J.B.T., J.A.F.K.), Leiden University Medical Center; Department of Neurology (L.D., M.J.V., M.J.B.T., J.A.F.K.), Haaglanden Medical Center, The Hague; Department of Biomedical Data Sciences (M.F.), Medical Statistics, Leiden University Medical Center; Mathematical Institute (M.F.), Leiden University; Department of Neurology (M.C.M.K.), Amsterdam University Medical Centers, location VUmc; and Brain Tumor Center at Erasmus Medical Center Cancer Institute (M.J.B.), Rotterdam, the Netherlands
| | - Johan A F Koekkoek
- From the Department of Neurology (P.M., L.D., M.J.B.T., J.A.F.K.), Leiden University Medical Center; Department of Neurology (L.D., M.J.V., M.J.B.T., J.A.F.K.), Haaglanden Medical Center, The Hague; Department of Biomedical Data Sciences (M.F.), Medical Statistics, Leiden University Medical Center; Mathematical Institute (M.F.), Leiden University; Department of Neurology (M.C.M.K.), Amsterdam University Medical Centers, location VUmc; and Brain Tumor Center at Erasmus Medical Center Cancer Institute (M.J.B.), Rotterdam, the Netherlands
| |
Collapse
|
14
|
Kumar TS, Afnan WM, Chan CY, Audrey C, Fong SL, Rajandram R, Lim KS, Narayanan V. Impact of seizures and antiseizure medication on survival in patients with glioma. J Neurooncol 2022; 159:657-664. [PMID: 36036318 DOI: 10.1007/s11060-022-04108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Seizures are a common presenting symptom among patients with low- and high-grade glioma. However, the impact and inter-relationship between the presence of seizures, anti-seizure medication (ASM) and survival are unclear. We retrospectively analyzed the incidence of seizures and identified the pattern and relationship of anti-seizure medication on survival in our cohort of patients with glioma. METHODS We evaluated all glioma patients who underwent treatment at the University of Malaya Medical Centre (UMMC) between 2008 and 2020. Demographic and clinical data of seizures and pattern of ASM administration in comparison to overall survival were analyzed. RESULTS A total of 235 patients were studied, with a minimum of one year clinical follow-up post-treatment. The median survival for low-grade glioma was 38 months whereas high-grade glioma was 15 months. One-third of our glioma patients (n = 74) presented with seizures. All patients with seizures and a further 31% of patients without seizures were started on anti-seizure medication preoperatively. Seizure and Levetiracetam (LEV) were significantly associated with OS on univariate analysis. However, only LEV (HR 0.49; 95% CI 0.23-0.87; p=0.02) was significantly associated with improving overall survival (OS) on multivariate analysis. Once ASM was adjusted for relevant factors and each other, LEV was associated with improved survival in all grade gliomas (HR 0.52; 95% CI 0.31-0.88; p=0.02) and specifically high-grade gliomas (HR 0.53; 95% CI 0.30-0.94; p=0.03). CONCLUSIONS Pre-operative seizures among patients with glioma indicated a better overall prognosis. The administration of ASM, specifically LEV was associated with a significant survival advantage in our retrospective cohort of patients.
Collapse
Affiliation(s)
- Thinisha Sathis Kumar
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia
| | - Wan Muhammad Afnan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia
| | - Chet-Ying Chan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia
| | - Christine Audrey
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia
| | - Si-Lei Fong
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia
| | - Retnagowri Rajandram
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia
| | - Kheng-Seang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia
| | - Vairavan Narayanan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
- Hospital Tanah Merah Kelantan, Tanah Merah, Malaysia.
| |
Collapse
|
15
|
Chen L, Xiong Z, Zhao H, Teng C, Liu H, Huang Q, Wanggou S, Li X. Identification of the novel prognostic biomarker, MLLT11, reveals its relationship with immune checkpoint markers in glioma. Front Oncol 2022; 12:889351. [PMID: 36033495 PMCID: PMC9414891 DOI: 10.3389/fonc.2022.889351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
AimThis study aimed to explore the expression pattern of MLLT11 under different pathological features, evaluate its prognostic value for glioma patients, reveal the relationship between MLLT11 mRNA expression and immune cell infiltration in the tumor microenvironment (TME), and provide more evidence for the molecular diagnosis of glioma and immunotherapy.MethodsUsing large-scale bioinformatic approach and RNA sequencing (RNA-seq) data from public databases The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and The Gene Expression Omnibus (GEO)), we investigated the relationship between MLLT11 mRNA levels and pathologic characteristics. The distribution in the different subtypes was observed based on Verhaak bulk and Neftel single-cell classification. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used for bioinformatic analysis. Kaplan–Meier survival analysis and Cox regression analysis were used for survival analysis. Correlation analyses were performed between MLLT11 expression and 22 immune cells and immune checkpoints in the TME.ResultsWe found that MLLT11 expression is decreased in high-grade glioma tissues; we further verified this result by RTPCR, Western blotting, and immunohistochemistry using our clinical samples. According to the Verhaak classification, high MLLT11 expression is mostly clustered in pro-neutral (PN) and neutral (NE) subtypes, while in the Neftel classification, MLLT11 mainly clustered in neural progenitor-like (NPC-like) neoplastic cells. Survival analysis revealed that low levels of MLLT11 expression are associated with a poorer prognosis; MLLT11 was identified as an independent prognostic factor in multivariate Cox regression analyses. Functional enrichment analyses of MLLT11 with correlated expression indicated that low MLLT11 expression is associated with the biological process related to the extracellular matrix, and the high expression group is related to the synaptic structure. Correlation analyses suggest that declined MLLT11 expression is associated with increased macrophage infiltration in glioma, especially M2 macrophage, and verified by RTPCR, Western blotting, and immunohistochemistry using our clinical glioma samples. MLLT11 had a highly negative correlation with immune checkpoint inhibitor (ICI) genes including PDCD1, PD-L1, TIM3(HAVCR2), and PD‐L2 (PDCD1LG2).ConclusionMLLT11 plays a crucial role in the progression of glioma and has the potential to be a new prognostic marker for glioma.
Collapse
Affiliation(s)
- Long Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyu Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Siyi Wanggou, ; Xuejun Li,
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Siyi Wanggou, ; Xuejun Li,
| |
Collapse
|
16
|
Wu KC, Liao KS, Yeh LR, Wang YK. Drug Repurposing: The Mechanisms and Signaling Pathways of Anti-Cancer Effects of Anesthetics. Biomedicines 2022; 10:biomedicines10071589. [PMID: 35884894 PMCID: PMC9312706 DOI: 10.3390/biomedicines10071589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. There are only limited treatment strategies that can be applied to treat cancer, including surgical resection, chemotherapy, and radiotherapy, but these have only limited effectiveness. Developing a new drug for cancer therapy is protracted, costly, and inefficient. Recently, drug repurposing has become a rising research field to provide new meaning for an old drug. By searching a drug repurposing database ReDO_DB, a brief list of anesthetic/sedative drugs, such as haloperidol, ketamine, lidocaine, midazolam, propofol, and valproic acid, are shown to possess anti-cancer properties. Therefore, in the current review, we will provide a general overview of the anti-cancer mechanisms of these anesthetic/sedative drugs and explore the potential underlying signaling pathways and clinical application of these drugs applied individually or in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kai-Sheng Liao
- Department of Pathology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Li-Ren Yeh
- Department of Anesthesiology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung 82144, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| |
Collapse
|
17
|
Kelkawi AHA, Hashemzadeh H, Pashandi Z, Tiraihi T, Naderi-Manesh H. Differentiation of PC12 cell line into neuron by Valproic acid encapsulated in the stabilized core-shell liposome-chitosan Nano carriers. Int J Biol Macromol 2022; 210:252-260. [PMID: 35537586 DOI: 10.1016/j.ijbiomac.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/17/2022] [Accepted: 05/04/2022] [Indexed: 12/29/2022]
Abstract
Valproic acid (VPA) usage in high dose is teratogen with low bioavailability. Hence to improve its efficacy and reduce its side effect it was encapsulated by the Nano liposomes and stabilized by the chitosan at different concentrations. The cellular uptake, biocompatibility, loading and encapsulation efficiency of the six-different formulations (1:1, 2:1, and 4:1 of chitosan-phospholipids: VPA), PC12 differentiation to neuron cells assays (gene-expression level by qRT-PCR) were conducted for the efficacy assessment of the Nano carriers. The encapsulation efficiency (EE) results revealed that the encapsulation of the VPA corresponds to the phospholipids dose, where 2:1 formulations showed higher encapsulating rate (64.5% for non-coated and 80% for coated by chitosan). The time monitored released of VPA also showed that the chitosan could enhance its controlled release too. The cellular uptake exhibited similar uptake behavior for both the coated and the non-coated Nano carriers and cytoplasmic distribution. We witnessed no toxicity effects, at different concentrations, for both formulations. Moreover, the results indicated that the gene expression level of SOX2, NeuroD1, and Neurofilament 200 increased from 1 to 5 folds for different genes. The qRT-PCR data were confirmed by the immunofluorescence antibodies staining, where Neurofilament 68 and SOX2 cell markers were modulated during differentiation of PC12 cells. Finally, our findings suggest promising potential for the Lip-VPA-Chit Nano carrier in inducing the differentiation of PC12 into neuron for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Ali Hamad Abd Kelkawi
- Nanobiotechnology Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran; Biology Department, College of Science, University of Kerbala, Karbala, Iraq
| | - Hadi Hashemzadeh
- Nanobiotechnology Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran
| | - Zaiddodine Pashandi
- Biophysics Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran
| | - Taki Tiraihi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Naderi-Manesh
- Nanobiotechnology Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran; Biophysics Department, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
18
|
Guarracino I, Pauletto G, Ius T, Palese F, Skrap M, Tomasino B. Presurgical cognitive status in patients with low-grade glioma and epilepsy: Testing the effects of seizures, antiseizure medications, and tumor localization. Brain Behav 2022; 12:e2560. [PMID: 35377547 PMCID: PMC9120733 DOI: 10.1002/brb3.2560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Low-grade gliomas (LGGs) are frequently associated with epilepsy. There are few studies addressing the impact of seizures, antiseizure medications (ASMs), and lesion localization on presurgery cognitive functioning. METHODS We tested the relation between the above-mentioned variables in a continuous series of 73 young patients (mean age 38.3 years ± 11.7) affected by LGGs and epilepsy. The anatomical areas, involved in this sample, were the left insula with surrounding cortical and subcortical areas, the right precentral gyrus/rolandic operculum, and the white matter and cortical regions beneath. RESULTS Patients' presurgery cognitive status was within the normal range, with borderline performance for some tasks. We tested whether lower scores were related with lesion or with epilepsy-related factors. Multiple regression identified variables that predict test scores. The Token test score was predicted by a model (p = .0078) containing the DT2T1 MRI, corrected for seizure features. Object naming performance was predicted by a model (p = .0113) containing the localization, the DT2T1 MRI, corrected for sex, EEG, and onset. Verbal fluency score was predicted by a model (p = .0056) containing the localization and the DT2T1 MRI, corrected for AEDs and EEG. Working memory score was predicted by a model (p = .0117) containing Engel class, the DT2T1 MRI, corrected for sex. Clock drawing score was predicted by a model (p < .0001) containing the Engel class, AEDs, and EEG. TMT A score was predicted by a model (p = .0022) containing localization, corrected for EEG. TMT B-A score was predicted by a model (p = .0373) containing localization. Voxel Lesion Symptom Mapping analyses carried out on patients' lesion volumes confirmed that patients' level of performance correlated with lesion-related variables. CONCLUSION This preliminary study indicates that the presurgical level of performance for language tasks and for cognitive flexibility and shifting is mainly predicted by lesion-related variables, working memory by both lesion and epilepsy-related variables. Epilepsy clinical and instrumental characteristics predicted performance for visuospatial planning.
Collapse
Affiliation(s)
- Ilaria Guarracino
- Polo FVG, San Vito al Tagliamento, PNScientific Institute IRCCS “Eugenio Medea,”Italy
| | - Giada Pauletto
- Unità Operativa di NeurologiaAzienda Sanitaria Universitaria del Friuli CentraleUdineItaly
| | - Tamara Ius
- Unità Operativa di NeurochirurgiaAzienda Sanitaria Universitaria del Friuli CentraleUdineItaly
| | - Francesca Palese
- Servizio di Igiene e Sanità Pubblica Dipartimento di PrevenzioneSan Daniele del FriuliAzienda Sanitaria Universitaria del Friuli CentraleUdineItaly
| | - Miran Skrap
- Unità Operativa di NeurochirurgiaAzienda Sanitaria Universitaria del Friuli CentraleUdineItaly
| | - Barbara Tomasino
- Polo FVG, San Vito al Tagliamento, PNScientific Institute IRCCS “Eugenio Medea,”Italy
| |
Collapse
|
19
|
Mo F, Meletti S, Belcastro V, Quadri S, Napolitano M, Bello L, Dainese F, Scarpelli M, Florindo I, Mascia A, Pauletto G, Bruno F, Pellerino A, Giovannini G, Polosa M, Sessa M, Conti Nibali M, Di Gennaro G, Gigli GL, Pisanello A, Cavallieri F, Rudà R. Lacosamide in monotherapy in BTRE (brain tumor-related epilepsy): results from an Italian multicenter retrospective study. J Neurooncol 2022; 157:551-559. [DOI: 10.1007/s11060-022-03998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
20
|
Analysis of corticosteroid and antiepileptic drug treatment effects on heme biosynthesis mRNA expression in lower-grade gliomas: potential implications for 5-ALA metabolization. Photodiagnosis Photodyn Ther 2022; 38:102755. [PMID: 35149260 DOI: 10.1016/j.pdpdt.2022.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Intraoperative visualization of gliomas with 5-aminolevulinic acid (5-ALA) induced fluorescence constitutes a powerful technique. While visible fluorescence is typically observed in high-grade gliomas, fluorescence is considerably less common in lower-grade gliomas (LGGs) WHO grade II&III. Whereas the exact mechanisms determining fluorescence in LGGs are not fully understood, metabolization of non-fluorescent 5-ALA to fluorescent Protoporphyrin IX by specific heme biosynthesis enzymes/transporters has been identified as relevant mechanism influencing fluorescence behavior. Furthermore, recent in-vitro studies have suggested preoperative treatment with corticosteroids and anti-epileptic drugs (AED) as potential factors influencing 5-ALA induced fluorescence. METHODS The goal of this study was thus to investigate the effect of preoperative corticosteroid/AED treatment on heme biosynthesis mRNA expression in a clinically relevant patient population. For this purpose, we analyzed the mRNA expression levels of specific heme biosynthesis factors including ALAD, HMBS, UROS, UROD, CPOX, PPOX, FECH, ABCB6, ACG2, SLC15A1 and SLC15A2, ABCB1, ABCB10 in a cohort of LGGs from "The Cancer Genome Atlas". RESULTS Altogether, 403 patients with available data on preoperative corticosteroid/AED treatment and heme biosynthesis mRNA expression were identified. Regarding corticosteroid treatment, no significant differences in expression of any of the 11 investigated heme biosynthesis factors were found. In contrast, a marginal yet statistically significant increase in SLC15A1 levels and decrease in ABCB6 levels were observed in patients with preoperative AED treatment. CONCLUSION While no significant differences in heme biosynthesis mRNA expression were observed according to preoperative corticosteroid treatment, changes in SLC15A1 as well as ABCB6 expression were detected in patients treated with AED. However, since these alterations were minor and have opposing effects on 5-ALA metabolization, our findings do not support a distinct effect of AED and corticosteroid treatment on heme biosynthesis regulation in LGGs.
Collapse
|
21
|
Wadiura LI, Reichert D, Sperl V, Lang A, Kiesel B, Erkkilae M, Wöhrer A, Furtner J, Roetzer T, Leitgeb R, Mischkulnig M, Widhalm G. Influence of dexamethasone on visible 5-ALA fluorescence and quantitative protoporphyrin IX accumulation measured by fluorescence lifetime imaging in glioblastomas: is pretreatment obligatory before fluorescence-guided surgery? J Neurosurg 2021:1-9. [PMID: 34678775 DOI: 10.3171/2021.6.jns21940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/07/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) is nowadays widely applied for improved resection of glioblastomas (GBMs). Initially, pretreatment with dexamethasone was considered to be essential for optimal fluorescence effect. However, recent studies reported comparably high rates of visible fluorescence in GBMs despite absence of dexamethasone pretreatment. Recently, the authors proposed fluorescence lifetime imaging (FLIM) for the quantitative analysis of 5-ALA-induced protoporphyrin IX (PpIX) accumulation. The aim of this study was thus to investigate the influence of dexamethasone on visible fluorescence and quantitative PpIX accumulation. METHODS The authors prospectively analyzed the presence of visible fluorescence during surgery in a cohort of patients with GBMs. In this study, patients received dexamethasone preoperatively only if clinically indicated. One representative tumor sample was collected from each GBM, and PpIX accumulation was analyzed ex vivo by FLIM. The visible fluorescence status and mean FLIM values were correlated with preoperative intake of dexamethasone. RESULTS In total, two subgroups with (n = 27) and without (n = 20) pretreatment with dexamethasone were analyzed. All patients showed visible fluorescence independent from preoperative dexamethasone intake. Furthermore, the authors did not find a statistically significant difference in the mean FLIM values between patients with and without dexamethasone pretreatment (p = 0.097). CONCLUSIONS In this first study to date, the authors found no significant influence of dexamethasone pretreatment on either visible 5-ALA fluorescence during GBM surgery or PpIX accumulation based on FLIM. According to these preliminary data, the authors recommend administering dexamethasone prior to fluorescence-guided surgery of GBMs only when clinically indicated.
Collapse
Affiliation(s)
- Lisa I Wadiura
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - David Reichert
- 2Center for Medical Physics and Biomedical Engineering.,3Christian Doppler Laboratory OPTRAMED
| | - Veronika Sperl
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Alexandra Lang
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Barbara Kiesel
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | | | - Adelheid Wöhrer
- 4Department of Neurology-Division for Neuropathology and Neurochemistry.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Julia Furtner
- 5Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology; and.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Thomas Roetzer
- 4Department of Neurology-Division for Neuropathology and Neurochemistry.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Rainer Leitgeb
- 2Center for Medical Physics and Biomedical Engineering.,3Christian Doppler Laboratory OPTRAMED
| | - Mario Mischkulnig
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Georg Widhalm
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| |
Collapse
|
22
|
Nadkarni T, Dabir A, Niazi F, Marano G, Bhatia S, Prisneac I, Sener U. Drug-resistant high grade glioma-related epilepsy surgery for focal motor status epilepticus localized by CT-PET imaging. Epilepsy Behav Rep 2021; 16:100484. [PMID: 34622193 PMCID: PMC8479237 DOI: 10.1016/j.ebr.2021.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Drug-resistant epilepsy is a frequent complication of primary brain. FDG-PET can localize epileptogenic foci and guide surgical resection. Hypermetabolic focus identification and targeted resection can achieve seizure control.
Tumor-related epilepsy is a frequent complication of glioblastoma with seizures often representing the first manifestation of the malignancy. Though tumor resection is associated with improved seizure control, extensive surgery is not always feasible if eloquent cortex is involved in seizure generation and early propagation. We describe a case of a patient with glioblastoma with drug-resistant focal status epilepticus where fluorodeoxyglucose positron emission tomography imaging was successfully used to localize the seizure-onset and optimize tumor resection. This led to successful resection of hypermetabolic tumor tissue and resolution of focal status epilepticus without damage to eloquent cortex.
Collapse
Affiliation(s)
- Tanvi Nadkarni
- Department of Neurology, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26506, United States
| | - Aman Dabir
- Department of Neurology, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26506, United States
| | - Faraze Niazi
- Department of Neurology, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26506, United States
| | - Gary Marano
- Department of Radiology, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26506, United States
| | - Sanjay Bhatia
- Department of Neurosurgery, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26506, United States
| | - Ion Prisneac
- Department of Pathology, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26506, United States
| | - Ugur Sener
- Department of Neurology, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26506, United States
| |
Collapse
|
23
|
de Bruin ME, van der Meer PB, Dirven L, Taphoorn MJB, Koekkoek JAF. Efficacy of antiepileptic drugs in glioma patients with epilepsy: a systematic review. Neurooncol Pract 2021; 8:501-517. [PMID: 34589231 PMCID: PMC8475226 DOI: 10.1093/nop/npab030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Comprehensive data on the efficacy and tolerability of antiepileptic drugs (AED) treatment in glioma patients with epilepsy are currently lacking. In this systematic review, we specifically assessed the efficacy of AEDs in patients with a grade II-IV glioma. Methods Electronic databases PubMed/MEDLINE, EMBASE, Web of Science, and Cochrane Library were searched up to June 2020. Three different outcomes for both mono- and polytherapy were extracted from all eligible articles: (i) seizure freedom; (ii) ≥50% reduction in seizure frequency; and (iii) treatment failure. Weighted averages (WA) were calculated for outcomes at 6 and 12 months. Results A total of 66 studies were included. Regarding the individual outcomes on the efficacy of monotherapy, the highest seizure freedom rate at 6 months was with phenytoin (WA = 72%) while at 12-month pregabalin (WA = 75%) and levetiracetam (WA = 74%) showed highest efficacy. Concerning ≥50% seizure reduction rates, levetiracetam showed highest efficacy at 6 and 12 months (WAs of 82% and 97%, respectively). However, treatment failure rates at 12 months were highest for phenytoin (WA = 34%) and pregabalin (41%). When comparing the described polytherapy combinations with follow-up of ≥6 months, levetiracetam combined with phenytoin was most effective followed by levetiracetam combined with valproic acid. Conclusion Given the heterogeneous patient populations and the low scientific quality across the different studies, seizure rates need to be interpreted with caution. Based on the current limited evidence, with the ranking of AEDs being confined to the AEDs studied, levetiracetam, phenytoin, and pregabalin seem to be most effective as AED monotherapy in glioma patients with epilepsy, with levetiracetam showing the lowest treatment failure rate, compared to the other AEDs studied.
Collapse
Affiliation(s)
| | - Pim B van der Meer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda Dirven
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan A F Koekkoek
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
24
|
Kirby AJ, Finnerty GT. New strategies for managing adult gliomas. J Neurol 2021; 268:3666-3674. [PMID: 32542524 PMCID: PMC8463358 DOI: 10.1007/s00415-020-09884-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022]
Abstract
Gliomas are hard to treat. Their prognosis has improved little over the past few decades. Fundamental therapeutic challenges such as treatment resistance, malignant progression, and tumour recurrence persist. New strategies are needed to advance the management and treatment of gliomas. Here, we focus on where those new strategies could emerge. We consider how recent advances in our understanding of the biology of adult gliomas are informing new approaches to their treatment.
Collapse
Affiliation(s)
- Alastair J Kirby
- Department of Basic and Clinical Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Gerald T Finnerty
- Department of Basic and Clinical Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
- Department of Neurology, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK.
| |
Collapse
|
25
|
Numan T, Kulik SD, Moraal B, Reijneveld JC, Stam CJ, de Witt Hamer PC, Derks J, Bruynzeel AME, van Linde ME, Wesseling P, Kouwenhoven MCM, Klein M, Würdinger T, Barkhof F, Geurts JJG, Hillebrand A, Douw L. Non-invasively measured brain activity and radiological progression in diffuse glioma. Sci Rep 2021; 11:18990. [PMID: 34556701 PMCID: PMC8460818 DOI: 10.1038/s41598-021-97818-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/20/2021] [Indexed: 01/25/2023] Open
Abstract
Non-invasively measured brain activity is related to progression-free survival in glioma patients, suggesting its potential as a marker of glioma progression. We therefore assessed the relationship between brain activity and increasing tumor volumes on routine clinical magnetic resonance imaging (MRI) in glioma patients. Postoperative magnetoencephalography (MEG) was recorded in 45 diffuse glioma patients. Brain activity was estimated using three measures (absolute broadband power, offset and slope) calculated at three spatial levels: global average, averaged across the peritumoral areas, and averaged across the homologues of these peritumoral areas in the contralateral hemisphere. Tumors were segmented on MRI. Changes in tumor volume between the two scans surrounding the MEG were calculated and correlated with brain activity. Brain activity was compared between patient groups classified into having increasing or stable tumor volume. Results show that brain activity was significantly increased in the tumor hemisphere in general, and in peritumoral regions specifically. However, none of the measures and spatial levels of brain activity correlated with changes in tumor volume, nor did they differ between patients with increasing versus stable tumor volumes. Longitudinal studies in more homogeneous subgroups of glioma patients are necessary to further explore the clinical potential of non-invasively measured brain activity.
Collapse
Affiliation(s)
- T Numan
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, O
- 2 building 13W09, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands.,Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - S D Kulik
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, O
- 2 building 13W09, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands.,Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - B Moraal
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J C Reijneveld
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - C J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - P C de Witt Hamer
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J Derks
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, O
- 2 building 13W09, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands.,Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - A M E Bruynzeel
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Radiotherapy, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M E van Linde
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - P Wesseling
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M C M Kouwenhoven
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M Klein
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Medical Psychology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - T Würdinger
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - F Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - J J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, O
- 2 building 13W09, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands
| | - A Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - L Douw
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, O
- 2 building 13W09, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands. .,Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Asano K, Hasegawa S, Matsuzaka M, Ohkuma H. Brain tumor-related epilepsy and risk factors for metastatic brain tumors: analysis of 601 consecutive cases providing real-world data. J Neurosurg 2021; 136:76-87. [PMID: 34271546 DOI: 10.3171/2020.11.jns202873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/30/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE It is necessary to accurately characterize the epidemiology and trends of brain tumor-related epilepsy (BTE) in patients with metastatic brain tumors. This study aimed to determine the incidence of BTE associated with metastatic brain tumors and retrospectively investigate the risk factors for BTE. METHODS This retrospective analysis included 601 of 631 consecutive patients with metastatic brain tumors who received treatment, including surgery, radiotherapy, and/or other treatments. BTE and the clinical course were examined retrospectively. Logistic regression multivariate analyses were performed to identify risk factors for BTE. RESULTS BTE was reported in 148 (24.6%) of 601 patients during the entire course. Of these 148 patients, 81 (54.7%) had first-onset epilepsy (13.5% of all patients). Of the 520 cases of nonepileptic onset, 53 were in the prophylactic antiepileptic drug (AED) group. However, 12 of these patients and 55 of the no-prophylactic AED group developed epilepsy during the course of the study. Including these 67 patients, 148 patients were examined as the group of all epilepsy cases during the entire course. In 3 patients, the seizure progressed to status epilepticus. In most patients, the BTE (n = 83, 56.1%) manifested as focal aware seizures. Logistic regression analysis identified young age (p = 0.037), male sex (p = 0.026), breast cancer (p = 0.001), eloquent area (p < 0.001), peritumoral edema (p < 0.001), dissemination (p = 0.013), and maximum tumor volume (p = 0.021) as significant risk factors for BTE. BTE was more common with tumor volumes greater than the cutoff value of 1.92 ml. CONCLUSIONS BTE appears to be more likely to occur in cases with young age, male sex, breast cancer, tumors involving eloquent areas, brain edema, dissemination, and giant tumors.
Collapse
Affiliation(s)
- Kenichiro Asano
- 1Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Hirosaki
| | - Seiko Hasegawa
- 2Department of Neurosurgery, Kuroishi General Hospital, Kuroishi; and
| | - Masashi Matsuzaka
- 3Clinical Research Support Center, and.,4Department of Medical Informatics, Hirosaki University Hospital, Hirosaki, Aomori, Japan
| | - Hiroki Ohkuma
- 1Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Hirosaki
| |
Collapse
|
27
|
Lin H, Yang Y, Hou C, Huang Y, Zhou L, Zheng J, Lv G, Mao R, Chen S, Xu P, Zhou Y, Wang P, Zhou D. Validation of the functions and prognostic values of synapse-associated proteins in lower-grade glioma. Biosci Rep 2021; 41:BSR20210391. [PMID: 33969375 PMCID: PMC8164110 DOI: 10.1042/bsr20210391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Synapse and synapse-associated proteins (SAPs) play critical roles in various neurodegeneration diseases and brain tumors. However, in lower-grade gliomas (LGG), SAPs have not been explored systematically. Herein, we are going to explore SAPs expression profile and its clinicopathological significance in LGG which can offer new insights to glioma therapy. In the present study, we integrate a list of SAPs that covered 231 proteins with synaptogenesis activity and post synapse formation. The LGG RNA-seq data were downloaded from GEO, TCGA and CGGA database. The prognosis associated SAPs in key modules of PPI (protein-protein interaction networks) was regarded as hub SAPs. Western blot, quantitative reverse transcription PCR (qRT-PCR) and immunochemistry results from HPA database were used to verify the expression of hub SAPs. There were 68 up-regulated SAPs and 44 down-regulated SAPs in LGG tissue compared with normal brain tissue. Data from function enrichment analysis revealed functions of differentially expressed SAPs in synapse organization and glutamatergic receptor pathway in LGGs. Survival analysis revealed that four SAPs, GRIK2, GABRD, GRID2 and ARC were correlate with the prognosis of LGG patients. Interestingly, we found that GABRD were up-regulated in LGG patients with seizures, indicating that SAPs may link to the pathogenesis of seizures in glioma patients. The four-SAPs signature was revealed as an independent prognostic factor in gliomas. Our study presented a novel strategy to assess the prognostic risks of LGGs, based on the expression of SAPs.
Collapse
Affiliation(s)
- Han Lin
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yong Yang
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chongxian Hou
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuqing Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Liting Zhou
- International Department, Affiliated High School of South China Normal University, Guangzhou, China
| | - Jiantao Zheng
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Guangzhao Lv
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Rui Mao
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shanwei Chen
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Peihong Xu
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yujun Zhou
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Southern Medical University, Guangzhou, China
| | - Peng Wang
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
28
|
Knudsen-Baas KM, Storstein AM, Zarabla A, Maialetti A, Giannarelli D, Beghi E, Maschio M. Antiseizure medication in patients with Glioblastoma- a collaborative cohort study. Seizure 2021; 87:107-113. [PMID: 33761391 DOI: 10.1016/j.seizure.2021.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE We investigated, whether epileptic seizures (ES) as presenting symptom in adult patients with GBM are associated with better Overall Survival (OS) compared to ES presenting later during the course of GBM, and efficacy and safety of different antiseizure medications (ASMs). METHODS Retrospective consecutive cohort study of adults with GBM: 50 from Norway and 50 from Italy. We compared the time to changing ASM treatments. OS was investigated with a Cox regression model adjusted for time dependency. RESULTS Median follow-up was 17 months from GBM diagnosis. ES were the presenting symptom in 49 patients. All patients received ASM treatment. LEV was the first ASM in the majority of patients and the most effective at one year from the first prescription, (p = 0.004). Occurrence of adverse events (AEs) was similar between LEV and other ASMs (p = 0.47). Poorer OS correlated with older age at GBM diagnosis, country and ASM therapy. A negative impact of ASMs on OS was observed for LEV in a univariate and multivariate analysis, and for VPA (only in multivariate analysis), even when adjusted for O6-methylguanine-DNA-methyltransferase (MGMT) methylation status. Patients with ES as the onset symptom of GBM and patients who had first ES later had similar OS (p = 0.87). CONCLUSION ES as the GBM debut symptom did not lead to a longer OS. LEV was a more effective ASM compared to other treatments with no differences regarding AEs between LEV and other ASMs. Surprisingly, in our patients LEV and VPA were associated with worse OS than other ASMs. This result should be interpreted with caution due to the retrospective nature of this study along with the many variables which may affect the outcome in this population.
Collapse
Affiliation(s)
- Kristin M Knudsen-Baas
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; The National Center for Epilepsy, Norway.
| | | | - Alessia Zarabla
- Center for Tumor-related Epilepsy, UOSD Neuroncology, Regina Elena National Cancer Institute IRCCS, Rome, Italy.
| | - Andrea Maialetti
- Center for Tumor-related Epilepsy, UOSD Neuroncology, Regina Elena National Cancer Institute IRCCS, Rome, Italy.
| | - Diana Giannarelli
- Biostatistic Unit, Regina Elena National Cancer Institute IRCCS, Rome, Italy.
| | - Ettore Beghi
- Laboratorio Malattie Neurologiche, IRCCS - Istituto "Mario Negri", Milano, Italy.
| | - Marta Maschio
- Center for Tumor-related Epilepsy, UOSD Neuroncology, Regina Elena National Cancer Institute IRCCS, Rome, Italy.
| |
Collapse
|
29
|
Zoccarato M, Nardetto L, Basile AM, Giometto B, Zagonel V, Lombardi G. Seizures, Edema, Thrombosis, and Hemorrhages: An Update Review on the Medical Management of Gliomas. Front Oncol 2021; 11:617966. [PMID: 33828976 PMCID: PMC8019972 DOI: 10.3389/fonc.2021.617966] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
Patients affected with gliomas develop a complex set of clinical manifestations that deeply impact on quality of life and overall survival. Brain tumor-related epilepsy is frequently the first manifestation of gliomas or may occur during the course of disease; the underlying mechanisms have not been fully explained and depend on both patient and tumor factors. Novel treatment options derive from the growing use of third-generation antiepileptic drugs. Vasogenic edema and elevated intracranial pressure cause a considerable burden of symptoms, especially in high-grade glioma, requiring an adequate use of corticosteroids. Patients with gliomas present with an elevated risk of tumor-associated venous thromboembolism whose prophylaxis and treatment are challenging, considering also the availability of new oral anticoagulant drugs. Moreover, intracerebral hemorrhages can complicate the course of the illness both due to tumor-specific characteristics, patient comorbidities, and side effects of antithrombotic and antitumoral therapies. This paper aims to review recent advances in these clinical issues, discussing the medical management of gliomas through an updated literature review.
Collapse
Affiliation(s)
- Marco Zoccarato
- Neurology Unit, O.S.A., Azienda Ospedale-Università, Padua, Italy
| | - Lucia Nardetto
- Neurology Unit, O.S.A., Azienda Ospedale-Università, Padua, Italy
| | | | - Bruno Giometto
- Neurology Unit, Trento Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| |
Collapse
|
30
|
Hartanto RA, Dwianingsih EK, Panggabean AS, Wicaksono AS, Dananjoyo K, Asmedi A, Malueka RG. Seizure in Indonesian Glioma Patients: Associated Risk Factors and Impact on Survival. Asian Pac J Cancer Prev 2021; 22:691-697. [PMID: 33773530 PMCID: PMC8286685 DOI: 10.31557/apjcp.2021.22.3.691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/26/2022] Open
Abstract
Objective: Seizure is commonly found in patients with glioma. This study aimed to find risk factors for seizures in Indonesian patients with glioma. We also sought to determine the association between seizure and survival in this patient population. Methods: Patients with glioma were enrolled from the Dr. Sardjito General Hospital and other hospitals in Yogyakarta Province, Indonesia. Detailed demographic and clinical data were collected from medical records. DNA extraction and polymerase chain reaction (PCR) were performed to detect IDH1 mutation. Tumor tissue samples were stained by hematoxylin-eosin and classified according to the 2016 World Health Organization (WHO) classification of central nervous system (CNS) tumors. Expression of Ki-67 was detected by immunohistochemistry staining. Survival data were also collected. Results: In total, 107 patients were included in the analysis. Age, gender, history of smoking, tumor side, tumor grade, Ki-67 expression, and IDH1 mutation were not associated with seizure. Tumors involving the frontal lobe (p=0.037) and oligodendroglioma histology (p=0.031) were associated with the development of seizures in this study. However, multivariate analysis showed that only oligodendrogial histology was associated with seizure [p=0.032, odds ratio (OR) = 4.77, 95% confidence interval (CI) = 1.146-19.822]. Patients with seizures have significantly longer median overall survival than patients without seizures (69.3±25.01 vs. 10.6±6.14 months, respectively, p=0.04). Conclusion: This study showed that seizure in patients with glioma in Indonesia is associated with frontal lobe location and oligodendroglioma histology. Patients with seizures also have significantly longer overall survival.
Collapse
Affiliation(s)
- Rahmat Andi Hartanto
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ery Kus Dwianingsih
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Andre Stefanus Panggabean
- Neurology Department, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Adiguno Suryo Wicaksono
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Kusumo Dananjoyo
- Neurology Department, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ahmad Asmedi
- Neurology Department, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Rusdy Ghazali Malueka
- Neurology Department, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
31
|
Gao M, Qu K, Zhang W, Wang X. Pharmacological Activity of Pyrazole Derivatives as an Anticonvulsant for Benefit against Epilepsy. Neuroimmunomodulation 2021; 28:90-98. [PMID: 33774633 DOI: 10.1159/000513297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Pediatric patients with epilepsy are prone to cognitive impairments during growth and long-term use of most antiepileptic drugs (AED). The affected children do not respond to conventional AED and may require novel drugs to manage the disease. Valproic acid, a first-line drug to treat epilepsy, is associated with serious side effects, which precludes its wider use. Thus, in the present study, we intended to develop novel substituted pyrazoles. METHODS The molecules were tested for anticonvulsive activity in Swiss albino mice via maximal electroshock seizure and subcutaneous pentylenetetrazole assays. The most potent molecule among the class was further assayed for its effect on behavioral and CNS depressant activity. The effect of the most potent compounds was also analyzed on various indices of oxidative stress and inflammation in mice. RESULTS The designed compounds showed significant anticonvulsive activity in mice revealing 7h as the most potent anticonvulsive agent. The most potent anticonvulsant molecule 7h further showed no behavioral alteration and considerable CNS depressant activity. It also reduces the level of oxidative stress and inflammation in the mice. CONCLUSION Our study demonstrated utility of pyrazole derivatives as anticonvulsants against epilepsy.
Collapse
Affiliation(s)
- Meizhe Gao
- Department of Child Healthcare, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Keli Qu
- Department of Child Healthcare, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenzhi Zhang
- Innoscience Research Sdn Bhd, Subang Jaya, Malaysia
| | - Xueying Wang
- Department of Child Healthcare, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
32
|
Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett 2020; 499:60-72. [PMID: 33166616 DOI: 10.1016/j.canlet.2020.10.050] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023]
Abstract
To follow the revision of the fourth edition of WHO classification and the recent progress on the management of diffuse gliomas, the joint guideline committee of Chinese Glioma Cooperative Group (CGCG), Society for Neuro-Oncology of China (SNO-China) and Chinese Brain Cancer Association (CBCA) updated the clinical practice guideline. It provides recommendations for diagnostic and management decisions, and for limiting unnecessary treatments and cost. The recommendations focus on molecular and pathological diagnostics, and the main treatment modalities of surgery, radiotherapy, and chemotherapy. In this guideline, we also integrated the results of some clinical trials of immune therapies and target therapies, which we think are ongoing future directions. The guideline should serve as an application for all professionals involved in the management of patients with adult diffuse glioma and also a source of knowledge for insurance companies and other institutions involved in the cost regulation of cancer care in China and other countries.
Collapse
|
33
|
Lombardi G, Barresi V, Castellano A, Tabouret E, Pasqualetti F, Salvalaggio A, Cerretti G, Caccese M, Padovan M, Zagonel V, Ius T. Clinical Management of Diffuse Low-Grade Gliomas. Cancers (Basel) 2020; 12:E3008. [PMID: 33081358 PMCID: PMC7603014 DOI: 10.3390/cancers12103008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Diffuse low-grade gliomas (LGG) represent a heterogeneous group of primary brain tumors arising from supporting glial cells and usually affecting young adults. Advances in the knowledge of molecular profile of these tumors, including mutations in the isocitrate dehydrogenase genes, or 1p/19q codeletion, and in neuroradiological techniques have contributed to the diagnosis, prognostic stratification, and follow-up of these tumors. Optimal post-operative management of LGG is still controversial, though radiation therapy and chemotherapy remain the optimal treatments after surgical resection in selected patients. In this review, we report the most important and recent research on clinical and molecular features, new neuroradiological techniques, the different therapeutic modalities, and new opportunities for personalized targeted therapy and supportive care.
Collapse
Affiliation(s)
- Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37129 Verona, Italy;
| | - Antonella Castellano
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Emeline Tabouret
- Team 8 GlioMe, CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, 13005 Marseille, France;
| | | | - Alessandro Salvalaggio
- Department of Neuroscience, University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), University of Padova, 35128 Padova, Italy
| | - Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy;
| |
Collapse
|
34
|
Monsour MA, Kelly PD, Chambless LB. Antiepileptic Drugs in the Management of Cerebral Metastases. Neurosurg Clin N Am 2020; 31:589-601. [PMID: 32921354 DOI: 10.1016/j.nec.2020.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Seizures represent a common and debilitating complication of central nervous system metastases. The use of prophylactic antiepileptic drugs (AEDs) in the preoperative period remains controversial, but the preponderance of evidence suggests that it is not helpful in preventing seizure and instead poses a significant risk of adverse events. Studies of postoperative seizure prophylaxis have not shown substantial benefit, but this practice remains widespread. Careful analysis of the risk of seizure based on patient-specific factors, such as tumor location and primary tumor histology, should guide the physician's decision on the initiation and cessation of prophylactic AED therapy.
Collapse
Affiliation(s)
- Meredith A Monsour
- Vanderbilt University School of Medicine, 2209 Garland Avenue, Nashville, TN 37240-0002, USA
| | - Patrick D Kelly
- Department of Neurological Surgery, Vanderbilt University Medical Center, T-4224 Medical Center North, Nashville, TN 37232-2380, USA
| | - Lola B Chambless
- Department of Neurological Surgery, Vanderbilt University Medical Center, T-4224 Medical Center North, Nashville, TN 37232-2380, USA.
| |
Collapse
|
35
|
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 2020; 70:299-312. [PMID: 32478924 DOI: 10.3322/caac.21613] [Citation(s) in RCA: 978] [Impact Index Per Article: 244.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Overall, the prognosis for patients with this disease is poor, with a median survival of <2 years. There is a slight predominance in males, and incidence increases with age. The standard approach to therapy in the newly diagnosed setting includes surgery followed by concurrent radiotherapy with temozolomide and further adjuvant temozolomide. Tumor-treating fields, delivering low-intensity alternating electric fields, can also be given concurrently with adjuvant temozolomide. At recurrence, there is no standard of care; however, surgery, radiotherapy, and systemic therapy with chemotherapy or bevacizumab are all potential options, depending on the patient's circumstances. Supportive and palliative care remain important considerations throughout the disease course in the multimodality approach to management. The recently revised classification of glioblastoma based on molecular profiling, notably isocitrate dehydrogenase (IDH) mutation status, is a result of enhanced understanding of the underlying pathogenesis of disease. There is a clear need for better therapeutic options, and there have been substantial efforts exploring immunotherapy and precision oncology approaches. In contrast to other solid tumors, however, biological factors, such as the blood-brain barrier and the unique tumor and immune microenvironment, represent significant challenges in the development of novel therapies. Innovative clinical trial designs with biomarker-enrichment strategies are needed to ultimately improve the outcome of patients with glioblastoma.
Collapse
Affiliation(s)
- Aaron C Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Giselle Y López
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Michael Malinzak
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Henry S Friedman
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
36
|
Roh TH, Moon JH, Park HH, Kim EH, Hong CK, Kim SH, Kang SG, Chang JH. Association between survival and levetiracetam use in glioblastoma patients treated with temozolomide chemoradiotherapy. Sci Rep 2020; 10:10783. [PMID: 32612203 PMCID: PMC7330022 DOI: 10.1038/s41598-020-67697-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
This study was conducted to assess whether levetiracetam (LEV) affects the survival of patients with glioblastoma (GBM) treated with concurrent temozolomide (TMZ) chemotherapy. To this end, from 2004 to 2016, 322 patients with surgically resected and pathologically confirmed isocitrate dehydrogenase (IDH)-wildtype GBM who received TMZ-based chemoradiotherapy were analysed. The patients were divided into two groups based on whether LEV was used as an anticonvulsant both at the time of surgery and the first visit thereafter. The median overall survival (OS) and progression-free survival (PFS) were compared between the groups. The OS was 21.1 and 17.5 months in the LEV (+) and LEV (−) groups, respectively (P = 0.003); the corresponding PFS was 12.3 and 11.2 months (P = 0.017). The other prognostic factors included age, extent of resection, O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, and Karnofsky Performance Status (KPS) score. The multivariate analysis showed age (hazard ratio [HR], 1.02; P < 0.001), postoperative KPS score (HR 0.99; P = 0.002), complete tumour resection (HR 0.52; P < 0.001), MGMT promoter methylation (HR 0.75; P < 0.001), and LEV use (HR 0.72; P = 0.011) were significantly associated with OS. In conclusion, LEV use was associated with prolonged survival in patients with GBM treated with concurrent TMZ chemoradiotherapy.
Collapse
Affiliation(s)
- Tae Hoon Roh
- Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hun Ho Park
- Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chang-Ki Hong
- Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
37
|
Thakkar JP, Prabhu VC, Rouse S, Lukas RV. Acute Neurological Complications of Brain Tumors and Immune Therapies, a Guideline for the Neuro-hospitalist. Curr Neurol Neurosci Rep 2020; 20:32. [PMID: 32596758 DOI: 10.1007/s11910-020-01056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW Patients with brain tumors presenting to the emergency room with acute neurologic complications may warrant urgent investigations and emergent management. As the neuro-hospitalist will likely encounter this complex patient population, an understanding of the acute neurologic issues will have value. RECENT FINDINGS We discuss updated information and management regarding various acute neurologic complications among neuro-oncology patients and neurologic complications of immunotherapy. Understanding of the acute neurologic complications associated with central nervous system tumors and with common contemporary cancer treatments will facilitate the neuro-hospitalist management of these patient populations. While there are aspects analogous to the diagnosis and management in the non-oncologic population, a number of unique features discussed in this review should be considered.
Collapse
Affiliation(s)
- Jigisha P Thakkar
- Department of Neurology, Stritch School of Medicine, Loyola University Medical Center, 2160 S. 1st Avenue, Bldg 105, Room 2700, Maywood, IL, 60153, USA. .,Department of Neurosurgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Avenue, Bldg 105, Room 1900, Maywood, IL, 60153, USA.
| | - Vikram C Prabhu
- Department of Neurosurgery, Stritch School of Medicine, Loyola University Chicago, 2160 S. 1st Avenue, Bldg 105, Room 1900, Maywood, IL, 60153, USA
| | - Stasia Rouse
- Department of Neurology, Stritch School of Medicine, Loyola University Medical Center, 2160 S. 1st Avenue, Bldg 105, Room 2700, Maywood, IL, 60153, USA
| | - Rimas V Lukas
- Department of Neurology, Northwestern University Feinberg School of Medicine, 710 N. Lake Shore Drive, Abbott Hall 1114, Chicago, IL, 60611, USA.,Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
38
|
Zoccarato M, Basile AM, Padovan M, Caccese M, Zagonel V, Lombardi G. Eslicarbazepine in patients with brain tumor-related epilepsy: a single-center experience. Int J Neurosci 2020; 131:879-884. [PMID: 32316814 DOI: 10.1080/00207454.2020.1759590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Brain tumor-related epilepsy (BTRE) is frequent in patients affected with glioma. Most patients have refractory seizures and require polytherapy. Promising treatment options derive from the development of novel anti-epileptic drugs (AEDs), like Eslicarbazepine (ESL), whose role in BTRE has not yet been explored. Our aim was to report a retrospective cohort of patients affected by BTRE treated with ESL as an adjunctive therapy and to discuss the potential role of this third-generation AED in this clinical context. METHODS We analyzed a single-center, retrospectively collected cohort of patients affected by glioma and BTRE, treated with ESL as an adjunctive therapy. RESULTS Analysis included 5 males and 3 females with age ranging from 37 to 75 years (mean = 55.5). Mean baseline Karnofsky performance status was 87.5 (range 70-100). Patients were affected by diffuse astrocytoma (3), low grade oligodendroglioma (2), anaplastic glioma (2) and glioblastoma (1). Mean follow-up was 19 months (range 6-59). Mean dose at the last follow-up was 950 mg daily. Mean weekly seizures in the month before initiation of ESL numbered 17.6 (range 0.25-50). At the last follow-up, mean weekly seizures were 2.2 (range 0-10), i.e. significantly lower than baseline (p = 0.03). The mean reduction of seizures achieved after introduction of ESL was 65%, with 6/8 patients (75%) showing a reduction of more than 50%. Two patients (25%) were seizure free. CONCLUSIONS This single-center experience suggests that ESL may be a well-tolerated, efficacious option as an add-on drug in the treatment of BTRE.
Collapse
Affiliation(s)
- Marco Zoccarato
- Neurology Unit, O.S.A., Azienda Ospedaliera di Padova, Padua, Italy
| | | | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
39
|
Peeters MCM, Dirven L, Koekkoek JAF, Gortmaker EG, Fritz L, Vos MJ, Taphoorn MJB. Prediagnostic symptoms and signs of adult glioma: the patients' view. J Neurooncol 2020; 146:293-301. [PMID: 31894516 DOI: 10.1007/s11060-019-03373-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/14/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Little is known about the symptoms glioma patients experience in the year before diagnosis, either or not resulting in health care usage. This study aimed to determine the incidence of symptoms glioma patients experienced in the year prior to diagnosis, and subsequent visits to a general practitioner (GP). METHODS Glioma patients were asked to complete a 30-item study-specific questionnaire focusing on symptoms they experienced in the 12 months before diagnosis. For each indicated symptom, patients were asked whether they consulted the GP for this issue. RESULTS Fifty-nine patients completed the questionnaires, 54 (93%) with input of a proxy. The median time since diagnosis was 4 months (range 1-12). The median number of symptoms experienced in the year before diagnosis was similar between gliomas with favourable and poor prognosis, i.e. 6 (range 0-24), as were the five most frequently mentioned problems: fatigue (n = 34, 58%), mental tiredness (n = 30, 51%), sleeping disorder (n = 24, 41%), headache (n = 23, 39%) and stress (n = 20, 34%). Twenty-six (44%) patients visited the GP with at least one issue. Patients who did consult their GP reported significantly more often muscle weakness (11 vs 3, p = 0.003) than patients who did not, which remained significant after correction for multiple testing, which was not the case for paralysis in hand/leg (10 vs 4), focussing (11 vs 6) or a change in awareness (9 vs 4). CONCLUSIONS Glioma patients experience a range of non-specific problems in the year prior to diagnosis, but only patients who consult the GP report more often neurological problems.
Collapse
Affiliation(s)
- Marthe C M Peeters
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Ellen G Gortmaker
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Lara Fritz
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Maaike J Vos
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
40
|
Abstract
More than one-third of patients with meningiomas will experience seizures at some point in their disease. Despite this, meningioma-associated epilepsy remains significantly understudied, as most investigations focus on tumor progression, extent of resection, and survival. Due to the impact of epilepsy on the patient's quality of life, identifying predictors of preoperative seizures and postoperative seizure freedom is critical. In this chapter, we review previously reported rates and predictors of seizures in meningioma and discuss surgical and medical treatment options. Preoperative epilepsy occurs in approximately 30% of meningioma patients with peritumoral edema on neuroimaging being one of the most significant predictor of seizures. Other associated factors include age <18, male gender, the absence of headache, and non-skull base tumor location. Following tumor resection, approximately 70% of individuals with preoperative epilepsy achieve seizure freedom. Variables associated with persistent seizures include a history of preoperative epilepsy, peritumoral edema, skull base tumor location, tumor progression, and epileptiform discharges on postoperative electroencephalogram. In addition, after surgery, approximately 10% of meningioma patients without preoperative epilepsy experience new seizures. Variables associated with new postoperative seizures include tumor progression, prior radiation exposure, and gross total tumor resection. Both pre- and postoperative meningioma-related seizures are often responsive to antiepileptic drugs (AEDs), although AED prophylaxis in the absence of seizures is not recommended. AED selection is based on current guidelines for treating focal seizures with additional considerations including efficacy in tumor-related epilepsy, toxicities, and potential drug-drug interactions. Continued investigation into medical and surgical strategies for preventing and alleviating epilepsy in meningioma is warranted.
Collapse
Affiliation(s)
- Stephen C Harward
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, United States
| | - John D Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States
| | - Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
41
|
Sun J, Piao J, Li N, Yang Y, Kim K, Lin Z. Valproic acid targets HDAC1/2 and HDAC1/PTEN/Akt signalling to inhibit cell proliferation via the induction of autophagy in gastric cancer. FEBS J 2019; 287:2118-2133. [DOI: 10.1111/febs.15122] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/28/2019] [Accepted: 11/03/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Jie Sun
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Junjie Piao
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Nan Li
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Yang Yang
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Ki‐Yeol Kim
- Dental Education Research Center BK21 PLUS Project Yonsei University College of Dentistry Seoul Korea
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| |
Collapse
|
42
|
Peeters MC, Dirven L, Koekkoek JA, Numans ME, Taphoorn MJ. Prediagnostic presentations of glioma in primary care: a case-control study. CNS Oncol 2019; 8:CNS44. [PMID: 31674205 PMCID: PMC6880303 DOI: 10.2217/cns-2019-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim: This study aimed to assess the prevalence of symptoms glioma patients may present with to the general practitioner, and whether these can be distinguished from patients with other CNS disorders or any other condition. Methods: Glioma patients were matched to CNS patients and ‘other controls’ using anonymized general practitioner registries. Prevalences were evaluated in the 5 years prior to diagnosis. Result: CNS patients reported significantly more motor symptoms in the period 60–24 months, (p = 0.039). Moreover, <6 months before diagnosis CNS patients differed significantly in mood disorders/fear compared with ‘other controls’ (p = 0.012) but not glioma patients (p = 0.816). Conclusion: Glioma patients could not be distinguished from both control groups with respect to the number or type of prediagnostic symptoms.
Collapse
Affiliation(s)
- Marthe Cm Peeters
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, Burg. Banninglaan, 2262 BA Leidschendam, The Netherlands
| | - Johan Af Koekkoek
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, Burg. Banninglaan, 2262 BA Leidschendam, The Netherlands
| | - Mattijs E Numans
- Department of Public Health & Primary Care, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Martin Jb Taphoorn
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, Burg. Banninglaan, 2262 BA Leidschendam, The Netherlands
| |
Collapse
|
43
|
Maschio M, Aguglia U, Avanzini G, Banfi P, Buttinelli C, Capovilla G, Casazza MML, Colicchio G, Coppola A, Costa C, Dainese F, Daniele O, De Simone R, Eoli M, Gasparini S, Giallonardo AT, La Neve A, Maialetti A, Mecarelli O, Melis M, Michelucci R, Paladin F, Pauletto G, Piccioli M, Quadri S, Ranzato F, Rossi R, Salmaggi A, Terenzi R, Tisei P, Villani F, Vitali P, Vivalda LC, Zaccara G, Zarabla A, Beghi E. Management of epilepsy in brain tumors. Neurol Sci 2019; 40:2217-2234. [PMID: 31392641 DOI: 10.1007/s10072-019-04025-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/20/2019] [Indexed: 12/15/2022]
Abstract
Epilepsy in brain tumors (BTE) may require medical attention for a variety of unique concerns: epileptic seizures, possible serious adverse effects of antineoplastic and antiepileptic drugs (AEDs), physical disability, and/or neurocognitive disturbances correlated to tumor site. Guidelines for the management of tumor-related epilepsies are lacking. Treatment is not standardized, and overall management might differ according to different specialists. The aim of this document was to provide directives on the procedures to be adopted for a correct diagnostic-therapeutic path of the patient with BTE, evaluating indications, risks, and benefits. A board comprising neurologists, epileptologists, neurophysiologists, neuroradiologists, neurosurgeons, neuro-oncologists, neuropsychologists, and patients' representatives was formed. The board converted diagnostic and therapeutic problems into seventeen questions. A literature search was performed in September-October 2017, and a total of 7827 unique records were retrieved, of which 148 constituted the core literature. There is no evidence that histological type or localization of the brain tumor affects the response to an AED. The board recommended to avoid enzyme-inducing antiepileptic drugs because of their interference with antitumoral drugs and consider as first-choice newer generation drugs (among them, levetiracetam, lamotrigine, and topiramate). Valproic acid should also be considered. Both short-term and long-term prophylaxes are not recommended in primary and metastatic brain tumors. Management of seizures in patients with BTE should be multidisciplinary. The panel evidenced conflicting or lacking data regarding the role of EEG, the choice of therapeutic strategy, and timing to withdraw AEDs and recommended high-quality long-term studies to standardize BTE care.
Collapse
Affiliation(s)
- Marta Maschio
- Center for Brain Tumor-Related Epilepsy, UOSD Neuro-Oncology, I.R.C.C.S. Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giuliano Avanzini
- Department of Neurophysiology and Experimental Epileptology, Carlo Besta Neurological Institute, Milan, Italy
| | - Paola Banfi
- Neurology Unit, Department of Emergency, Medicine Epilepsy Center, Circolo Hospital, Varese, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza", Rome, Italy
| | - Giuseppe Capovilla
- Department of Mental Health, Epilepsy Center, C. Poma Hospital, Mantua, Italy
| | | | - Gabriella Colicchio
- Institute of Neurosurgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Epilepsy Centre, University of Naples Federico II, Naples, Italy
| | - Cinzia Costa
- Neurological Clinic, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Filippo Dainese
- Epilepsy Centre, UOC Neurology, SS. Giovanni e Paolo Hospital, Venice, Italy
| | - Ornella Daniele
- Epilepsy Center-U.O.C. Neurology, Policlinico Paolo Giaccone, Experimental Biomedicine and Clinical Neuroscience Department (BioNeC), University of Palermo, Palermo, Italy
| | - Roberto De Simone
- Neurology and Stroke Unit, Epilepsy and Sleep Disorders Center, St. Eugenio Hospital, Rome, Italy
| | - Marica Eoli
- Molecular Neuro-Oncology Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Gasparini
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Angela La Neve
- Department of Neurological and Psychiatric Sciences, Centre for Epilepsy, University of Bari, Bari, Italy
| | - Andrea Maialetti
- Center for Brain Tumor-Related Epilepsy, UOSD Neuro-Oncology, I.R.C.C.S. Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Oriano Mecarelli
- Neurology Unit, Human Neurosciences Department, Sapienza University, Umberto 1 Hospital, Rome, Italy
| | - Marta Melis
- Department of Medical Sciences and Public Health, Institute of Neurology, University of Cagliari, Monserrato, Cagliari, Italy
| | - Roberto Michelucci
- Unit of Neurology, Bellaria Hospital, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Paladin
- Epilepsy Center, UOC Neurology, Ospedale Santi Giovanni e Paolo, Venice, Italy
| | - Giada Pauletto
- Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Marta Piccioli
- UOC Neurology, PO San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Stefano Quadri
- USC Neurology, Epilepsy Center, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Federica Ranzato
- Epilepsy Centre, Neuroscience Department, S. Bortolo Hospital, Vicenza, Italy
| | - Rosario Rossi
- Neurology and Stroke Unit, San Francesco Hospital, 08100, Nuoro, Italy
| | | | - Riccardo Terenzi
- Epilepsy Consultation Room, Neurology Unit, S. Pietro Fatebenefratelli Hospital, Rome, Italy
| | - Paolo Tisei
- Neurophysiology Unit, Department of Neurology-University "La Sapienza", S. Andrea Hospital, Rome, Italy
| | - Flavio Villani
- Clinical Epileptology and Experimental Neurophysiology Unit, Fondazione IRCCS, Istituto Neurologico C. Besta, Milan, Italy
| | - Paolo Vitali
- Neuroradiology and Brain MRI 3T Mondino Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Gaetano Zaccara
- Regional Health Agency of Tuscany, Via P Dazzi 1, 50141, Florence, Italy
| | - Alessia Zarabla
- Center for Brain Tumor-Related Epilepsy, UOSD Neuro-Oncology, I.R.C.C.S. Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Ettore Beghi
- Department of Neurosciences, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | |
Collapse
|
44
|
Samudra N, Zacharias T, Plitt A, Lega B, Pan E. Seizures in glioma patients: An overview of incidence, etiology, and therapies. J Neurol Sci 2019; 404:80-85. [PMID: 31352293 DOI: 10.1016/j.jns.2019.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/24/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Gliomas are fatal brain tumors, and even low-grade gliomas (LGGs) have an average survival of less than a decade. Seizures are a common presentation of gliomas, particularly LGGs, and substantially impact quality of life. Glioma-related seizures differ from other focal epilepsies in their pathogenesis and in the likelihood of refractory epilepsy. We review factors that predict seizure activity and response to treatment, optimal pharmacologic and surgical management of glioma-related epilepsy, and the benefit of using newer anti-seizure medications in patients with gliomas. As surgery is so often beneficial with seizure reduction, we discuss oncologic and epilepsy surgery perspectives. Treatment of gliomas has the potential to ameliorate seizures and increase rates of seizure freedom. Prospective, well-powered studies are needed to provide more definitive answers for practitioners taking care of glioma patients with seizures.
Collapse
Affiliation(s)
- Niyatee Samudra
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Tresa Zacharias
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Aaron Plitt
- Department of Neurosurgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Edward Pan
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
45
|
Liang S, Fan X, Zhao M, Shan X, Li W, Ding P, You G, Hong Z, Yang X, Luan G, Ma W, Yang H, You Y, Yang T, Li L, Liao W, Wang L, Wu X, Yu X, Zhang J, Mao Q, Wang Y, Li W, Wang X, Jiang C, Liu X, Qi S, Liu X, Qu Y, Xu J, Wang W, Song Z, Wu J, Liu Z, Chen L, Lin Y, Zhou J, Liu X, Zhang W, Li S, Jiang T. Clinical practice guidelines for the diagnosis and treatment of adult diffuse glioma-related epilepsy. Cancer Med 2019; 8:4527-4535. [PMID: 31240876 PMCID: PMC6712518 DOI: 10.1002/cam4.2362] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 05/05/2019] [Accepted: 05/25/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glioma-related epilepsy (GRE) is defined as symptomatic epileptic seizures secondary to gliomas, it brings both heavy financial and psychosocial burdens to patients with diffuse glioma and significantly decreases their quality of life. To date, there have been no clinical guidelines that provide recommendations for the optimal diagnostic and therapeutic procedures for GRE patients. METHODS In March 2017, the Joint Task Force for GRE of China Association Against Epilepsy and Society for Neuro-Oncology of China launched the guideline committee for the diagnosis and treatment of GRE. The guideline committee conducted a comprehensive review of relevant domestic and international literatures that were evaluated and graded based on the Oxford Centre for Evidence-Based Medicine Levels of Evidence, and then held three consensus meetings to discuss relevant recommendations. The recommendations were eventually given according to those relevant literatures, together with the experiences in the diagnosis and treatment of over 3000 GRE cases from 24 tertiary level hospitals that specialize in clinical research of epilepsy, glioma, and GRE in China. RESULTS The manuscript presented the current standard recommendations for the diagnostic and therapeutic procedures of GRE. CONCLUSIONS The current work will provide a framework and assurance for the diagnosis and treatment strategy of GRE to reduce complications and costs caused by unnecessary treatment. Additionally, it can serve as a reference for all professionals involved in the management of patients with GRE.
Collapse
Affiliation(s)
- Shuli Liang
- Department of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China.,Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xing Fan
- Department of Neuroelectrophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Zhao
- Department of Neurosurgery, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Xia Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Neuropathology, Beijing Neurosurgery Institute, Capital Medical University, Beijing, China
| | - Wenling Li
- Department of Neurosurgery, Second Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | - Ping Ding
- Department of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Hong
- Department of Neurology, Shanghai Huashan Hospital, Fudan University, Shaihai, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Guoming Luan
- Department of Neurosurgery, Beijing Sanbo Hospital, Capital Medical University, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Yang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yongpin You
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianming Yang
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Liang Li
- Department of Neurosurgery, First Affiliated Hospital, Beijing University, Beijing, China
| | - Weiping Liao
- Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xun Wu
- Department of Neurology, First Affiliated Hospital, Beijing University, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qing Mao
- Department of Neurosurgery, Huaxi Hospital, Sichuan University, Chengdu, China
| | - Yuping Wang
- Department of Neurology, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xuefeng Wang
- Department of Neurology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chuanlu Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyan Liu
- Pediatric Department, First Affiliated Hospital, Beijing University, Beijing, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Nanfang Medical University, Guangzhou, China
| | - Xingzhou Liu
- Epilepsy Center, Shanghai Deji Hospital, Shanghai, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiwen Xu
- Department of Functional Neurosurgery, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Wang
- Department of Neurosurgery, Guangzhou Military General Hospital, Guangzhou, China
| | - Zhi Song
- Department of Neurology, Xiangya Third Hospital, Center South University, Changsha, China
| | - Jinsong Wu
- Department of Neurosurgery, Shanghai Huashan Hospital, Fudan University, Shanghai, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, China
| | - Ling Chen
- Department of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jian Zhou
- Department of Neurosurgery, Beijing Sanbo Hospital, Capital Medical University, Beijing, China
| | - Xianzeng Liu
- Department of Neurology, Peking University International Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Neuropathology, Beijing Neurosurgery Institute, Capital Medical University, Beijing, China
| | - Shichuo Li
- China Association Against Epilepsy (CAAE), Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Neuropathology, Beijing Neurosurgery Institute, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Emerging therapeutic potential of anti-psychotic drugs in the management of human glioma: A comprehensive review. Oncotarget 2019; 10:3952-3977. [PMID: 31231472 PMCID: PMC6570463 DOI: 10.18632/oncotarget.26994] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Despite numerous advancements in the last decade, human gliomas such as astrocytoma and glioblastoma multiforme have the worst prognoses among all cancers. Anti-psychotic drugs are commonly prescribed to treat mental disorders among cancer patients, and growing empirical evidence has revealed their antitumor, anti-metastatic, anti-angiogenic, anti-proliferative, chemo-preventive, and neo-adjuvant efficacies in various in vitro, in vivo, and clinical glioma models. Anti-psychotic drugs have drawn the attention of physicians and researchers owing to their beneficial effects in the prevention and treatment of gliomas. This review highlights data on the therapeutic potential of various anti-psychotic drugs as anti-proliferative, chemopreventive, and anti-angiogenic agents in various glioma models via the modulation of upstream and downstream molecular targets involved in apoptosis, autophagy, oxidative stress, inflammation, and the cell cycle in in vitro and in vivo preclinical and clinical stages among glioma patients. The ability of anti-psychotic drugs to modulate various signaling pathways and multidrug resistance-conferring proteins that enhance the efficacy of chemotherapeutic drugs with low side-effects exemplifies their great potential as neo-adjuvants and potential chemotherapeutics in single or multimodal treatment approach. Moreover, anti-psychotic drugs confer the ability to induce glioma into oligodendrocyte-like cells and neuronal-like phenotype cells with reversal of epigenetic alterations through inhibition of histone deacetylase further rationalize their use in glioma treatment. The improved understanding of anti-psychotic drugs as potential chemotherapeutic drugs or as neo-adjuvants will provide better information for their use globally as affordable, well-tolerated, and effective anticancer agents for human glioma.
Collapse
|
47
|
Zhang X, Li X, Liu N, Zheng P, Ma L, Guo F, Sun T, Zhou R, Yu J. The Anticonvulsant Effects of Baldrinal on Pilocarpine-Induced convulsion in Adult Male Mice. Molecules 2019; 24:E1617. [PMID: 31022879 PMCID: PMC6514916 DOI: 10.3390/molecules24081617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a prevalent neurological disorder that was reported to affect about 56 million people in the world. Approximately one-third of the epileptic patients that suffer from seizures do not receive effective medical treatment. The aim of this study was to determine the potential anticonvulsant activities of Baldrinal (BAL) with a mouse model of pilocarpine (PILO)-induced epilepsy. The mice were treated with different doses of BAL or sodium valproate prior to PILO injection. Spontaneous and evoked seizures were evaluated from EEG recordings, and their severity was tested by the Racine scale. In addition, the brain tissues were analyzed for histological changes, and the in situ levels of glutamic acid (Glu) and gamma-aminobutyric acid (GABA) were also measured. Activation of astrocytes in the hippocampus was measured. PILO-treated mice showed a significant increase in Glu levels, which was restored by BAL. In addition, BAL treatment also reduced the rate of seizures in the epileptic mice, and ameliorated the increased levels of NMDAR1, BDNF, IL-1β and TNF-α. Taken together, BAL has a potential antiepileptic effect, which may be mediated by reducing the inflammatory response in the PILO-induced brain and restoring the balance of GABAergic and glutamatergic neurons.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Xing Li
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Ping Zheng
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China.
| | - Fengying Guo
- College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China.
| | - Ru Zhou
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Jianqiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
48
|
Guidelines for seizure management in palliative care: proposal for an updated clinical practice model based on a systematic literature review. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2018.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
León Ruiz M, Rodríguez Sarasa M, Sanjuán Rodríguez L, Pérez Nieves M, Ibáñez Estéllez F, Arce Arce S, García-Albea Ristol E, Benito-León J. Guía para el manejo de las crisis epilépticas en cuidados paliativos: propuesta de un modelo actualizado de práctica clínica basado en una revisión sistemática de la literatura. Neurologia 2019; 34:165-197. [DOI: 10.1016/j.nrl.2016.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 01/19/2023] Open
|
50
|
Perona M, Thomasz L, Rossich L, Rodriguez C, Pisarev MA, Rosemblit C, Cremaschi GA, Dagrosa MA, Juvenal GJ. Radiosensitivity enhancement of human thyroid carcinoma cells by the inhibitors of histone deacetylase sodium butyrate and valproic acid. Mol Cell Endocrinol 2018; 478:141-150. [PMID: 30125607 DOI: 10.1016/j.mce.2018.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 01/04/2023]
Abstract
Radiotherapy is one of the leading treatments for clinical cancer therapy. External beam radiotherapy has been proposed as an adjuvant treatment for patients bearing differentiated thyroid cancer refractory to conventional therapy. Our purpose was to study the combined effect of HDAC inhibitors (HDACi) and ionizing irradiation in thyroid cancer cell lines (Nthy-ori 3-1, WRO, TPC-1 and 8505c). HDACi radiosensitized thyroid cancer cells as evidenced by the reduction of survival fraction, whereas they had no effect in the normal cells. HDACi enhanced radiation-induced cell death in WRO cells. Gamma-H2AX foci number increased and persisted long after ionizing exposure in the HDACi-treated cells (WRO and TPC-1). Moreover, the expression of the repair-related gene Ku80 was differentially modulated only in the cancer cells, by the compounds at the protein and/or mRNA levels. We present in vitro evidence that HDACi can enhance the radiosensitivity of human thyroid cancer cells.
Collapse
Affiliation(s)
- Marina Perona
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Av. Rivadavia 1917, 1033, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lisa Thomasz
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Av. Rivadavia 1917, 1033, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciano Rossich
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina
| | - Carla Rodriguez
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina
| | - Mario A Pisarev
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina
| | - Cinthia Rosemblit
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina; Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - Graciela A Cremaschi
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina; Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - María Alejandra Dagrosa
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Av. Rivadavia 1917, 1033, Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo J Juvenal
- Dept. of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. Libertador 8250, 1429, San Martín, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Av. Rivadavia 1917, 1033, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|