1
|
Kaminska J, Soczewka P, Rzepnikowska W, Zoladek T. Yeast as a Model to Find New Drugs and Drug Targets for VPS13-Dependent Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23095106. [PMID: 35563497 PMCID: PMC9104724 DOI: 10.3390/ijms23095106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022] Open
Abstract
Mutations in human VPS13A-D genes result in rare neurological diseases, including chorea-acanthocytosis. The pathogenesis of these diseases is poorly understood, and no effective treatment is available. As VPS13 genes are evolutionarily conserved, the effects of the pathogenic mutations could be studied in model organisms, including yeast, where one VPS13 gene is present. In this review, we summarize advancements obtained using yeast. In recent studies, vps13Δ and vps13-I2749 yeast mutants, which are models of chorea-acanthocytosis, were used to screen for multicopy and chemical suppressors. Two of the suppressors, a fragment of the MYO3 and RCN2 genes, act by downregulating calcineurin activity. In addition, vps13Δ suppression was achieved by using calcineurin inhibitors. The other group of multicopy suppressors were genes: FET4, encoding iron transporter, and CTR1, CTR3 and CCC2, encoding copper transporters. Mechanisms of their suppression rely on causing an increase in the intracellular iron content. Moreover, among the identified chemical suppressors were copper ionophores, which require a functional iron uptake system for activity, and flavonoids, which bind iron. These findings point at areas for further investigation in a higher eukaryotic model of VPS13-related diseases and to new therapeutic targets: calcium signalling and copper and iron homeostasis. Furthermore, the identified drugs are interesting candidates for drug repurposing for these diseases.
Collapse
Affiliation(s)
- Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
| | - Piotr Soczewka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
| | - Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
- Correspondence:
| |
Collapse
|
3
|
Mohammad SS, Angiti RR, Biggin A, Morales-Briceño H, Goetti R, Perez-Dueñas B, Gregory A, Hogarth P, Ng J, Papandreou A, Bhattacharya K, Rahman S, Prelog K, Webster RI, Wassmer E, Hayflick S, Livingston J, Kurian M, Chong WK, Dale RC. Magnetic resonance imaging pattern recognition in childhood bilateral basal ganglia disorders. Brain Commun 2020; 2:fcaa178. [PMID: 33629063 PMCID: PMC7891249 DOI: 10.1093/braincomms/fcaa178] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Bilateral basal ganglia abnormalities on MRI are observed in a wide variety of childhood disorders. MRI pattern recognition can enable rationalization of investigations and also complement clinical and molecular findings, particularly confirming genomic findings and also enabling new gene discovery. A pattern recognition approach in children with bilateral basal ganglia abnormalities on brain MRI was undertaken in this international multicentre cohort study. Three hundred and five MRI scans belonging to 201 children with 34 different disorders were rated using a standard radiological scoring proforma. In addition, literature review on MRI patterns was undertaken in these 34 disorders and 59 additional disorders reported with bilateral basal ganglia MRI abnormalities. Cluster analysis on first MRI findings from the study cohort grouped them into four clusters: Cluster 1-T2-weighted hyperintensities in the putamen; Cluster 2-T2-weighted hyperintensities or increased MRI susceptibility in the globus pallidus; Cluster 3-T2-weighted hyperintensities in the globus pallidus, brainstem and cerebellum with diffusion restriction; Cluster 4-T1-weighted hyperintensities in the basal ganglia. The 34 diagnostic categories included in this study showed dominant clustering in one of the above four clusters. Inflammatory disorders grouped together in Cluster 1. Mitochondrial and other neurometabolic disorders were distributed across clusters 1, 2 and 3, according to lesions dominantly affecting the striatum (Cluster 1: glutaric aciduria type 1, propionic acidaemia, 3-methylglutaconic aciduria with deafness, encephalopathy and Leigh-like syndrome and thiamine responsive basal ganglia disease associated with SLC19A3), pallidum (Cluster 2: methylmalonic acidaemia, Kearns Sayre syndrome, pyruvate dehydrogenase complex deficiency and succinic semialdehyde dehydrogenase deficiency) or pallidum, brainstem and cerebellum (Cluster 3: vigabatrin toxicity, Krabbe disease). The Cluster 4 pattern was exemplified by distinct T1-weighted hyperintensities in the basal ganglia and other brain regions in genetically determined hypermanganesemia due to SLC39A14 and SLC30A10. Within the clusters, distinctive basal ganglia MRI patterns were noted in acquired disorders such as cerebral palsy due to hypoxic ischaemic encephalopathy in full-term babies, kernicterus and vigabatrin toxicity and in rare genetic disorders such as 3-methylglutaconic aciduria with deafness, encephalopathy and Leigh-like syndrome, thiamine responsive basal ganglia disease, pantothenate kinase-associated neurodegeneration, TUBB4A and hypermanganesemia. Integrated findings from the study cohort and literature review were used to propose a diagnostic algorithm to approach bilateral basal ganglia abnormalities on MRI. After integrating clinical summaries and MRI findings from the literature review, we developed a prototypic decision-making electronic tool to be tested using further cohorts and clinical practice.
Collapse
Affiliation(s)
- Shekeeb S Mohammad
- Kids Neuroscience Centre, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- TY Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Sydney, Australia
- The Children’s hospital at Westmead Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW 2145, Australia
| | - Rajeshwar Reddy Angiti
- Newborn and Peadiatric Emergency Transport Service (NETS), Bankstown, NSW, Australia
- Department of Neonatology, Liverpool Hospital, Liverpool, NSW, Australia
| | - Andrew Biggin
- The Children’s hospital at Westmead Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW 2145, Australia
| | - Hugo Morales-Briceño
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Robert Goetti
- Medical Imaging, The Children’s Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Belen Perez-Dueñas
- Paediatric Neurology Department, Hospital Vall d'Hebrón Universitat Autónoma de Barcelona, Vall d'Hebron Research Institute Barcelona, Barcelona, Spain
| | - Allison Gregory
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Penelope Hogarth
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Joanne Ng
- Molecular Neurosciences, Developmental Neurosciences, UCL-Institute of Child Health, London, UK
| | - Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences, UCL-Institute of Child Health, London, UK
| | - Kaustuv Bhattacharya
- Western Sydney Genomics Program, The Children’s Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine, Institute of Child Health, University College London and Metabolic Unit, Great Ormond Street Hospital, London, UK
| | - Kristina Prelog
- Medical Imaging, The Children’s Hospital at Westmead and Sydney Medical School, University of Sydney, Sydney, Australia
| | - Richard I Webster
- TY Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Sydney, Australia
| | - Evangeline Wassmer
- Department of Paediatric Neurology, Birmingham Children's Hospital, Birmingham, UK
| | - Susan Hayflick
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - John Livingston
- Department of Paediatric Neurology, Leeds Teaching Hospitals Trust, University of Leeds, UK
| | - Manju Kurian
- Molecular Neurosciences, Developmental Neurosciences, UCL-Institute of Child Health, London, UK
| | - W Kling Chong
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | - Russell C Dale
- Kids Neuroscience Centre, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- TY Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Sydney, Australia
- The Children’s hospital at Westmead Clinical School, Faculty of Medicine, University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
5
|
Fazio P, Paucar M, Svenningsson P, Varrone A. Novel Imaging Biomarkers for Huntington's Disease and Other Hereditary Choreas. Curr Neurol Neurosci Rep 2018; 18:85. [PMID: 30291526 PMCID: PMC6182636 DOI: 10.1007/s11910-018-0890-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF THE REVIEW Imaging biomarkers for neurodegenerative disorders are primarily developed with the goal to aid diagnosis, to monitor disease progression, and to assess the efficacy of disease-modifying therapies in support to clinical outcomes that may either show limited sensitivity or need extended time for their evaluation. This article will review the most recent concepts and findings in the field of neuroimaging applied to Huntington's disease and Huntington-like syndromes. Emphasis will be given to the discussion of potential pharmacodynamic biomarkers for clinical trials in Huntington's disease (HD) and of neuroimaging tools that can be used as diagnostic biomarkers in HD-like syndromes. RECENT FINDINGS Several magnetic resonance (MR) and positron emission tomography (PET) molecular imaging tools have been identified as potential pharmacodynamic biomarkers and others are in the pipeline after preclinical validation. MRI and 18F-fluorodeoxyglucose PET can be considered useful supportive diagnostic tools for the differentiation of other HD-like syndromes. New trials in HD have the primary goal to lower mutant huntingtin (mHTT) protein levels in the brain in order to reduce or alter the progression of the disease. MR and PET molecular imaging markers have been developed as tools to monitor disease progression and to evaluate treatment outcomes of disease-modifying trials in HD. These markers could be used alone or in combination for detecting structural and pharmacodynamic changes potentially associated with the lowering of mHTT.
Collapse
Affiliation(s)
- Patrik Fazio
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - Martin Paucar
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| |
Collapse
|
6
|
Gauthier J, Meijer IA, Lessel D, Mencacci NE, Krainc D, Hempel M, Tsiakas K, Prokisch H, Rossignol E, Helm MH, Rodan LH, Karamchandani J, Carecchio M, Lubbe SJ, Telegrafi A, Henderson LB, Lorenzo K, Wallace SE, Glass IA, Hamdan FF, Michaud JL, Rouleau GA, Campeau PM. Recessive mutations in
VPS13D
cause childhood onset movement disorders. Ann Neurol 2018. [DOI: 10.1002/ana.25204] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Julie Gauthier
- Molecular Diagnostic Laboratory and Division of Medical Genetics, Department of PediatricsSaint Justine University Hospital CenterMontreal Canada
| | - Inge A. Meijer
- Department of NeuroscienceUniversity of MontrealMontreal Canada
| | - Davor Lessel
- Institute of Human GeneticsUniversity Medical Center Hamburg‐EppendorfHamburg Germany
| | - Niccolò E. Mencacci
- Department of NeurologyNorthwestern University, Feinberg School of MedicineChicago IL
| | - Dimitri Krainc
- Department of NeurologyNorthwestern University, Feinberg School of MedicineChicago IL
| | - Maja Hempel
- Institute of Human GeneticsUniversity Medical Center Hamburg‐EppendorfHamburg Germany
| | - Konstantinos Tsiakas
- Department of PediatricsUniversity Medical Center Hamburg‐EppendorfHamburg Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Center MunichNeuherberg Germany
- Institute of Human GeneticsTechnical University MunichMunich Germany
| | - Elsa Rossignol
- Department of NeuroscienceUniversity of MontrealMontreal Canada
| | | | - Lance H. Rodan
- Department of NeurologyBoston Children's HospitalBoston MA
| | - Jason Karamchandani
- Department of PathologyMcGill University, Montreal Neurological InstituteMontreal Canada
| | - Miryam Carecchio
- Molecular Neurogenetics Unit, Institute for Research and Health Care (IRCCS) Foundation Carlo Besta Neurological InstituteMilan Italy
| | - Steven J. Lubbe
- Department of NeurologyNorthwestern University, Feinberg School of MedicineChicago IL
| | | | | | | | - Stephanie E. Wallace
- Division of Genetic Medicine, Department of PediatricsSeattle Children's Hospital and University of WashingtonSeattle WA
| | - Ian A. Glass
- Division of Genetic Medicine, Department of PediatricsSeattle Children's Hospital and University of WashingtonSeattle WA
| | - Fadi F. Hamdan
- Molecular Diagnostic Laboratory and Division of Medical Genetics, Department of PediatricsSaint Justine University Hospital CenterMontreal Canada
| | - Jacques L. Michaud
- Department of PediatricsSaint Justine University Hospital Center and University of MontrealMontreal Canada
| | - Guy A. Rouleau
- Montreal Neurological Institute, Department of Neurology and NeurosurgeryMcGill UniversityMontreal Canada
| | - Philippe M. Campeau
- Department of PediatricsSaint Justine University Hospital Center and University of MontrealMontreal Canada
| |
Collapse
|
7
|
Walker RH. Untangling the Thorns: Advances in the Neuroacanthocytosis Syndromes. J Mov Disord 2015; 8:41-54. [PMID: 26090076 PMCID: PMC4460540 DOI: 10.14802/jmd.15009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/25/2022] Open
Abstract
There have been significant advances in neuroacanthocytosis (NA) syndromes in the past 20 years, however, confusion still exists regarding the precise nature of these disorders and the correct nomenclature. This article seeks to clarify these issues and to summarise the recent literature in the field. The four key NA syndromes are described here-chorea-acanthocytosis, McLeod syndrome, Huntington's disease-like 2, and pantothenate kinase- associated neurodegeneration. In the first two, acanthocytosis is a frequent, although not invariable, finding; in the second two, it occurs in approximately 10% of patients. Degeneration affecting the basal ganglia is the key neuropathologic finding, thus the clinical presentations can be remarkably similar. The characteristic phenotype comprises a variety of movement disorders, including chorea, dystonia, and parkinsonism, and also psychiatric and cognitive symptoms attributable to basal ganglia dysfunction. The age of onset, inheritance patterns, and ethnic background differ in each condition, providing diagnostic clues. Other investigations, including routine blood testing and neuroimaging can be informative. Genetic diagnosis, if available, provides a definitive diagnosis, and is important for genetic counseling, and hopefully molecular therapies in the future. In this article I provide a historical perspective on each NA syndrome. The first 3 disorders, chorea-acanthocytosis, McLeod syndrome, Huntington's disease-like 2, are discussed in detail, with a comprehensive review of the literature to date for each, while pantothenate kinase-associated neurodegeneration is presented in summary, as this disorder has recently been reviewed in this journal. Therapy for all of these diseases is, at present, purely symptomatic.
Collapse
Affiliation(s)
- Ruth H. Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|