1
|
Wang C, Hu J, Li P, Zhang M, Zhou L, Luo N, Zhu X, Yin Q, Zhong M, Zhou X, Wei H, Li Y, Li B, Liu J. Network disruption based on multi-modal EEG-MRI in α-synucleinopathies. Front Neurol 2024; 15:1442851. [PMID: 39239399 PMCID: PMC11374649 DOI: 10.3389/fneur.2024.1442851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024] Open
Abstract
Background Brain network dysfunction has been characterized by resting-state electroencephalography (EEG) and magnetic resonance imaging (MRI) in the prodromal stage. This study aimed to identify multi-modal electrophysiological and neuroimaging biomarkers for differential diagnosis in synucleinopathies and phenoconversion in isolated rapid eye movement sleep behavior disorder (iRBD). Methods We enrolled 35 patients with multiple system atrophy (MSA), 32 with Parkinson's disease (PD), 30 with iRBD and 30 matched healthy controls (HC). Power spectral density (PSD) was calculated in different frequency bands. EEG functional connectivity (FC) was calculated using the weighted Phase Lag Index (wPLI) after source localization. Significant network disruptions were further confirmed by MRI FC analysis. Results Quantitative EEG analysis demonstrated that delta and theta power spectral density significantly differed among MSA, PD and HC. The increased PSD was correlated with cognitive decline and olfactory dysfunction in PD. Band-specific FC profiles were observed in theta, alpha, and gamma bands. The hypoconnected alpha network significantly correlated with motor dysfunction, while the gamma FC distinguished PD from MSA. By integrating EEG and MRI network analyses, we found that FC between the olfactory cortex and dorsolateral prefrontal cortex was significantly different between MSA and PD. A multimodal discriminative model for MSA and PD, integrating spectral and FC attributes of EEG and MRI, yielded an area under the receiver operating characteristic curve of 0.900. Simultaneously, we found the FC abnormalities were more prominent than spectral features in iRBD indicating prodromal dysfunction. The decreased FC between the angular gyrus and striatum was identified in α-synucleinopathies. This hypoconnectivity was associated with dopaminergic degeneration in iRBD examined by dopamine transporter imaging. Discussion Our study demonstrated EEG spectral and functional profiles in prodromal and clinical-defined synucleinopathies. Multimodal EEG and MRI provided a novel approach to discriminate MSA and PD, and monitor neurodegenerative progression in the preclinical phase.
Collapse
Affiliation(s)
- Chunyi Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Hu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Puyu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningdi Luo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Zhu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyi Yin
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhong
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
2
|
Chen B, Cui W, Wang S, Sun A, Yu H, Liu Y, He J, Fan G. Functional connectome automatically differentiates multiple system atrophy (parkinsonian type) from idiopathic Parkinson's disease at early stages. Hum Brain Mapp 2023; 44:2176-2190. [PMID: 36661217 PMCID: PMC10028675 DOI: 10.1002/hbm.26201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Differentiating the parkinsonian variant of multiple system atrophy (MSA-P) from idiopathic Parkinson's disease (IPD) is challenging, especially in the early stages. This study aimed to investigate differences and similarities in the brain functional connectomes of IPD and MSA-P patients and use machine learning methods to explore the diagnostic utility of these features. Resting-state fMRI data were acquired from 88 healthy controls, 76 MSA-P patients, and 53 IPD patients using a 3.0 T scanner. The whole-brain functional connectome was constructed by thresholding the Pearson correlation matrices of 116 regions, and topological properties were evaluated through graph theory approaches. Connectome measurements were used as features in machine learning models (random forest [RF]/logistic regression [LR]/support vector machine) to distinguish IPD and MSA-P patients. Regarding graph metrics, early IPD and MSA-P patients shared network topological properties. Both patient groups showed functional connectivity disruptions within the cerebellum-basal ganglia-cortical network, but these disconnections were mainly in the cortico-thalamo-cerebellar circuits in MSA-P patients and the basal ganglia-thalamo-cortical circuits in IPD patients. Among the connectome parameters, t tests combined with the RF method identified 15 features, from which the LR classifier achieved the best diagnostic performance on the validation set (accuracy = 92.31%, sensitivity = 90.91%, specificity = 93.33%, area under the receiver operating characteristic curve = 0.89). MSA-P and IPD patients show similar whole-brain network topological alterations. MSA-P primarily affects cerebellar nodes, and IPD primarily affects basal ganglia nodes; both conditions disrupt the cerebellum-basal ganglia-cortical network. Moreover, functional connectome parameters showed outstanding value in the differential diagnosis of early MSA-P and IPD.
Collapse
Affiliation(s)
- Boyu Chen
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wenzhuo Cui
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Shanshan Wang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Anlan Sun
- Yizhun Medical AI Co. Ltd, Beijing, People's Republic of China
| | - Hongmei Yu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yu Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jiachuan He
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
3
|
Sekiya H, Koga S, Otsuka Y, Chihara N, Ueda T, Sekiguchi K, Yoneda Y, Kageyama Y, Matsumoto R, Dickson DW. Clinical and pathological characteristics of later onset multiple system atrophy. J Neurol 2022; 269:4310-4321. [PMID: 35305144 PMCID: PMC10315173 DOI: 10.1007/s00415-022-11067-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In the current consensus criteria, onset after age 75 is considered as non-supporting for diagnosis of multiples system atrophy (MSA); however, some MSA patients present after age 75. Clinical and pathological characteristics of such later onset MSA (LO-MSA) compared to usual onset MSA (UO-MSA) remain poorly understood. METHODS The clinical cohort included patients from Kobe University Hospital and Amagasaki General Medical Center Hospital, while the autopsy cohort was from the brain bank at Mayo Clinic Florida. We identified 83 patients in the clinical cohort and 193 patients in the autopsy cohort. We divided MSA into two groups according to age at onset: UO-MSA (≤ 75) and LO-MSA (> 75). We compared clinical features and outcomes between the two groups in the clinical cohort and compared the findings to the autopsy cohort. RESULTS LO-MSA accounted for 8% in the clinical cohort and 5% in the autopsy cohort. The median time from onset to death or to life-saving tracheostomy was significantly shorter in LO-MSA than in UO-MSA in both cohorts (4.8 vs 7.9 years in the clinical cohort and 3.9 vs 7.5 years in the autopsy cohort; P = 0.043 and P < 0.0001, respectively). The median time from diagnosis to death was less than 3 years in LO-MSA in the clinical cohort. CONCLUSIONS Some MSA patients have late age of onset and short survival, limiting time for clinical decision making. MSA should be considered in the differential diagnosis of elderly patients with autonomic symptoms and extrapyramidal and/or cerebellar syndromes.
Collapse
Affiliation(s)
- Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA. .,Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Yoshihisa Otsuka
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center Hospital, Amagasaki, Hyogo, Japan
| | - Norio Chihara
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takehiro Ueda
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kenji Sekiguchi
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yukihiro Yoneda
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center Hospital, Amagasaki, Hyogo, Japan
| | - Yasufumi Kageyama
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center Hospital, Amagasaki, Hyogo, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| |
Collapse
|
4
|
Jellinger KA. Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 2022; 10:599. [PMID: 35327402 PMCID: PMC8945102 DOI: 10.3390/biomedicines10030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal, rapidly progressing neurodegenerative disease of uncertain etiology, clinically characterized by various combinations of Levodopa unresponsive parkinsonism, cerebellar, autonomic and motor dysfunctions. The morphological hallmark of this α-synucleinopathy is the deposition of aberrant α-synuclein in both glia, mainly oligodendroglia (glial cytoplasmic inclusions /GCIs/) and neurons, associated with glioneuronal degeneration of the striatonigral, olivopontocerebellar and many other neuronal systems. Typical phenotypes are MSA with predominant parkinsonism (MSA-P) and a cerebellar variant (MSA-C) with olivocerebellar atrophy. However, MSA can present with a wider range of clinical and pathological features than previously thought. In addition to rare combined or "mixed" MSA, there is a broad spectrum of atypical MSA variants, such as those with a different age at onset and disease duration, "minimal change" or prodromal forms, MSA variants with Lewy body disease or severe hippocampal pathology, rare forms with an unusual tau pathology or spinal myoclonus, an increasing number of MSA cases with cognitive impairment/dementia, rare familial forms, and questionable conjugal MSA. These variants that do not fit into the current classification of MSA are a major challenge for the diagnosis of this unique proteinopathy. Although the clinical diagnostic accuracy and differential diagnosis of MSA have improved by using combined biomarkers, its distinction from clinically similar extrapyramidal disorders with other pathologies and etiologies may be difficult. These aspects should be taken into consideration when revising the current diagnostic criteria. This appears important given that disease-modifying treatment strategies for this hitherto incurable disorder are under investigation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
5
|
Yang HJ, Kim HJ, Jung YJ, Yoo D, Choi JH, Im JH, Jeon B. Data-driven subtype classification of patients with early-stage multiple system atrophy. Parkinsonism Relat Disord 2022; 95:92-97. [DOI: 10.1016/j.parkreldis.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 01/18/2023]
|
6
|
Iwabuchi Y, Kameyama M, Matsusaka Y, Narimatsu H, Hashimoto M, Seki M, Ito D, Tabuchi H, Yamada Y, Jinzaki M. A diagnostic strategy for Parkinsonian syndromes using quantitative indices of DAT SPECT and MIBG scintigraphy: an investigation using the classification and regression tree analysis. Eur J Nucl Med Mol Imaging 2021; 48:1833-1841. [PMID: 33392714 PMCID: PMC8113194 DOI: 10.1007/s00259-020-05168-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023]
Abstract
Purpose We aimed to evaluate the diagnostic performances of quantitative indices obtained from dopamine transporter (DAT) single-photon emission computed tomography (SPECT) and 123I-metaiodobenzylguanidine (MIBG) scintigraphy for Parkinsonian syndromes (PS) using the classification and regression tree (CART) analysis. Methods We retrospectively enrolled 216 patients with or without PS, including 80 without PS (NPS) and 136 with PS [90 Parkinson’s disease (PD), 21 dementia with Lewy bodies (DLB), 16 progressive supranuclear palsy (PSP), and 9 multiple system atrophy (MSA). The striatal binding ratio (SBR), putamen-to-caudate ratio (PCR), and asymmetry index (AI) were calculated using DAT SPECT. The heart-to-mediastinum uptake ratio (H/M) based on the early (H/M [Early]) and delayed (H/M [Delay]) images and cardiac washout rate (WR) were calculated from MIBG scintigraphy. The CART analysis was used to establish a diagnostic decision tree model for differentiating PS based on these quantitative indices. Results The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 87.5, 96.3, 93.3, 92.9, and 93.1 for NPS; 91.1, 78.6, 75.2, 92.5, and 83.8 for PD; 57.1, 95.9, 60.0, 95.4, and 92.1 for DLB; and 50.0, 98.0, 66.7, 96.1, and 94.4 for PSP, respectively. The PCR, WR, H/M (Delay), and SBR indices played important roles in the optimal decision tree model, and their feature importance was 0.61, 0.22, 0.11, and 0.05, respectively. Conclusion The quantitative indices showed high diagnostic performances in differentiating NPS, PD, DLB, and PSP, but not MSA. Our findings provide useful guidance on how to apply these quantitative indices in clinical practice.
Collapse
Affiliation(s)
- Yu Iwabuchi
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masashi Kameyama
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yohji Matsusaka
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidetoshi Narimatsu
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Hashimoto
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morinobu Seki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Ito
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
7
|
Yue T, Lu H, Yao XM, Du X, Wang LL, Guo DD, Liu YM. Elevated serum growth differentiation factor 15 in multiple system atrophy patients: A case control study. World J Clin Cases 2020; 8:2473-2483. [PMID: 32607324 PMCID: PMC7322433 DOI: 10.12998/wjcc.v8.i12.2473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a serious progressive neurodegenerative disease. Early diagnosis of MSA is very difficult, and diagnostic biomarkers are limited. Growth differentiation factor 15 (GDF15) is involved in the differentiation and progression of the central nervous system, and is widely distributed in peripheral blood, which may be a novel biomarker for MSA.
AIM To determine serum GDF15 levels, related factors and their potential diagnostic value in MSA patients, compared with Parkinson’s disease (PD) patients and healthy controls.
METHODS A case-control study was conducted, including 49 MSA patients, 50 PD patients and 50 healthy controls. Serum GDF15 levels were measured by human enzyme-linked immunosorbent assay, and the differences between the MSA, PD and control groups were analyzed. Further investigations were performed in different MSA subgroups according to age of onset, sex, clinical subtypes, diagnostic criteria, and disease duration. Receiver-operating characteristic curve analysis was used to evaluate the diagnostic value of GDF15, especially for the differential diagnosis between MSA and PD.
RESULTS Serum GDF15 levels were significantly higher in MSA patients than in PD patients and healthy controls (P = 0.000). Males and those with a disease duration of more than three years showed higher serum GDF15 levels (P = 0.043 and 0.000; respectively). Serum GDF15 levels may be a potential diagnostic biomarker for MSA patients compared with healthy controls and PD patients (cutoff: 470.42 pg/mL, sensitivity: 85.7%, specificity: 88.0%; cutoff: 1075.91 pg/mL, sensitivity: 51.0%, specificity: 96.0%; respectively).
CONCLUSION Serum GDF15 levels are significantly higher in MSA patients and provide suggestions on the etiology of MSA.
Collapse
Affiliation(s)
- Tao Yue
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- Department of Gerontology, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Hui Lu
- Department of Ophthalmology, Zibo Central Hospital, Zibo 255036, Shandong Province, China
| | - Xiao-Mei Yao
- Department of Gerontology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250013, Shandong Province, China
| | - Xia Du
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong Province, China
| | - Ling-Ling Wang
- Department of Neurology, Yantaishan Hospital, Yantai 264001, Shandong Province, China
| | - Dan-Dan Guo
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Ming Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
8
|
Kaasinen V, Kankare T, Joutsa J, Vahlberg T. Presynaptic Striatal Dopaminergic Function in Atypical Parkinsonism: A Metaanalysis of Imaging Studies. J Nucl Med 2019; 60:1757-1763. [PMID: 30979821 DOI: 10.2967/jnumed.119.227140] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/04/2019] [Indexed: 12/29/2022] Open
Abstract
Multiple-system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal syndrome (CBS) have signs and symptoms overlapping those of Parkinson disease (PD), complicating their clinical diagnosis. Although presynaptic dopaminergic brain imaging with PET and SPECT is clinically widely used for patients with suspected PD, the benefit of functional imaging in atypical parkinsonism syndromes remains unclear. We compared striatal presynaptic dopaminergic function in MSA parkinsonism variant (MSA-P), MSA cerebellar variant (MSA-C), PSP, CBS, and PD using combined quantitative data from all published studies. Methods: The PubMed database was searched from inception to August 2018 for the terms "dopamine" OR "dopaminergic" AND "PET" OR "SPECT" OR "SPET" and keywords related to PD, MSA, PSP, and CBS. In total, 1,711 publications were identified. PET or SPECT studies comparing patients with atypical parkinsonism to another diagnostic group (PD, MSA, PSP, or CBS) were included. Tracers for dopamine transporter (DAT), aromatic amino acid decarboxylase (AADC), or vesicular monoamine type 2 were investigated. Tracer binding data were extracted from the original articles. Heterogeneity of the data was examined using I 2 statistics, and a random-effects model was used to summarize data. Hedges g was used as an estimator of effect size in group comparisons. Results are reported according to PRISMA guidelines. Results: Thirty-five studies (29 DAT, 6 AADC, no vesicular monoamine type 2 studies) with 356 MSA-P patients, 204 PSP patients, 79 CBS patients, and 62 MSA-C patients were included in the metaanalysis. Caudate nucleus and putamen DAT function was clearly lower in PSP than in PD (caudate: 34.1% difference, g = -1.08, 95% confidence interval [CI] = -1.52 to -0.64; putamen: 18.2%, g = -0.86, 95% CI = -1.50 to -0.21) and MSA-P (striatum: 31.4%, g = -0.70, 95% CI = -1.21 to -0.19) and was clearly lower in MSA-P than in MSA-C (striatum: 46.0%, g = 1.46, 95% CI = 0.23 to 2.68). Although not significant because of limited data, aromatic l-AADC results paralleled the DAT findings. Conclusion: Striatal presynaptic DAT function is clearly lower in PSP patients than in PD and MSA-P patients and is clearly lower in MSA-P patients than in MSA-C patients.
Collapse
Affiliation(s)
- Valtteri Kaasinen
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland .,Department of Neurology, University of Turku, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland; and
| | - Tuomas Kankare
- Department of Neurology, University of Turku, Turku, Finland
| | - Juho Joutsa
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| | - Tero Vahlberg
- Department of Clinical Medicine, Biostatistics, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Farooq S, Chelimsky TC. Clinical neurophysiology of multiple system atrophy. HANDBOOK OF CLINICAL NEUROLOGY 2019; 161:423-428. [PMID: 31307618 DOI: 10.1016/b978-0-444-64142-7.00065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multiple system atrophy (MSA) is an adult-onset, rapidly progressive neurodegenerative syndrome. The diagnosis of MSA is primarily clinical. Neurophysiologic studies can provide important clues to the diagnosis of MSA and differentiate it from other neurodegenerative diseases especially when the clinical picture is unclear. This chapter reviews common and less common neurophysiological studies useful in the diagnosis of MSA.
Collapse
Affiliation(s)
- Salman Farooq
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Thomas C Chelimsky
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
10
|
Non-cell-autonomous actions of α-synuclein: Implications in glial synucleinopathies. Prog Neurobiol 2018; 169:158-171. [DOI: 10.1016/j.pneurobio.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/24/2017] [Accepted: 06/30/2018] [Indexed: 01/11/2023]
|
11
|
Dilemma of multiple system atrophy and spinocerebellar ataxias. J Neurol 2018; 265:2764-2772. [DOI: 10.1007/s00415-018-8876-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
|
12
|
Higashi M, Ozaki K, Hattori T, Ishii T, Soga K, Sato N, Tomita M, Mizusawa H, Ishikawa K, Yokota T. A diagnostic decision tree for adult cerebellar ataxia based on pontine magnetic resonance imaging. J Neurol Sci 2018; 387:187-195. [PMID: 29571861 DOI: 10.1016/j.jns.2018.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/27/2022]
Abstract
Cerebellar ataxias (CAs) are heterogeneous conditions often require differential diagnosis. This study aimed to establish a diagnostic decision tree for differentiating CAs based on pontine MRI findings. Two-hundred and two consecutive ataxia patients were clinically classified into 4 groups: (1) spinocerebellar ataxia (SCA) with brainstem involvement (SCA-BSI), (2) Pure cerebellar SCA, (3) cerebellar dominant multiple system atrophy (MSA-c), and (4) Other CA. Signal intensity in pons was graded into 3 types: hot cross bun sign (HCBS), pontine midline linear T2-hyperintensity (PMH), or normal. The distance ratio of pontine base to tegmentum, named "BT-ratio", was measured. The presence of HCBS indicated either MSA-c with a specificity of 97.7%, or SCA2. When PMH was observed, a BT-ratio above 3.54 strongly indicated SCA-BSI, namely Machado-Joseph disease, SCA1, or dentatorubral-pallidoluysian atrophy, whereas a BT-ratio below 3.54 indicated MSA-c or SCA2. When the signal intensity was normal, a BT-ratio above 3.52 indicated SCA-BSI, whereas a BT-ratio below 3.52 suggested Pure cerebellar SCA or Other CA with pure cerebellar type. The decision tree was confirmed useful in a different 30 CA patients. We propose that differential diagnosis of CAs can be supported by combining pontine MRI signal intensity changes and BT-ratio.
Collapse
Affiliation(s)
- Miwa Higashi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kokoro Ozaki
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takaaki Hattori
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takashi Ishii
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kazumasa Soga
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Neurology, Yokosuka Kyosai Hospital, 1-16 Yonegahama-dori, Yokosuka, Kanagawa 238-8558, Japan
| | - Nozomu Sato
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Makoto Tomita
- Clinical Research Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
13
|
Koga S, Dickson DW. Recent advances in neuropathology, biomarkers and therapeutic approach of multiple system atrophy. J Neurol Neurosurg Psychiatry 2018; 89:175-184. [PMID: 28860330 DOI: 10.1136/jnnp-2017-315813] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/07/2017] [Accepted: 08/16/2017] [Indexed: 01/20/2023]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterised by a variable combination of autonomic failure, levodopa-unresponsive parkinsonism, cerebellar ataxia and pyramidal symptoms. The pathological hallmark is the oligodendrocytic glial cytoplasmic inclusion (GCI) consisting of α-synuclein; therefore, MSA is included in the category of α-synucleinopathies. MSA has been divided into two clinicopathological subtypes: MSA with predominant parkinsonism and MSA with predominant cerebellar ataxia, which generally correlate with striatonigral degeneration and olivopontocerebellar atrophy, respectively. It is increasingly recognised, however, that clinical and pathological features of MSA are broader than previously considered.In this review, we aim to describe recent advances in neuropathology of MSA from a review of the literature and from information derived from review of nearly 200 definite MSA cases in the Mayo Clinic Brain Bank. In light of these new neuropathological findings, GCIs and neuronal cytoplasmic inclusions play an important role in clinicopathological correlates of MSA. We also focus on clinical diagnostic accuracy and differential diagnosis of MSA as well as candidate biomarkers. We also review some controversial topics in MSA. Cognitive impairment, which has been a non-supporting feature of MSA, is considered from both clinical and pathological perspectives. The cellular origin of α-synuclein in GCI and a 'prion hypothesis' are discussed. Finally, completed and ongoing clinical trials targeting disease modification, including immunotherapy, are summarised.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
14
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|
15
|
Jellinger KA. Potential clinical utility of multiple system atrophy biomarkers. Expert Rev Neurother 2017; 17:1189-1208. [DOI: 10.1080/14737175.2017.1392239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Miller N, Nath U, Noble E, Burn D. Utility and accuracy of perceptual voice and speech distinctions in the diagnosis of Parkinson’s disease, PSP and MSA-P. Neurodegener Dis Manag 2017. [DOI: 10.2217/nmt-2017-0005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To determine if perceptual speech measures distinguish people with Parkinson’s disease (PD), multiple system atrophy with predominant parkinsonism (MSA-P) and progressive supranuclear palsy (PSP). Methods: Speech–language therapists blind to patient characteristics employed clinical rating scales to evaluate speech/voice in 24 people with clinically diagnosed PD, 17 with PSP and 9 with MSA-P, matched for disease duration (mean 4.9 years, standard deviation 2.2). Results: No consistent intergroup differences appeared on specific speech/voice variables. People with PD were significantly less impaired on overall speech/voice severity. Analyses by severity suggested further investigation around laryngeal, resonance and fluency changes may characterize individual groups. Conclusion: MSA-P and PSP compared with PD were distinguished by severity of speech/voice deterioration, but individual speech/voice parameters failed to consistently differentiate groups.
Collapse
Affiliation(s)
- Nick Miller
- Newcastle University Institute for Ageing, Speech & Language Sciences, George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Uma Nath
- Consultant Neurologist, Sunderland Royal Hospital, Kyall Road, Sunderland SR4 7TP, UK
| | - Emma Noble
- Newcastle University Institute for Ageing, Speech & Language Sciences, George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - David Burn
- Institute of Neuroscience, Professor of Movement Disorders Neurology, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
17
|
Yang W, Yu S. Synucleinopathies: common features and hippocampal manifestations. Cell Mol Life Sci 2017; 74:1485-1501. [PMID: 27826641 PMCID: PMC11107502 DOI: 10.1007/s00018-016-2411-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA) are three major synucleinopathies characterized by α-synuclein-containing inclusions in the brains of patients. Because the cell types and brain structures that are affected vary markedly between the disorders, the patients have different clinical manifestations in addition to some overlapping symptoms, which are the basis for differential diagnosis. Cognitive impairment and depression associated with hippocampal dysfunction are frequently observed in these disorders. While various α-synuclein-containing inclusions are found in the hippocampal formation, increasing evidence supports that small α-synuclein aggregates or oligomers may be the real culprit, causing deficits in neurotransmission and neurogenesis in the hippocampus and related brain regions, which constitute the major mechanism for the hippocampal dysfunctions and associated neuropsychiatric manifestations in synucleinopathies.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.
- Beijing Key Laboratory for Parkinson's Disease, Beijing, China.
| |
Collapse
|
18
|
Kim HJ, Jeon B, Fung VSC. Role of Magnetic Resonance Imaging in the Diagnosis of Multiple System Atrophy. Mov Disord Clin Pract 2016; 4:12-20. [PMID: 30363358 DOI: 10.1002/mdc3.12404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 12/14/2022] Open
Abstract
Background Multiple system atrophy (MSA) is a rapidly progressing neurodegenerative disorder without effective disease-modifying therapies. Because of a lack of reliable diagnostic biomarkers, there has been increasing interest in using magnetic resonance imaging (MRI) to improve the diagnostic accuracy of MSA. Methods This review summarizes recent literatures on the role of MRI in the diagnosis of MSA. Results Several MRI abnormalities on conventional MRI already are included in the current diagnostic criteria for MSA. Other features on conventional MRI are also used to make a diagnosis of MSA or to rule out alternative diagnoses. On the other hand, some of the MRI findings that were previously considered suggestive of a diagnosis of MSA are now being challenged, because it turned out that they were not as specific to MSA as previously thought. More advanced MRI modalities, including susceptibility-weighted imaging, diffusion-weighted imaging, diffusion tensor imaging, voxel-based morphometry, and cortical thickness analysis, are now used to study the changes in the brains of patients with MSA. Furthermore, studies have produced promising results demonstrating the use of MRI as a tool for monitoring and assessing disease progression in MSA. Conclusions MRI is useful and indispensable in the diagnosis of MSA and also possibly for monitoring disease progression. In this regard, well-designed, long-term, prospective studies on large numbers of patients are needed.
Collapse
Affiliation(s)
- Han-Joon Kim
- Department of Neurology and Movement Disorder Center Parkinson Study Group, and Neuroscience Research Institute College of Medicine Seoul National University Seoul Korea
| | - Beomseok Jeon
- Department of Neurology and Movement Disorder Center Parkinson Study Group, and Neuroscience Research Institute College of Medicine Seoul National University Seoul Korea
| | - Victor S C Fung
- Movement Disorders Unit Department of Neurology Westmead Hospital and Sydney Medical School Sydney Australia
| |
Collapse
|
19
|
Jellinger KA, Wenning GK. Multiple system atrophy: pathogenic mechanisms and biomarkers. J Neural Transm (Vienna) 2016; 123:555-72. [PMID: 27098666 DOI: 10.1007/s00702-016-1545-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
Abstract
Multiple system atrophy (MSA) is a unique proteinopathy that differs from other α-synucleinopathies since the pathological process resulting from accumulation of aberrant α-synuclein (αSyn) involves the oligodendroglia rather than neurons, although both pathologies affect multiple parts of the brain, spinal cord, autonomic and peripheral nervous system. Both the etiology and pathogenesis of MSA are unknown, although animal models have provided insight into the basic molecular changes of this disorder. Accumulation of aberrant αSyn in oligodendroglial cells and preceded by relocation of p25α protein from myelin to oligodendroglia results in the formation of insoluble glial cytoplasmic inclusions that cause cell dysfunction and demise. These changes are associated with proteasomal, mitochondrial and lipid transport dysfunction, oxidative stress, reduced trophic transport, neuroinflammation and other noxious factors. Their complex interaction induces dysfunction of the oligodendroglial-myelin-axon-neuron complex, resulting in the system-specific pattern of neurodegeneration characterizing MSA as a synucleinopathy with oligodendroglio-neuronopathy. Propagation of modified toxic αSyn species from neurons to oligodendroglia by "prion-like" transfer and its spreading associated with neuronal pathways result in a multi-system involvement. No reliable biomarkers are currently available for the clinical diagnosis and prognosis of MSA. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable diagnostic biomarkers and to deliver targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| | - Gregor K Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|