1
|
Xu Z, Xu R. Current potential diagnostic biomarkers of amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:917-931. [PMID: 38976599 DOI: 10.1515/revneuro-2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) currently lacks the useful diagnostic biomarkers. The current diagnosis of ALS is mainly depended on the clinical manifestations, which contributes to the diagnostic delay and be difficult to make the accurate diagnosis at the early stage of ALS, and hinders the clinical early therapeutics. The more and more pathogenesis of ALS are found at the last 30 years, including excitotoxicity, the oxidative stress, the mitochondrial dysfunction, neuroinflammation, the altered energy metabolism, the RNA misprocessing and the most recent neuroimaging findings. The findings of these pathogenesis bring the new clues for searching the diagnostic biomarkers of ALS. At present, a large number of relevant studies about the diagnostic biomarkers are underway. The ALS pathogenesis related to the diagnostic biomarkers might lessen the diagnostic reliance on the clinical manifestations. Among them, the cortical altered signatures of ALS patients derived from both structural and functional magnetic resonance imaging and the emerging proteomic biomarkers of neuronal loss and glial activation in the cerebrospinal fluid as well as the potential biomarkers in blood, serum, urine, and saliva are leading a new phase of biomarkers. Here, we reviewed these current potential diagnostic biomarkers of ALS.
Collapse
Affiliation(s)
- Zheqi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- The Clinical College of Nanchang Medical College, Nanchang 330006, China
- Medical College of Nanchang University, Nanchang 330006, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
- The Clinical College of Nanchang Medical College, Nanchang 330006, China
- Medical College of Nanchang University, Nanchang 330006, China
| |
Collapse
|
2
|
Wang Z, Cao W, Deng B, Fan D. Lower creatinine-to-cystatin c ratio associated with increased risk of incident amyotrophic lateral sclerosis in the prospective UK biobank cohort. Sci Rep 2024; 14:28289. [PMID: 39550435 PMCID: PMC11569255 DOI: 10.1038/s41598-024-79910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024] Open
Abstract
Reduced muscle mass has been associated with the progression and prognosis of amyotrophic lateral sclerosis (ALS). However, it remains unclear whether decreased muscle mass is a risk factor for ALS or a consequence of motor neuron degeneration. Recently, serum creatinine-to-cystatin C ratio (CCR) have emerged as promising biomarkers for assessing muscle mass. We aimed to explore the association between CCR and the incidence of ALS using data from the UK Biobank. Between 2006 and 2010, 446,945 participants were included in the baseline. CCR was calculated as the ratio of serum creatinine to cystatin C. Cox regression models were used to analyze the relationship between CCR and ALS incidence. Furthermore, subgroup analyses were conducted to investigate potential covariates in these relationships. After adjusting for all covariates, the multivariate Cox regression analysis revealed a significant association between decreased CCR and an increased risk of ALS (hazard ratio (HR) = 0.990, 95% confidence interval (CI): 0.982-0.999, P = 0.026). Participants were stratified into groups based on CCR tertiles. Compared with participants in the highest tertiles of CCR, those in the lowest (HR = 1.388, 95% CI: 1.032-1.866, P = 0.030) and medium tertiles (HR = 1.348, 95% CI: 1.045-1.739, P = 0.021) had an increased risk of ALS incidence. Subgroup analysis showed that the relationship between CCR and ALS incidence was particularly significant among participants aged < 65 years (CCR tertile 1: HR = 1.916, 95% CI: 1.366-2.688, P < 0.001; CCR tertile 2: HR = 1.699, 95% CI: 1.267-2.278, P < 0.001). The present results demonstrate that lower CCR is significantly associated with a higher risk of ALS.
Collapse
Affiliation(s)
- Zhuoya Wang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China.
| |
Collapse
|
3
|
Vaage AM, Meyer HE, Landgraff IK, Myrstad M, Holmøy T, Nakken O. Physical Activity, Fitness, and Long-Term Risk of Amyotrophic Lateral Sclerosis: A Prospective Cohort Study. Neurology 2024; 103:e209575. [PMID: 38924713 DOI: 10.1212/wnl.0000000000209575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Observational studies have demonstrated an increased amyotrophic lateral sclerosis (ALS) risk among professional athletes in various sports. For moderately increased levels of physical activity and fitness, the results are diverging. Through a cohort study, we aimed to assess the relationship between indicators of physical activity and fitness (self-reported physical activity and resting heart rate) and long-term ALS risk. METHODS From a large Norwegian cardiovascular health survey (1985-1999), we collected information on self-reported physical activity in leisure time, resting heart rate, and other cardiovascular risk factors. Patients with ALS were identified through health registries covering the whole population. We fitted Cox proportional hazard models to assess the risk of ALS according to levels of self-reported physical activity in 3 categories (1: sedentary; 2: minimum 4 hours per week of walking or cycling; 3: minimum 4 hours per week of recreational sports or hard training), and resting heart rate modeled both on the continuous scale and as quartiles of distribution. RESULTS Out of 373,696 study participants (mean 40.9 [SD 1.1] years at inclusion), 504 (41.2% women) developed ALS during a mean follow-up time of 27.2 (SD 5.0) years. Compared with participants with the lowest level of physical activity, the hazard ratio was 0.71 (95% CI 0.53-0.95) for those with the highest level. There were no clear associations between resting heart rate and ALS in the total sample. In men, the hazard ratio of ALS was 0.71 (95% CI 0.53-0.95) for those reporting moderate levels of physical activity and 0.59 (95% CI 0.42-0.84) for those reporting high levels, compared with those reporting low levels. Men with resting heart rate in the lowest quartile had 32% reduced risk of ALS (hazard ratio 0.68, 95% CI 0.49-0.94) compared with those in the second highest quartile. In women, no association was detected between neither self-reported levels of physical activity nor resting heart rate and ALS risk. DISCUSSION Indicators of high levels of physical activity and fitness are associated with a reduced risk of ALS more than 30 years later in men, but not in women.
Collapse
Affiliation(s)
- Anders M Vaage
- From the Department of Neurology (A.M.V., T.H., O.N.), Akershus University Hospital, Lørenskog; Institute of Clinical Medicine (A.M.V., T.H.), University of Oslo; Department of Physical Health and Ageing (H.E.M.), Norwegian Institute of Public Health, Oslo; Department of Community Medicine and Global Health (H.E.M.), University of Oslo; and Department of Internal Medicine (I.K.L., M.M.), and Department of Medical Research (M.M.), Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Haakon E Meyer
- From the Department of Neurology (A.M.V., T.H., O.N.), Akershus University Hospital, Lørenskog; Institute of Clinical Medicine (A.M.V., T.H.), University of Oslo; Department of Physical Health and Ageing (H.E.M.), Norwegian Institute of Public Health, Oslo; Department of Community Medicine and Global Health (H.E.M.), University of Oslo; and Department of Internal Medicine (I.K.L., M.M.), and Department of Medical Research (M.M.), Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Ida K Landgraff
- From the Department of Neurology (A.M.V., T.H., O.N.), Akershus University Hospital, Lørenskog; Institute of Clinical Medicine (A.M.V., T.H.), University of Oslo; Department of Physical Health and Ageing (H.E.M.), Norwegian Institute of Public Health, Oslo; Department of Community Medicine and Global Health (H.E.M.), University of Oslo; and Department of Internal Medicine (I.K.L., M.M.), and Department of Medical Research (M.M.), Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Marius Myrstad
- From the Department of Neurology (A.M.V., T.H., O.N.), Akershus University Hospital, Lørenskog; Institute of Clinical Medicine (A.M.V., T.H.), University of Oslo; Department of Physical Health and Ageing (H.E.M.), Norwegian Institute of Public Health, Oslo; Department of Community Medicine and Global Health (H.E.M.), University of Oslo; and Department of Internal Medicine (I.K.L., M.M.), and Department of Medical Research (M.M.), Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Trygve Holmøy
- From the Department of Neurology (A.M.V., T.H., O.N.), Akershus University Hospital, Lørenskog; Institute of Clinical Medicine (A.M.V., T.H.), University of Oslo; Department of Physical Health and Ageing (H.E.M.), Norwegian Institute of Public Health, Oslo; Department of Community Medicine and Global Health (H.E.M.), University of Oslo; and Department of Internal Medicine (I.K.L., M.M.), and Department of Medical Research (M.M.), Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Ola Nakken
- From the Department of Neurology (A.M.V., T.H., O.N.), Akershus University Hospital, Lørenskog; Institute of Clinical Medicine (A.M.V., T.H.), University of Oslo; Department of Physical Health and Ageing (H.E.M.), Norwegian Institute of Public Health, Oslo; Department of Community Medicine and Global Health (H.E.M.), University of Oslo; and Department of Internal Medicine (I.K.L., M.M.), and Department of Medical Research (M.M.), Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| |
Collapse
|
4
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Aydemir D, Surucu S, Basak AN, Ulusu NN. Evaluation of the Hematological and Serum Biochemistry Parameters in the Pre-Symptomatic and Symptomatic Stages of ALS Disease to Support Early Diagnosis and Prognosis. Cells 2022; 11:cells11223569. [PMID: 36428998 PMCID: PMC9688239 DOI: 10.3390/cells11223569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. Since there are no pathognomonic tests for ALS prognoses; clinical diagnoses of the disease take time and are usually difficult. Prognostic biomarkers are urgently needed for rapid and effective ALS prognoses. Male albino rats were divided into ten groups based on age: 0 (40-45 days old), A (70-75 days old), B (90-95 days old), C (110-115 days old), and D (130-135 days old). Each group was divided into two subgroups according to its mutation status: wild type (SOD1WT) or mutated (SOD1G93A). Serum biochemistry and hematological parameters were measured in 90 rats to evaluate possible biomarkers for faster ALS diagnoses and prognoses. Weight loss, cholesterol, creatinine, glucose, total bilirubin (TBIL), blood urine nitrogen (BUN), c-peptide, glucagon, PYY, white blood cell (WBC), lymphocyte (LYM), monocyte (MID), granulocyte (GRAN), red cell distribution width with standard deviation (RDW-SD), red cell distribution width with the coefficient of variation (RDW-CV), platelet (PLT), mean platelet volume (MPV), platelet distribution width (PDW), and procalcitonin (PCT) levels were changed in the SOD1G93A rats compared to the SOD1WT rats independently from aging. For the first time in the literature, we showed promising hematological and serum biochemistry parameters in the pre-symptomatic and symptomatic stages of ALS by eliminating the effects of aging. Our results can be used for early diagnoses and prognoses of ALS, improving the quality of life and survival time of ALS patients.
Collapse
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul 34450, Turkey
| | - Selcuk Surucu
- Department of Anatomy, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
| | - Ayse Nazli Basak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, NDAL-KUTTAM, School of Medicine, Koç University, Istanbul 34010, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul 34450, Turkey
- Correspondence:
| |
Collapse
|
6
|
Rosenbohm A, Peter R, Dorst J, Kassubek J, Rothenbacher D, Nagel G, Ludolph AC. Life Course of Physical Activity and Risk and Prognosis of Amyotrophic Lateral Sclerosis in a German ALS Registry. Neurology 2021; 97:e1955-e1963. [PMID: 34670816 DOI: 10.1212/wnl.0000000000012829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Whether physical activity (PA) is a risk factor for amyotrophic lateral sclerosis (ALS) is controversial because data on lifelong PA are rare. The main objective of this study is to provide insight into PA as a potential risk factor for ALS, reporting data on cumulative PA, leisure-time PA, and occupational PA. This study also aims to gather evidence on the role of PA as a prognostic factor in disease course. METHODS Lifetime PA values collected by questionnaires addressing work and leisure time were quantified into metabolic equivalents (METs). A population-based case-control study embedded in the ALS Registry Swabia served to calculate the odds ratio (OR) of ALS by PA in different time intervals and prognosis. RESULTS In ALS cases (393 cases, 791 age- and sex-matched controls), we observed reduced total PA at interview and up to 5 years before interview compared to controls. Total PA was not associated with ALS risk 5 to 55 years before interview. Heavy occupational work intensity was associated with increased ALS risk (OR 1.97, 95% confidence interval 1.34, 2.89). Total PA levels were associated with survival in a nonlinear manner: inactive patients and highest activity levels (25 MET-h/wk) revealed the worst survival time of 15.4 and 19.3 months, respectively. Best median survival with 29.8 months was seen at 10.5 MET-h/wk after adjustment for other prognostic factors. DISCUSSION Lifetime combined PA decreased sharply several years before disease onset compared to controls. The risk of developing ALS was not associated with former total PA levels 5 to 55 years before interview in contrast to occupational PA, probably reflecting work-associated exposures. We found a strong nonlinear association of current and prediagnostic PA level and survival in ALS cases with the best survival with moderate PA. PA intensity may be a disease-modifying factor with an unfavorable outcome in sedentary and hyperactive behavior. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that PA was not associated with the development of ALS.
Collapse
Affiliation(s)
- Angela Rosenbohm
- From the Department of Neurology (A.R., J.D., J.K., A.C.L.) and Institute of Epidemiology and Medical Biometry (R.P., D.R., G.N.), Ulm University; and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (J.D., J.K., A.C.L.), Ulm Site, Germany.
| | - Raphael Peter
- From the Department of Neurology (A.R., J.D., J.K., A.C.L.) and Institute of Epidemiology and Medical Biometry (R.P., D.R., G.N.), Ulm University; and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (J.D., J.K., A.C.L.), Ulm Site, Germany
| | - Johannes Dorst
- From the Department of Neurology (A.R., J.D., J.K., A.C.L.) and Institute of Epidemiology and Medical Biometry (R.P., D.R., G.N.), Ulm University; and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (J.D., J.K., A.C.L.), Ulm Site, Germany
| | - Jan Kassubek
- From the Department of Neurology (A.R., J.D., J.K., A.C.L.) and Institute of Epidemiology and Medical Biometry (R.P., D.R., G.N.), Ulm University; and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (J.D., J.K., A.C.L.), Ulm Site, Germany
| | - Dietrich Rothenbacher
- From the Department of Neurology (A.R., J.D., J.K., A.C.L.) and Institute of Epidemiology and Medical Biometry (R.P., D.R., G.N.), Ulm University; and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (J.D., J.K., A.C.L.), Ulm Site, Germany
| | - Gabriele Nagel
- From the Department of Neurology (A.R., J.D., J.K., A.C.L.) and Institute of Epidemiology and Medical Biometry (R.P., D.R., G.N.), Ulm University; and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (J.D., J.K., A.C.L.), Ulm Site, Germany
| | - Albert C Ludolph
- From the Department of Neurology (A.R., J.D., J.K., A.C.L.) and Institute of Epidemiology and Medical Biometry (R.P., D.R., G.N.), Ulm University; and Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (J.D., J.K., A.C.L.), Ulm Site, Germany
| | | |
Collapse
|
7
|
Batty GD, Gale CR. Pre-Morbid Risk Factors for Amyotrophic Lateral Sclerosis: Prospective Cohort Study. Clin Epidemiol 2021; 13:941-947. [PMID: 34675682 PMCID: PMC8505194 DOI: 10.2147/clep.s329521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
AIM In the absence of effective treatments for amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder with high case fatality, there is a clear need to identify its primary risk factors. METHODS UK Biobank is a prospective cohort study in which baseline data were captured between 2006 and 2010 in 502,649 participants aged 37 to 73 years. Follow-up for ALS hospitalisations and death was made via national registries. RESULTS Eleven years of event surveillance gave rise to 301 hospitalisations and 279 deaths due to ALS. After adjustment for selected confounding factors, being older (hazard ratio per 10 year increase; 95% confidence interval: 1.92; 1.58, 2.33) and male (1.37; 1.00, 1.87) were associated with elevated rates of hospitalisation for ALS. Similar effects were apparent when death ascribed to the disorder was the outcome of interest. Of the remaining 23 social, biological, and behavioural risk indices, however, there was only a suggestion that taller people experienced an increased risk of hospitalisation (per SD increase: 1.31; 1.09, 1.59). CONCLUSION In the present, large-scale study, other than well known associations, we did not find convincing evidence of links with ALS for other risk indices.
Collapse
Affiliation(s)
- G David Batty
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Catharine R Gale
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| |
Collapse
|
8
|
Kläppe U, Longinetti E, Larsson H, Ingre C, Fang F. Mortality among family members of patients with amyotrophic lateral sclerosis - a Swedish register-based study. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:226-235. [PMID: 34296642 DOI: 10.1080/21678421.2021.1953075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: To test two hypotheses: (1) partners of ALS patients have higher mortality due to outcomes related to psychological distress, and (2) parents and siblings of ALS patients have higher mortality due to diseases that co-occur with ALS.Methods: We performed a nationwide, register-based cohort study in Sweden. We included ALS-free partners, biological parents and full siblings (N = 11,704) of ALS patients, as well as ALS-free partners, biological parents and full siblings (N = 14,460,150) of ALS-free individuals, and followed them during 1961-2013. Hazard ratios (HRs) and 95% confidence intervals (CIs) of overall and cause-specific mortality were derived from Cox regression.Results: Partners of ALS patients, compared to partners of ALS-free individuals, displayed higher mortality due to external causes (HR 2.14; 95% CI 1.35-3.41), including suicide (HR 2.44; 95% CI 1.09-5.44) and accidents (HR 2.09; 95% CI 1.12-3.90), after diagnosis of the ALS patients. Parents of ALS patients had a slightly higher overall mortality (HR 1.03; 95% CI 1.00-1.07), compared with parents of ALS-free individuals. This was driven by mortality due to dementias and cardiovascular, respiratory, and skin diseases. Parents of ALS patients had, however, lower mortality than parents of ALS-free individuals due to neoplasms. Siblings of ALS patients had higher mortality due to dementias, and digestive and skin diseases.Conclusions: Increased mortality due to suicide and accidents among partners of ALS patients is likely attributable to severe psychological distress following the ALS diagnosis. Increased mortality due to dementias among parents and full siblings of ALS patients suggests shared mechanisms between neurodegenerative diseases.
Collapse
Affiliation(s)
- Ulf Kläppe
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Elisa Longinetti
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- School of Medical Sciences, Örebro University, Orebro, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden, and
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Lee I, Kazamel M, McPherson T, McAdam J, Bamman M, Amara A, Smith DL, King PH. Fat mass loss correlates with faster disease progression in amyotrophic lateral sclerosis patients: Exploring the utility of dual-energy x-ray absorptiometry in a prospective study. PLoS One 2021; 16:e0251087. [PMID: 33956876 PMCID: PMC8101939 DOI: 10.1371/journal.pone.0251087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
Background/objective Weight loss is a predictor of shorter survival in amyotrophic lateral sclerosis (ALS). We performed serial measures of body composition using Dual-energy X-ray Absorptiometry (DEXA) in ALS patients to explore its utility as a biomarker of disease progression. Methods DEXA data were obtained from participants with ALS (enrollment, at 6- and 12- months follow ups) and Parkinson’s disease (enrollment and at 4-month follow up) as a comparator group. Body mass index, total lean mass index, appendicular lean mass index, total fat mass index, and percentage body fat at enrollment were compared between the ALS and PD cohorts and age-matched normative data obtained from the National Health and Nutrition Examination Survey database. Estimated monthly changes of body composition measures in the ALS cohort were compared to those of the PD cohort and were correlated with disease progression measured by the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R). Results The ALS cohort (N = 20) had lower baseline total and appendicular lean mass indices compared to the PD cohort (N = 20) and general population. Loss in total and appendicular lean masses were found to be significantly associated with follow-up time. Low baseline percentage body fat (r = 0.72, p = 0.04), loss of percentage body fat (r = 0.81, p = 0.01), and total fat mass index (r = 0.73, p = 0.04) during follow up correlated significantly with monthly decline of ALSFRS-R scores in ALS cohort who had 2 or more follow-ups (N = 8). Conclusion Measurement of body composition with DEXA might serve as a biomarker for rapid disease progression in ALS.
Collapse
Affiliation(s)
- Ikjae Lee
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (IL); (PHK)
| | - Mohamed Kazamel
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tarrant McPherson
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeremy McAdam
- Department of Cell, Developmental, & Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Marcas Bamman
- Department of Cell, Developmental, & Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, United States of America
| | - Amy Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Cell, Developmental, & Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, United States of America
- * E-mail: (IL); (PHK)
| |
Collapse
|
10
|
Fardell C, Schiöler L, Nissbrandt H, Torén K, Åberg M. The erythrocyte sedimentation rate in male adolescents and subsequent risk of Parkinson's disease: an observational study. J Neurol 2020; 268:1508-1516. [PMID: 33277665 PMCID: PMC7990830 DOI: 10.1007/s00415-020-10324-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022]
Abstract
Systemic inflammation may be implicated in the pathophysiology of Parkinson’s disease (PD). Since PD occurs usually in later life, most studies of causal factors are conducted in older populations, so potentially important influences from early life cannot be adequately captured. We investigated whether the erythrocyte sedimentation rate (ESR) in early adulthood is associated with the subsequent development of PD in men. As part of Swedish national conscription testing conducted from 1968 through 1983 (N = 716,550), the erythrocyte sedimentation rate, as a measure of inflammation, was measured in 659,278 young men. The cohort was observed for subsequent PD events (N = 1513) through December 2016. Cox proportional hazards models were used to estimate the hazard ratios (HR) with 95% CI with adjustment for potential confounders. Individuals with higher ESRs were significantly less likely to be diagnosed with PD, as ESR was linearly and inversely associated with PD risk. The magnitude of the association between ESR and PD risk was similar for increases up to 15 mm/h, leveled off thereafter, and was non-significant for ESR values > 20 mm/h. The HR for PD with basic adjustments (age at conscription, year of conscription, test center and erythrocyte volume fraction) was 0.94 (95% CI 0.89–0.99, P = 0.02) per log2 increase in ESR, corresponding to a two-fold increase in ESR. Further adjustments for potential confounders (parental education, systolic and diastolic blood pressures, and IQ) scarcely altered the HR. The results suggest a prospective association between high ESR and reduced risk for PD.
Collapse
Affiliation(s)
- Camilla Fardell
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linus Schiöler
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Nissbrandt
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kjell Torén
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Åberg
- School of Public Health and Community Medicine/Primary Health Care, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 454, 405 30, Gothenburg, Sweden. .,Region Västra Götaland, Regionhälsan, Gothenburg, Sweden.
| |
Collapse
|
11
|
Bjornevik K, O'Reilly ÉJ, Cortese M, Furtado JD, Kolonel LN, Le Marchand L, Mccullough ML, Paganoni S, Schwarzschild MA, Shadyab AH, Manson JE, Ascherio A. Pre-diagnostic plasma lipid levels and the risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 22:133-143. [PMID: 32985910 DOI: 10.1080/21678421.2020.1822411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To assess whether pre-diagnostic lipid levels are associated with Amyotrophic lateral sclerosis (ALS) risk. Methods: We conducted a matched case-control study nested in five large prospective US cohorts (the Nurses' Health Study, the Health Professionals Follow-up Study, the Cancer Prevention Study II Nutrition Cohort, the Multiethnic Cohort Study, and the Women's Health Initiative), and identified 275 individuals who developed ALS during follow-up and had provided blood samples before disease diagnosis. For each ALS case, we randomly selected two controls who were alive at the time of the case diagnosis and matched on cohort, birth year (±1 year), sex, race/ethnicity, fasting status, and time of blood draw. We measured total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG) levels in the plasma samples, and used conditional logistic regression to estimate associations between lipid levels and ALS risk. Results: Higher levels of HDL-C were associated with higher ALS risk in an analysis adjusted for the matching factors (risk ratio [RR] Q4 vs. Q1: 1.78, 95% confidence interval [CI]: 1.18-2.69, p trend: 0.007). The estimate remained similar in a multivariable analysis additionally adjusted for body mass index, physical activity, smoking, alcohol intake, plasma urate levels, and use of cholesterol-lowering drugs (RR Q4 vs. Q1: 1.71, 95% CI: 1.07-2.73, p trend: 0.02). Plasma levels of TC, LDL-C, and TG were not associated with ALS risk. Conclusions: Higher pre-diagnostic HDL-C levels, but not levels of other lipids, were associated with a higher risk of ALS.
Collapse
Affiliation(s)
- Kjetil Bjornevik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Éilis J O'Reilly
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,School of Public Health, College of Medicine, University College Cork, Cork, Ireland
| | - Marianna Cortese
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeremy D Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Laurence N Kolonel
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Sabrina Paganoni
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Michael A Schwarzschild
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Aladdin H Shadyab
- Family Medicine and Public Health, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joann E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alberto Ascherio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Wannarong T, Ungprasert P. Diabetes mellitus is associated with a lower risk of amyotrophic lateral sclerosis: A systematic review and meta-analysis. Clin Neurol Neurosurg 2020; 199:106248. [PMID: 33031990 DOI: 10.1016/j.clineuro.2020.106248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Previous studies have suggested that diabetes mellitus (DM) could be a protective factor against amyotrophic lateral sclerosis (ALS) although the results are inconsistent. This study aimed to comprehensively investigate this relationship by identifying all available studies and summarizing their results. METHODS A systematic review was conducted in MEDLINE and EMBASE database from inception to January 1st, 2020 to identify cohort studies and case-control studies that investigated the risk of development of ALS among patients with DM versus individuals without DM. Point estimates and standard errors from eligible studies were pooled together using the generic inverse variance method, as described by DerSimonian and Laird. Visualization of the funnel plot was used to assess for the presence of publication bias. RESULTS A total of 1683 articles were identified by the search strategy. After two rounds of review, three cohort studies and eight case-control studies fulfilled the inclusion criteria and were included in the meta-analysis. The risk of developing ALS was significantly lower among patients with DM than individuals without DM with the pooled relative risk of 0.68 (95 % CI, 0.55 - 0.84; I2 81 %). The funnel plot was relatively symmetric and was not suggestive of the presence of publication bias. CONCLUSION A significantly decreased risk of ALS among patients with DM was observed in this meta-analysis.
Collapse
Affiliation(s)
- Thapat Wannarong
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, 11100 Euclid Ave, Cleveland, OH 44118, USA
| | - Patompong Ungprasert
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195 USA.
| |
Collapse
|
13
|
Li C, Yang W, Wei Q, Shang H. Causal Association of Leukocytes Count and Amyotrophic Lateral Sclerosis: a Mendelian Randomization Study. Mol Neurobiol 2020; 57:4622-4627. [DOI: 10.1007/s12035-020-02053-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
|
14
|
Mechanistic Insights of Astrocyte-Mediated Hyperactive Autophagy and Loss of Motor Neuron Function in SOD1 L39R Linked Amyotrophic Lateral Sclerosis. Mol Neurobiol 2020; 57:4117-4133. [PMID: 32676988 DOI: 10.1007/s12035-020-02006-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with no cure. The reports showed the role of nearby astrocytes around the motor neurons as one among the causes of the disease. However, the exact mechanistic insights are not explored so far. Thus, in the present investigations, we employed the induced pluripotent stem cells (iPSCs) of Cu/Zn-SOD1L39R linked ALS patient to convert them into the motor neurons (MNs) and astrocytes. We report that the higher expression of stress granule (SG) marker protein G3BP1, and its co-localization with the mutated Cu/Zn-SOD1L39R protein in patient's MNs and astrocytes are linked with AIF1-mediated upregulation of caspase 3/7 and hyper activated autophagy. We also observe the astrocyte-mediated non-cell autonomous neurotoxicity on MNs in ALS. The secretome of the patient's iPSC-derived astrocytes exerts significant oxidative stress in MNs. The findings suggest the hyperactive status of autophagy in MNs, as witnessed by the co-distribution of LAMP1, P62 and LC3 I/II with the autolysosomes. Conversely, the secretome of normal astrocytes has shown neuroprotection in patient's iPSC-derived MNs. The whole-cell patch-clamp assay confirms our findings at a physiological functional level in MNs. Perhaps for the first time, we are reporting that the MN degeneration in ALS triggered by the hyper-activation of autophagy and induced apoptosis in both cell-autonomous and non-cell autonomous conditions.
Collapse
|
15
|
Abstract
The cause of amyotrophic lateral sclerosis (ALS) remains unknown for most of the patients with the disease. Epidemiologic studies can help describe disease burden and examine its potential risk factors, providing thereby evidence base for future mechanistic studies. With this review, we aimed to provide a summary of epidemiologic studies published during the past 18 months, which studied the incidence and risk factors for ALS.
Collapse
|
16
|
O'Reilly ÉJ, Bjornevik K, Furtado JD, Kolonel LN, Le Marchand L, McCullough ML, Stevens VL, Shadyab AH, Snetselaar L, Manson JE, Ascherio A. Prediagnostic plasma polyunsaturated fatty acids and the risk of amyotrophic lateral sclerosis. Neurology 2020; 94:e811-e819. [PMID: 31796528 PMCID: PMC7136057 DOI: 10.1212/wnl.0000000000008676] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To examine the association between prediagnostic plasma polyunsaturated fatty acids levels (PUFA) and amyotrophic lateral sclerosis (ALS). METHODS We identified 275 individuals who developed ALS while enrolled in 5 US prospective cohorts, and randomly selected 2 controls, alive at the time of the case diagnosis, matched on cohort, birth year, sex, ethnicity, fasting status, and time of blood draw. We measured PUFA, expressed as percentages of total fatty acids, using gas liquid chromatography and used conditional logistic regression to estimate risk ratios (RR) and 95% confidence intervals (CI) for the association between PUFA and ALS. RESULTS There was no association between total, n-3, and n-6 PUFA, eicosapentaenoic acid, or docosapentaenoic acid levels and ALS. Higher plasma α-linolenic acid (ALA) in men was associated with lower risk of ALS in age- and matching factor-adjusted analyses (top vs bottom quartile: RR = 0.21 [95% CI 0.07, 0.58], p for trend = 0.004). In women, higher plasma arachidonic acid was associated with higher risk (top vs bottom quartile: RR = 1.65 [95% CI 0.99, 2.76], p for trend = 0.052). Multivariable adjustment, including correlated PUFA, did not change the findings for ALA and arachidonic acid. In men and women combined, higher plasma docosahexaenoic acid (DHA) was associated with higher risk of ALS (top vs bottom quartile: RR = 1.56 [95% CI 1.01, 2.41], p for trend = 0.054), but in multivariable models the association was only evident in men. CONCLUSIONS The majority of individual PUFAs were not associated with ALS. In men, ALA was inversely and DHA was positively related to risk of ALS, while in women arachidonic acid was positively related. These findings warrant confirmation in future studies.
Collapse
Affiliation(s)
- Éilis J O'Reilly
- From the Departments of Nutrition (É.J.O., K.B., J.D.F., A.A.) and Epidemiology (J.E.M., A.A.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Public Health (É.J.O.), College of Medicine, University College Cork, Ireland; Epidemiology Program (L.N.K., L.L.M.), University of Hawaii Cancer Center, Honolulu; Behavioral and Epidemiology Research Group (M.L.M., V.L.S.), American Cancer Society, Atlanta, GA; Family Medicine and Public Health (A.H.S.), School of Medicine, University of California San Diego; Department of Epidemiology (L.S.), College of Public Health, University of Iowa, Iowa City; and Department of Medicine (J.E.M.) and Channing Division of Network Medicine (J.E.M., A.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Kjetil Bjornevik
- From the Departments of Nutrition (É.J.O., K.B., J.D.F., A.A.) and Epidemiology (J.E.M., A.A.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Public Health (É.J.O.), College of Medicine, University College Cork, Ireland; Epidemiology Program (L.N.K., L.L.M.), University of Hawaii Cancer Center, Honolulu; Behavioral and Epidemiology Research Group (M.L.M., V.L.S.), American Cancer Society, Atlanta, GA; Family Medicine and Public Health (A.H.S.), School of Medicine, University of California San Diego; Department of Epidemiology (L.S.), College of Public Health, University of Iowa, Iowa City; and Department of Medicine (J.E.M.) and Channing Division of Network Medicine (J.E.M., A.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jeremy D Furtado
- From the Departments of Nutrition (É.J.O., K.B., J.D.F., A.A.) and Epidemiology (J.E.M., A.A.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Public Health (É.J.O.), College of Medicine, University College Cork, Ireland; Epidemiology Program (L.N.K., L.L.M.), University of Hawaii Cancer Center, Honolulu; Behavioral and Epidemiology Research Group (M.L.M., V.L.S.), American Cancer Society, Atlanta, GA; Family Medicine and Public Health (A.H.S.), School of Medicine, University of California San Diego; Department of Epidemiology (L.S.), College of Public Health, University of Iowa, Iowa City; and Department of Medicine (J.E.M.) and Channing Division of Network Medicine (J.E.M., A.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Laurence N Kolonel
- From the Departments of Nutrition (É.J.O., K.B., J.D.F., A.A.) and Epidemiology (J.E.M., A.A.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Public Health (É.J.O.), College of Medicine, University College Cork, Ireland; Epidemiology Program (L.N.K., L.L.M.), University of Hawaii Cancer Center, Honolulu; Behavioral and Epidemiology Research Group (M.L.M., V.L.S.), American Cancer Society, Atlanta, GA; Family Medicine and Public Health (A.H.S.), School of Medicine, University of California San Diego; Department of Epidemiology (L.S.), College of Public Health, University of Iowa, Iowa City; and Department of Medicine (J.E.M.) and Channing Division of Network Medicine (J.E.M., A.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Loic Le Marchand
- From the Departments of Nutrition (É.J.O., K.B., J.D.F., A.A.) and Epidemiology (J.E.M., A.A.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Public Health (É.J.O.), College of Medicine, University College Cork, Ireland; Epidemiology Program (L.N.K., L.L.M.), University of Hawaii Cancer Center, Honolulu; Behavioral and Epidemiology Research Group (M.L.M., V.L.S.), American Cancer Society, Atlanta, GA; Family Medicine and Public Health (A.H.S.), School of Medicine, University of California San Diego; Department of Epidemiology (L.S.), College of Public Health, University of Iowa, Iowa City; and Department of Medicine (J.E.M.) and Channing Division of Network Medicine (J.E.M., A.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Marjorie L McCullough
- From the Departments of Nutrition (É.J.O., K.B., J.D.F., A.A.) and Epidemiology (J.E.M., A.A.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Public Health (É.J.O.), College of Medicine, University College Cork, Ireland; Epidemiology Program (L.N.K., L.L.M.), University of Hawaii Cancer Center, Honolulu; Behavioral and Epidemiology Research Group (M.L.M., V.L.S.), American Cancer Society, Atlanta, GA; Family Medicine and Public Health (A.H.S.), School of Medicine, University of California San Diego; Department of Epidemiology (L.S.), College of Public Health, University of Iowa, Iowa City; and Department of Medicine (J.E.M.) and Channing Division of Network Medicine (J.E.M., A.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Victoria L Stevens
- From the Departments of Nutrition (É.J.O., K.B., J.D.F., A.A.) and Epidemiology (J.E.M., A.A.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Public Health (É.J.O.), College of Medicine, University College Cork, Ireland; Epidemiology Program (L.N.K., L.L.M.), University of Hawaii Cancer Center, Honolulu; Behavioral and Epidemiology Research Group (M.L.M., V.L.S.), American Cancer Society, Atlanta, GA; Family Medicine and Public Health (A.H.S.), School of Medicine, University of California San Diego; Department of Epidemiology (L.S.), College of Public Health, University of Iowa, Iowa City; and Department of Medicine (J.E.M.) and Channing Division of Network Medicine (J.E.M., A.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Aladdin H Shadyab
- From the Departments of Nutrition (É.J.O., K.B., J.D.F., A.A.) and Epidemiology (J.E.M., A.A.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Public Health (É.J.O.), College of Medicine, University College Cork, Ireland; Epidemiology Program (L.N.K., L.L.M.), University of Hawaii Cancer Center, Honolulu; Behavioral and Epidemiology Research Group (M.L.M., V.L.S.), American Cancer Society, Atlanta, GA; Family Medicine and Public Health (A.H.S.), School of Medicine, University of California San Diego; Department of Epidemiology (L.S.), College of Public Health, University of Iowa, Iowa City; and Department of Medicine (J.E.M.) and Channing Division of Network Medicine (J.E.M., A.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Linda Snetselaar
- From the Departments of Nutrition (É.J.O., K.B., J.D.F., A.A.) and Epidemiology (J.E.M., A.A.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Public Health (É.J.O.), College of Medicine, University College Cork, Ireland; Epidemiology Program (L.N.K., L.L.M.), University of Hawaii Cancer Center, Honolulu; Behavioral and Epidemiology Research Group (M.L.M., V.L.S.), American Cancer Society, Atlanta, GA; Family Medicine and Public Health (A.H.S.), School of Medicine, University of California San Diego; Department of Epidemiology (L.S.), College of Public Health, University of Iowa, Iowa City; and Department of Medicine (J.E.M.) and Channing Division of Network Medicine (J.E.M., A.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - JoAnn E Manson
- From the Departments of Nutrition (É.J.O., K.B., J.D.F., A.A.) and Epidemiology (J.E.M., A.A.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Public Health (É.J.O.), College of Medicine, University College Cork, Ireland; Epidemiology Program (L.N.K., L.L.M.), University of Hawaii Cancer Center, Honolulu; Behavioral and Epidemiology Research Group (M.L.M., V.L.S.), American Cancer Society, Atlanta, GA; Family Medicine and Public Health (A.H.S.), School of Medicine, University of California San Diego; Department of Epidemiology (L.S.), College of Public Health, University of Iowa, Iowa City; and Department of Medicine (J.E.M.) and Channing Division of Network Medicine (J.E.M., A.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alberto Ascherio
- From the Departments of Nutrition (É.J.O., K.B., J.D.F., A.A.) and Epidemiology (J.E.M., A.A.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Public Health (É.J.O.), College of Medicine, University College Cork, Ireland; Epidemiology Program (L.N.K., L.L.M.), University of Hawaii Cancer Center, Honolulu; Behavioral and Epidemiology Research Group (M.L.M., V.L.S.), American Cancer Society, Atlanta, GA; Family Medicine and Public Health (A.H.S.), School of Medicine, University of California San Diego; Department of Epidemiology (L.S.), College of Public Health, University of Iowa, Iowa City; and Department of Medicine (J.E.M.) and Channing Division of Network Medicine (J.E.M., A.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Nakken O, Meyer HE, Stigum H, Holmøy T. High BMI is associated with low ALS risk: A population-based study. Neurology 2019; 93:e424-e432. [PMID: 31243073 DOI: 10.1212/wnl.0000000000007861] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the temporal relationship among prediagnostic body mass index (BMI), weight change, and risk of amyotrophic lateral sclerosis (ALS). METHODS From the compulsory Norwegian tuberculosis screening program, we collected objectively measured BMI from 85% of all citizens (near 1.5 million) between 20 and 70 years of age living in 18 of 19 Norwegian counties between 1963 and 1975. For those who participated in later health surveys, we collected further information on weight change, lifestyle, and health. We identified ALS cases until September 2017 through national registries of diagnoses at death and at encounters with the specialist health service. Both Cox hazard models and flexible parametric survival models were fitted to address our research question. RESULTS We identified 2,968 ALS cases during a mean of 33 (maximum 54) years follow-up. High prediagnostic BMI was associated with low subsequent ALS risk across the typical ALS ages in both sexes. Overall, hazard ratio (HR) for ALS per 5-unit increase in prediagnostic BMI was 0.83 (95% confidence interval [CI] 0.79-0.88). After an initial increase during the first 10 years, it decreased almost linearly throughout the observation period and was 0.69 (95% CI 0.62-0.77) after 50 years. Those in the quartile with highest weight gain had lower ALS risk than those in the lowest quartile (HR 0.63, 95% CI 0.44-0.89). CONCLUSION High BMI and weight gain are associated with low ALS risk several decades later. The strength of the association between BMI and ALS risk increases up to 50 years after BMI measurement.
Collapse
Affiliation(s)
- Ola Nakken
- From the Institute of Clinical Medicine, Campus Ahus (O.N., T.H.), and Department of Community Medicine and Global Health, Institute of Health and Society (H.E.M., H.S.), University of Oslo; Department of Neurology (O.N., T.H.), Akershus University Hospital, Lørenskog; and Department of Chronic Diseases and Ageing (H.E.M., H.S.), Norwegian Institute of Public Health, Oslo, Norway.
| | - Haakon E Meyer
- From the Institute of Clinical Medicine, Campus Ahus (O.N., T.H.), and Department of Community Medicine and Global Health, Institute of Health and Society (H.E.M., H.S.), University of Oslo; Department of Neurology (O.N., T.H.), Akershus University Hospital, Lørenskog; and Department of Chronic Diseases and Ageing (H.E.M., H.S.), Norwegian Institute of Public Health, Oslo, Norway
| | - Hein Stigum
- From the Institute of Clinical Medicine, Campus Ahus (O.N., T.H.), and Department of Community Medicine and Global Health, Institute of Health and Society (H.E.M., H.S.), University of Oslo; Department of Neurology (O.N., T.H.), Akershus University Hospital, Lørenskog; and Department of Chronic Diseases and Ageing (H.E.M., H.S.), Norwegian Institute of Public Health, Oslo, Norway
| | - Trygve Holmøy
- From the Institute of Clinical Medicine, Campus Ahus (O.N., T.H.), and Department of Community Medicine and Global Health, Institute of Health and Society (H.E.M., H.S.), University of Oslo; Department of Neurology (O.N., T.H.), Akershus University Hospital, Lørenskog; and Department of Chronic Diseases and Ageing (H.E.M., H.S.), Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
18
|
Zeng P, Yu X, Xu H. Association Between Premorbid Body Mass Index and Amyotrophic Lateral Sclerosis: Causal Inference Through Genetic Approaches. Front Neurol 2019; 10:543. [PMID: 31178821 PMCID: PMC6543002 DOI: 10.3389/fneur.2019.00543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: Inverse association between premorbid body mass index (BMI) and amyotrophic lateral sclerosis (ALS) was implied in observational studies; however, whether this association is causal remains largely unknown. Materials and Methods: We first conducted a meta-analysis to investigate whether there exits an association between premorbid BMI and ALS. We then employed a two-sample Mendelian randomization approach to evaluate the causal relationship of genetically increased BMI with the risk of ALS. The Mendelian randomization analysis was implemented using summary statistics for independent instruments obtained from large-scale genome-wide association studies of BMI (up to ~770,000 individuals) and ALS (up to ~81,000 individuals). The causal effect of BMI on ALS was estimated using inverse-variance weighted methods and was further validated through extensive complementary and sensitivity analyses. Results: The meta-analysis showed that a unit increase of premorbid BMI can result in about 3.0% (95% CI 2.1-4.5%) risk reduction of ALS. Using 1,031 instruments that were strongly related to BMI, the causal effect of per one standard deviation increase of BMI was estimated to be 1.04 (95% CI 0.97-1.11, p = 0.275) in the European population. This null association between BMI and ALS also held in the East Asian population and was robust against various modeling assumptions and outlier biases. Additionally, the Egger-regression and MR-PRESSO ruled out the possibility of horizontal pleiotropic effects of instruments. Conclusion: Our results do not support the causal role of genetically increased or decreased BMI on the risk of ALS.
Collapse
Affiliation(s)
- Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xinghao Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haibo Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
Swindell WR, Kruse CPS, List EO, Berryman DE, Kopchick JJ. ALS blood expression profiling identifies new biomarkers, patient subgroups, and evidence for neutrophilia and hypoxia. J Transl Med 2019; 17:170. [PMID: 31118040 PMCID: PMC6530130 DOI: 10.1186/s12967-019-1909-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a debilitating disease with few treatment options. Progress towards new therapies requires validated disease biomarkers, but there is no consensus on which fluid-based measures are most informative. METHODS This study analyzed microarray data derived from blood samples of patients with ALS (n = 396), ALS mimic diseases (n = 75), and healthy controls (n = 645). Goals were to provide in-depth analysis of differentially expressed genes (DEGs), characterize patient-to-patient heterogeneity, and identify candidate biomarkers. RESULTS We identified 752 ALS-increased and 764 ALS-decreased DEGs (FDR < 0.10 with > 10% expression change). Gene expression shifts in ALS blood broadly resembled acute high altitude stress responses. ALS-increased DEGs had high exosome expression, were neutrophil-specific, associated with translation, and overlapped significantly with genes near ALS susceptibility loci (e.g., IFRD1, TBK1, CREB5). ALS-decreased DEGs, in contrast, had low exosome expression, were erythroid lineage-specific, and associated with anemia and blood disorders. Genes encoding neurofilament proteins (NEFH, NEFL) had poor diagnostic accuracy (50-53%). However, support vector machines distinguished ALS patients from ALS mimics and controls with 87% accuracy (sensitivity: 86%, specificity: 87%). Expression profiles were heterogeneous among patients and we identified two subgroups: (i) patients with higher expression of IL6R and myeloid lineage-specific genes and (ii) patients with higher expression of IL23A and lymphoid-specific genes. The gene encoding copper chaperone for superoxide dismutase (CCS) was most strongly associated with survival (HR = 0.77; P = 1.84e-05) and other survival-associated genes were linked to mitochondrial respiration. We identify a 61 gene signature that significantly improves survival prediction when added to Cox proportional hazard models with baseline clinical data (i.e., age at onset, site of onset and sex). Predicted median survival differed 2-fold between patients with favorable and risk-associated gene expression signatures. CONCLUSIONS Peripheral blood analysis informs our understanding of ALS disease mechanisms and genetic association signals. Our findings are consistent with low-grade neutrophilia and hypoxia as ALS phenotypes, with heterogeneity among patients partly driven by differences in myeloid and lymphoid cell abundance. Biomarkers identified in this study require further validation but may provide new tools for research and clinical practice.
Collapse
Affiliation(s)
- William R. Swindell
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Department of Internal Medicine, The Jewish Hospital, Cincinnati, OH 45236 USA
| | - Colin P. S. Kruse
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
| | - Edward O. List
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| | - Darlene E. Berryman
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| | - John J. Kopchick
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
- The Diabetes Institute, Ohio University, Athens, OH 45701 USA
| |
Collapse
|